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Ruminant livestock are important sources of human food and global greenhouse gas emissions. 
Feed degradation and methane formation by ruminants rely on metabolic interactions between 
rumen microbes and affect ruminant productivity. Rumen and camelid foregut microbial community 
composition was determined in 742 samples from 32 animal species and 35 countries, to estimate 
if this was influenced by diet, host species, or geography. Similar bacteria and archaea dominated 
in nearly all samples, while protozoal communities were more variable. The dominant bacteria 
are poorly characterised, but the methanogenic archaea are better known and highly conserved 
across the world. This universality and limited diversity could make it possible to mitigate methane 
emissions by developing strategies that target the few dominant methanogens. Differences in 
microbial community compositions were predominantly attributable to diet, with the host being less 
influential. There were few strong co-occurrence patterns between microbes, suggesting that major 
metabolic interactions are non-selective rather than specific.

Ruminants are one of the most successful groups of herbivorous mammals on the planet, with around 
200 species represented by approximately 75 million wild and 3.5 billion domesticated individuals world-
wide1. Ruminants are defined by their mode of plant digestion, and have evolved a forestomach, the 
rumen, that allows partial microbial digestion of feed before it enters the true stomach. Ruminants 
themselves do not produce the enzymes needed to degrade most complex plant polysaccharides, and the 
rumen provides an environment for a rich and dense consortium of anaerobic microbes that fulfil this 
metabolic role. These rumen microbes ferment feed to form volatile fatty acids that are major nutrient 
sources for the host animal and contribute significantly to ruminant productivity. The host also uses 
microbial biomass and some unfermented feed components once these exit the rumen to the remainder 
of the digestive tract. Ruminants have evolved various rumen anatomies and behaviours to thrive on a 
range of plant species, and this flexibility has enabled them to occupy many different habitats spanning a 
wide range of climates2. These were also important factors in their domestication, allowing conversion of 
human-indigestible plant material into readily-accessible animal goods, especially dairy products, meat, 
and useful fibres. Ruminants have thus played a vital role in sustaining and developing many human 
cultures, as well as being used as draft animals and having religious and status values.
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Rumen microbes can be assigned to different functional groups, such as cellulolytics, amylolytics, 
proteolytics, etc., which degrade the wide variety of feed components or further metabolize some of 
the products formed by other microbes3. For example, methanogens, the methane-forming archaea, are 
among those that metabolize hydrogen formed by some fermentative microbes to form methane. The 
methane generated during this fermentation contributes to global anthropogenic greenhouse gas emis-
sions4 and represents a 2–12% loss of feed energy for the animal5. Differences in rumen microbial com-
munities underlie variations in methane formation6 and the conversion of feed to animal products7,8. 
Therefore, understanding these communities is key to understanding ruminal transformations of plant 
material to both undesirable and useful ruminant products.

The aim of this study was to determine the composition of the microbiota in rumen and foregut 
samples from 742 individual animals from around the world. The resulting dataset allowed us to deter-
mine that dietary factors dominate over host species in determining microbial community composition, 
identify the dominant microbes and their potential associations, and describe the degree of similarity of 
rumen microbial communities worldwide.

Results and Discussion
This is the largest single study to examine microbial communities across a range of ruminant and camelid 
species, diets, and geographical regions. A standardised pipeline was used to process samples in order to 
minimise variation introduced by processing steps such as DNA extraction or PCR amplification. This 
is important for detecting authentic patterns rather than ones introduced by methodological differences 
between different studies9. The primers chosen amplify, to the best of our current knowledge, the target 
gene regions from nearly all known bacteria, archaea, and rumen ciliates.

Dominant rumen microbes. Despite the range of ruminants with different feeding strategies and 
diets, similar rumen bacteria were abundant around the world (Fig.  1). There was some variation in 
bacterial community compositions in animals from different regions, likely to be caused by differences 
in diet, climate, and farming practices. The 30 most abundant bacterial groups (Greengenes10 taxonomy 
summarised at the genus-level) were all found in over 90% of samples, and together comprised 89.4% of 
all sequence data (Supplementary Table 1) and were similar to those described in an earlier meta-analysis 
of rumen microbial communities11. All 30 are known rumen-inhabiting bacteria. Because the samples 
came from a wide range of ruminant species, diets, and geographical locations, these data suggest that 
new dominant bacteria are not likely to be found in future studies. The seven most abundant bacterial 

Figure 1. Origins of samples and their bacterial and archaeal community compositions in different 
regions. Numbers below pie charts represent the number of samples for which data were obtained. The 
most abundant bacteria and archaea are named in clockwise order starting at the top of the pie chart. 
Further details of samples and community composition are given in Supplementary Tables 1, 2, 3, and 4 and 
Supplementary Data 1. Mmc. Methanomassiliicoccales. The map was sourced from Wikimedia Commons 
(http://commons.wikimedia.org/wiki/File:BlankMap-World-v2.png, original uploader Roke, accessed May 
2013). Pie charts were produced in Microsoft Excel and the composite image generated with Microsoft 
PowerPoint and Adobe Illustrator. https://creativecommons.org/licenses/by-sa/3.0/deed.en 
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groups comprised 67.1% of all bacterial sequence data, were detected in all samples (Supplementary 
Fig. 1), and can be considered the “dominant” rumen bacteria. They were Prevotella, Butyrivibrio, and 
Ruminococcus, as well as unclassified Lachnospiraceae, Ruminococcaceae, Bacteroidales, and Clostridiales. 
These might be considered a “core bacterial microbiome” at the genus level or higher, because they 
are present in a large selection of ruminants, so confirming the suggestion that there is a core rumen 
microbiome9. However, these bacterial groups were not equally abundant in all animal species (P ≤  0.005; 
Supplementary Table 2). With the exception of Butyrivibrio12, these groups are not adequately repre-
sented by characterised cultures13, and their functions are not well understood.

Inspection of the most abundant and prevalent bacterial operational taxonomic units (OTUs) in the 
dataset showed that only 14% fell within a named species, and 70% were not even within a formally 
recognised genus (Fig.  2a). When cultured isolates from as-yet unnamed species were included in the 
analysis, the dominant OTUs were better (35%) but still poorly represented by cultures that belonged 
to potentially the same species (Fig. 2b). This study shows that, while we appear to recognize the dom-
inant rumen bacteria, considerable microbiological effort is still required to understand them. Some 
efforts have been made to isolate more cultures and gather more information about these bacteria13,14. 
For example, the genomes of Prevotella aff. ruminicola Tc2-24, rumen bacterium R-7, and other isolates 
whose 16S rRNA gene sequences are similar to those of dominant rumen bacterial OTUs (Fig. 2b), have 
been sequenced as part of the Hungate1000 project15.

Because there is a flux of both liquids and solids through the rumen16, microbes must actively metab-
olize to gain energy and multiply to counteract washout and so maintain populations in the rumen17. 
The dominant bacteria found in this study are therefore likely to be responsible for the majority of the 

Figure 2. Dominant bacterial and archaeal operational taxonomic units (OTUs). Similarities 
(Supplementary Tables 8 and 9) of the 50 most abundant and 50 most prevalent bacterial (77 unique OTUs, 
(a,b) and archaeal (64 unique OTUs, c,d) OTUs to the most closely related type (a,c) and cultured  
(b,d) strains are plotted together with prevalence and abundance data. Background shading indicates 
nominal within-species (dark grey), within-genus (mid grey) and below genus (light grey) similarities. 
Prevalence indicates the percentage of samples that an OTU occurs in. The size of each circle indicates the 
mean abundance of each OTU (Supplementary Tables 8 and 9). Bacterial OTU abundances were multiplied 
by a factor of 15 relative to archaeal OTUs. Mbb. Methanobrevibacter.
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transformation of ingested feed in the rumen and camelid foregut, especially of cellulose, hemicellulose, 
pectin, starch, fructan, organic acids, and protein, as these are the major energy-yielding substrates used 
for microbial growth17. There is also a convergence of bacterial community structure in the rumen and 
in the crop of the hoatzin, a bird that relies on a foregut fermentation of ingested leaves18. Thus microbial 
community structure seems to be driven by the similarity of organ function extending across the rumen, 
the camelid foregut, and the crop of this unusual bird. More efforts should go into characterizing the 
metabolism and roles of these bacteria that are the responsible for the majority of feed fermentation, with 
the aim of enhancing animal productivity and reducing methane emissions.

Nearly all the archaea were identified as methanogens known to be residents of the rumen 
(Supplementary Table 3, Supplementary Text 1), and their relative abundances were comparable to previ-
ous studies19. The dominant archaeal groups were remarkably similar in all regions of the world (Fig. 1). 
This universality and limited diversity was also recently noted in survey of archaea in New Zealand rumi-
nants20 and could make it possible to successfully mitigate methane emissions by developing strategies, 
such as vaccines or small-molecule inhibitors, that target the few dominant methanogens.

Members of the Methanobrevibacter gottschalkii and Methanobrevibacter ruminantium clades were 
found in almost all samples, and were the two largest groups, accounting for 74% of all archaea. Together 
with a Methanosphaera sp. and two Methanomassiliicoccaceae-affiliated groups, the five dominant meth-
anogen groups comprised 89.2% of the archaeal communities (Supplementary Fig. 1), showing that 
rumen archaea are much less diverse than rumen bacteria. This likely reflects the narrow range of sub-
strates they use. Methanomicrobium has previously been reported as abundant in ruminants in Asia19. In 
our study, they were found to comprise > 5% of the archaeal community of some Australian, Brazilian, 
Chinese, North American, and South African cattle, as well as South African sheep, showing them to be 
widely distributed, but not universally prevalent. The five dominant methanogen groups were not equally 
abundant in all animal species groups (P ≤  0.005; Supplemental Table 4). In contrast to bacteria, the 
rumen archaea are better represented by cultures, with 58% of the most abundant and prevalent OTUs 
falling within a named species, and all but 22% within named genera (Fig.  2c). All of the latter were 
members of Methanomassiliicoccales, which is an order of relatively poorly-characterised methanogens21 
for which representative cultures of as-yet unnamed species and genera are available (Fig. 2d)22. The 50 
most abundant OTUs accounted for 74.5% of the archaeal sequence data, again indicating a much lower 
diversity than in the bacteria, where the 50 most abundant OTUs made up only 11.0%.

By assigning physiologies (Supplementary Table 5) to the sequence abundance information 
(Supplementary Table 3), it can be concluded that 77.7% of archaea were hydrogenotrophic methano-
gens, while 22.1% had the ability to grow with hydrogen plus methyl groups derived from methanol or 
methylamines. Methanogens able to form methane from acetate (Methanosarcina spp. and Methanosaeta 
spp.) were extremely rare (< 0.015%; Supplemental Data 1), as expected based on their general slow 
growth rates that would not allow them to be maintained in the rumen under normal conditions.

Almost all protozoal sequence data (> 99.9%) were assigned to 12 genus-equivalent protozoal groups 
(Supplementary Table 6). It was apparent that the variability of protozoa between and within cohorts 
of co-located animals was much greater than that of bacteria and archaea (Supplementary Fig. 2). It 
has been reported that there is strong host individuality of rumen protozoal community structure9, 
and this is evident in our study. The genera Entodinium and Epidinium dominated, occurring in more 
than 90% of samples and representing 54.7% of protozoal sequence data (Supplementary Fig. 1). Many 
of the protozoal genera were present in greater than 70% of the samples, indicating a wide prevalence. 
Genera such as Enoploplastron and Ophryoscolex had a wider than expected host distribution. They are 
considered to be mainly present in sheep and cattle, respectively23, but we also found Enoploplastron in 
cattle, deer, and reindeer samples from twelve countries, and Ophryoscolex in buffalo, goats, deer, sheep, 
and giraffe samples from 18 countries. Although different rumen protozoa are reported to have limited 
host and geographical distributions, host specificity has been questioned24. It seems likely that further 
investigation will demonstrate greater ubiquity of the rumen protozoa.

Effects of diet and host on microbial community composition. Because the abundance of 
microbial groups varied between animal species groups and cohorts (Supplementary Tables 2 and 4; 
Supplementary Fig. 2), we looked for factors that might underlie this. Rumen and camelid foregut micro-
bial community structure could be expected to be shaped by morphological, physiological, and even 
behavioural characteristics that evolved along with the varied feeding strategies in the various rumi-
nant lineages2. Indeed, adaptation has resulted in a diversity of rumen sizes and passage rates of rumen 
contents, allowing ruminant species to exploit a range of feed types. In addition to feed composition 
effects25, these host adaptations might also play a role in regulating rumen microbial community struc-
ture. Because our dataset was from ruminants and camelids from different lineages consuming a range 
of diets, host and diet effects on rumen microbial community structure could be separated.

To look at diet and host effects, we classified the diets based on forage and browse or concentrate 
content (Supplementary Table 7) and grouped the animals according to their lineage (Supplementary 
Data 1). Microbial communities could clearly be discriminated by both host and diet (Fig.  3a), with 
bacteria being the main drivers behind the observed differences (Fig.  3b). This probably reflects their 
more diverse metabolic capabilities compared with the less versatile archaea and protozoa. We inves-
tigated the patterns of microbial abundances across hosts and diets (Fig.  3c, Supplementary Fig. 3–6). 
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Figure 3. Effect of host species and dietary forage to concentrate ratios on microbial communities. Diets 
were grouped (Supplementary Table 7) as forage-dominated (F), mixed forage-concentrate (50–70% forage, 
FC), mixed concentrate-forage (50–70% concentrate, CF), or concentrate-dominated (C).  
(a) Discriminant analysis of microbial communities in samples (represented by points coloured by animal 
and diet) revealed that both host and diet determined community composition. (b) Bi-plot that shows 
microbial groups (identified by colours) underlying the separation of samples in panel (a). Several bacterial 
groups strongly discriminate the samples by host and diet, indicated by their presence towards the outside 
of the bi-plot. Archaeal and protozoal groups are less discriminatory, and so are clustered nearer the centre. 
(c) The heatmap shows that bacterial abundances are differentially associated with diet and host (colour key 
shows the association score; see Supplementary Figs 3–5 for additional data). (d) Unclassified Veillonellaceae, 
and (e) Fibrobacter are examples of bacteria that caused bovines and caprids to cluster separately from other 
species in the heat map. The number of samples in each category is given in parentheses in panels (c–e). 
*indicates unclassified bacteria within an order or family.
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Ruminococcus, one of the dominant bacteria, was relatively evenly distributed, but this was an exception. 
For many bacteria, diet was the major factor determining relative abundance. Bacterial communities 
from forage-fed animals were similar to each other, those from concentrate-fed animals were similar 
to each other, but distinct from those in forage-fed animals, and those from animals fed mixed diets 
were intermediate between these. Unclassified Bacteroidales and Ruminococcaceae were more abundant 
in all animals fed forages. Some as-yet poorly characterised Bacteroidales are postulated to be able to 
degrade cellulose, and their genomes encode a broad range of plant polysaccharide degrading capa-
bilities26,27, which could explain their pattern of distribution. In contrast, members of Prevotella and 
unclassified Succinivibrionaceae were more abundant in animals fed diets containing concentrate. Based 
on the physiologies of cultured relatives28,29, these are probably major producers of propionate and the 
propionate-precursor succinate, and so are responsible for the greater levels of propionate formed from 
concentrate-rich diets25. The abundance of only a few other major bacterial groups was associated with 
host lineage (Fig.  3c). For example, unclassified Veillonellaceae were proportionally more abundant in 
sheep, deer, and camelids (Fig. 3d). This may be related to differences in rumen and camelid foregut sizes, 
anatomy, and feeding frequencies compared to bovines2.

The relative abundances of several major bacterial groups were affected by both host and diet 
(Fig.  3c). Unclassified Clostridiales were most abundant in bovines fed forage and least abundant in 
bovines fed high concentrate diets, while in caprids, cervids, and camelids these diet differences were far 
less pronounced. Butyrivibrio was most abundant in rumen samples from bovines fed mixes of forage 
and concentrates. Fibrobacter was most abundant in bovines fed forage. When concentrate was included 
in bovine diets, the relative abundance of Fibrobacter was decreased, but it was still more abundant than 
in other animals. To examine its distribution in more detail, we compared Fibrobacter abundances across 
different ruminant species and found significantly higher levels in bovines compared to deer, sheep, or 
camelids (Fig. 3e). These data suggest that Fibrobacter is favoured in the bovine rumen and, given that it 
is cellulose degrader30, may play an essential role in the degradation of plant fibre in cattle.

Overall, diet was a major determinant of bacterial community structure. This may be because physical 
and chemical characteristics of the feed determine the different microbial niches available. In contrast 
to the post-gastric mammalian digestive tract31, and due to the sheer volume of digesta and feed input, 
there is probably less shaping of the rumen microbial community by local host biological factors such as 
the immune system, secreted antimicrobial peptides, host-cell glycosylation, and host-derived nutrients.

Associations between rumen microbes. The abundance patterns within bacterial, archaeal, and 
protozoal communities in different hosts fed different diets showed that certain microbes exhibited paral-
lel patterns of relative abundance (Fig. 3c, Supplementary Figs 2–6). We therefore looked for correlations 
within and between bacteria, archaea, and protozoa (Fig.  4 and Supplementary Fig. 7), reasoning that 
specific associations should be seen across diets, hosts, and geography. Negative correlations of abun-
dances of groups were observed within the bacteria, archaea, and protozoa, including replacement effects 
between dominant groups within each of these (Supplementary Text 1 and Supplementary Fig. 7). Few 
strong positive correlations were found within bacteria, archaea, and protozoa. For example, there was 
a strong correlation between Veillonellaceae and the TG5 group, driven by their co-occurrence within 
cervids and caprids. These microbes may cooperate in the rumen, or they may share similar requirements 
and so certain hosts and diets would offer better opportunities for their growth. This explanation could 
also underlie the strong positive correlations observed between different groups of methylotrophic meth-
anogens (Supplementary Fig. 7). They may be responding to diets rich in methyl groups, such as feeds 
with high levels of pectins or osmolytes such as betaine. The strongest correlation within protozoa was 
a positive one between Dasytricha and Isotricha. These two genera of holotrichous protozoa display very 
similar spectra of substrate use, including use of plant soluble sugars and storage carbohydrates24, again 
suggesting that co-occurrence may be due to exploitation of similar opportunities.

We also investigated associations between bacteria, archaea, and protozoa. Strikingly, no strong cor-
relations were detected between archaea and protozoa (Supplementary Fig. 7). Methanogens are known 
to colonize protozoa, and this mutualistic relationship is believed to enhance methane formation in the 
rumen32. The occurrence of specific symbioses between methanogens and rumen protozoa has been 
speculated on, but not convincingly demonstrated33. The lack of strong co-occurrence patterns within 
this study indicates that these undoubtedly important associations are probably non-specific, or occur at 
a strain level. Further investigation is required to corroborate this interesting finding, as mechanisms that 
mediate the colonization of protozoa by archaea remain to be elucidated. These could have interesting 
evolutionary aspects if they allow non-specific interactions to form or are mediated by strain-specific 
mechanisms that confer different partner specificities within archaeal or protozoal species. In contrast, 
there were some positive associations between bacterial and protozoal groups. Most noticeable were the 
associations of Isotricha and Dasytricha with Fibrobacter. Fibrobacter were reported to decrease in abun-
dance in animals where protozoa were eliminated34, indicating that there may be a mutually beneficial 
relationship between these protozoa and Fibrobacter, which are surface colonizers of plant material23.

No strong associations were found between the most abundant bacteria and archaea (Fig.  4). This 
was surprising, since rumen bacteria degrade feed and produce the substrates that methanogens use for 
growth, mainly hydrogen and methyl groups. In contrast, there were distinct positive associations between 
some less abundant bacteria and archaea. The strongest association was between bacteria such as the 
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succinate-producing Succinivibrionaceae, the succinate-using Dialister, and the amino-acid-fermenting 
Acidaminococcus, and methanogens belonging to the Methanomassiliicoccaceae, Methanosphaera sp. 
A4, and Methanobrevibacter boviskoreani. Succinivibrio spp. degrade pectin28, and methanol is required 
for growth of Methanomassiliicoccaceae35 and Methanosphaera36, explaining part of this pattern. Other 
associations were between the methylotrophic methanogen Methanosphaera sp. ISO3-F5 and differ-
ent bacteria, including members of Lachnospiraceae. These associations may be based on the ability 
of Lachnospiraceae to degrade pectin and so provide methanol as a substrate for the methylotrophs37. 
The associations between other Methanomassiliicoccaceae groups and various unclassified members of 
Bacteroidales suggest the possibility of yet further methanol-dependent metabolic interactions. In con-
trast to archaeal-protozoal interactions, these findings suggest that some archaeal-bacterial interactions 
are specific, inferring specialised mechanisms for partner recognition or very similar requirements for 
growth. The basis for these associations remains to be determined. However, the general lack of strong 
association patterns between protozoa and the major bacteria on the one hand, and the major meth-
anogen groups on the other, suggests that conserved mechanisms may mediate the interactions between 
hydrogen producing and hydrogen consuming microbes, allowing flexible interactions. This may aid 
methane mitigation research, since interfering with these potentially universal mechanisms could slow 
the rate of hydrogen transfer and so slow methane formation38. It may also be that the interactions 
mainly occur via pools of common metabolites, especially where the end products of one group form 
the substrates of another.

The results of this survey showed that the rumen microbial ecosystem is dominated by a core com-
munity composed of poorly-characterised microbes, especially amongst the bacteria. Diet had more 
influence than animal species on rumen or camelid foregut microbial community composition. Rumen 
ecosystems are typified by strong metabolic interactions between microbes that facilitate the fermen-
tation of plant material to products useful for both the host and other rumen microbes3,17,25,32. The 
relatively few co-occurrence patterns seen in this study suggest that these microbial interactions do not 
rely on exclusive associations, and could indicate considerable promiscuity between members of interact-
ing functional groups. Analysis at metagenomic and metatranscriptomic levels could in future uncover 
whether common functional elements that facilitate interactions are shared among multiple species. It 
seems plausible that functional redundancy among the microbes9 means that multiple microbial species 
can fulfil the same function, with different combinations of microbes being co-selected depending on 

Figure 4. Associations between bacteria and archaea. The network is based on association scores 
computed via regularised canonical correlation analysis with an absolute association score greater than 
0.15. The colour of the lines indicates the strength of the association. The sizes of the diamonds and circles 
indicate the mean average abundance and microbial groups are identified by numbers (Supplementary Tables 
1 and 3). Mbb. Methanobrevibacter, Mmc. Methanomassiliicoccales, *indicates unclassified bacteria within a 
family.
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the diet. This flexibility of rumen microbial community structure would confer on the ruminant host the 
ability to exploit a variety of different plant feeds.

Methods
Geographical distribution and diversity of gastrointestinal tract content samples. A total of 
742 samples from 32 species or sub-species of ruminants and other foregut fermenters in 35 countries 
and seven global regions were selected for sequencing of microbial marker genes (Fig. 1, Supplementary 
Data 1). The samples were from cattle, bison, and buffalo (bovines), sheep and goats (caprids), deer (cer-
vids), and alpacas, llamas, and guanacos (camelids), including diverse breeds of domestic cattle, sheep, 
and goats, and were largely made up of small cohorts of four or more co-located individuals consuming 
the same diet. We included foregut samples of camelids in this study, recognizing that these organs have 
a common function but evolved separately39. The use of animals, including welfare, husbandry, experi-
mental procedures, and the collection of samples used for this study, was, where applicable, approved by 
named institutional and/or licensing committees and performed in accordance with approved institu-
tional and regulatory guidelines (please refer to Supplementary Data 1 for details of these).

Sample collection, DNA extraction, amplification and processing of samples for 
high-throughput sequencing. To minimise variation introduced by differing methodologies, such 
as choice of sampling or DNA extraction method40 and primer-driven gene amplification biases41, we 
used a standardised pipeline to process samples (unless indicated otherwise in Supplementary Data 1). 
Briefly, approximately 20 g of whole (i.e., solid and liquid) mid-rumen or camelid foregut contents were 
collected via stomach tube, cannula, or post mortem as previously described35. Samples were imme-
diately frozen, freeze-dried, and then couriered to AgResearch. Freeze-dried samples were homoge-
nised in a coffee blender and DNA was extracted from a representative 30 mg subsample using the 
PCQI method40,42. We assessed the structure of microbial communities by sequencing regions of bac-
terial and archaeal 16S rRNA genes and ciliate protozoal 18S rRNA genes in triplicate as described 
previously35,37 using primers comprised of (5′  to 3′ ) a sequencing adapter (A or B), a sample-unique 
12-base error-correcting Golay barcode on one of each primer pair, a two-base linker, and a 
group-specific sequence targeting the marker gene. For bacteria, the primers were Ba515Rmod1 (adapter 
A-barcode-GT-CCGCGGCKGCTGGCAC) and Ba9F (adapter B-AC-GAGTTTGATCMTGGCTCAG). 
For archaea, the primers were Ar915aF (adapter A-barcode-GT-AGGAATTGGCGGGGGAGCAC) 
and Ar1386R (adapter B-CA- GCGGTGTGTGCAAGGAGC). For protozoa, the primers 
were Reg1320R (adapter A-barcode-TC-AATTGCAAAGATCTATCCC) and RP841F (adapter 
B-AA-GACTAGGGATTGGARTGG). Linker A was CCATCTCATCCCTGCGTGTCTCCGACTCAG 
and linker B was CCTATCCCCTGTGTGCCTTGGCAGTCTCAG. Amplicons were sequenced using 
454 GS FLX Titanium chemistry at Eurofins MWG Operon (Ebersberg, Germany). Sample process-
ing and pipeline reproducibility controls were performed to identify variation introduced during sam-
ple processing (Supplementary Text 1). Sequence data are available from GenBank [accession numbers 
PRJNA272135, PRJNA272136, and PRJNA273417].

Phylogenetic analysis of sequencing data. Pyrosequence data were processed and analysed using 
the QIIME software package version 1.843. Sequences over 400 bp in length with an average quality score 
over 25 were assigned to a specific sample via the barcodes. The number of bacterial, archaeal, and ciliate 
protozoal sequencing reads available for analysis are summarised in Supplementary Data 1. Sequence 
data were grouped into operational taxonomic units (OTUs) sharing over 97% (bacteria – UCLUST44), 
99% (archaea - UCLUST) or 100% (ciliate protozoa – prefix_suffix option in QIIME) sequence sim-
ilarity. Sequences were assigned to phylogenetic groups by BLAST45. Bacterial 16S rRNA genes were 
assigned using the Greengenes database version 13_510, archaeal 16S rRNA genes using RIM-DB ver-
sion 13_11_1322 and ciliate protozoal 18S rRNA genes against an in-house database46. Bacterial and 
ciliate protozoal data were summarised at the genus level. Archaea were summarised at the species level. 
Samples for which low read numbers were obtained or that contained high proportions of sequences 
from “exogenous” bacteria (i.e., likely environmental contaminants such as Stenotrophomonas) were 
excluded from further analyses (Supplementary Text 1).

The identity of the most abundant and prevalent OTUs was determined using BLAST45 against 
sequences from type material and against all sequences (excluding sequences from model organisms or 
environmental samples) in the nt database47. Bellerophon (version 3, 200 bp window, Huber-Hugenholtz 
correction48) was used to identify chimeric OTU sequences. Sequence similarities greater than 97% and 
93% were used as cut-offs to classify OTUs at species- and genus level, respectively. The rationale for 
these cut-offs was discussed by Kenters et al.49.

Simplified classification of dietary information and other factors. The range of diets consumed 
by the animals from which the samples came was highly diverse and complex. For this reason, and where 
the information was available, diets were categorised in terms of forage type, forage plant, and forage 
to concentrate ratio (Supplementary Table 7). Diets likely to contain > 5% starch (e.g., whole or grain 
crops of maize, barley, wheat, rice, as well as pea, potato, sorghum, etc.) or > 5% pectin (e.g., beets or 
legumes such as alfalfa and clover) were also identified. Animals that had been fed their respective diets 
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for less than a two-week period were noted in Supplementary Data 1. Factors such as gender, age, mod-
ifications (e.g., cannulation), treatments (e.g., antibiotics, drench, surgery), farming conditions, season, 
contact with other animals, and sample processing steps that may affect apparent microbial commu-
nity compositions (e.g., DNA extraction method, sample fraction used, sample storage, etc.) were also 
recorded (Supplementary Data 1). Where details were not provided, latitude, longitude, and elevation 
were estimated using http://www.mapcoordinates.net/en. Climate zones were designated according to the 
Köppen-Geiger climate classification scheme50.

Statistical analyses. The resulting dataset allowed us to establish whether animal or dietary factors 
relate to rumen and camelid foregut microbial community composition, identify the dominant microbes 
and their potential associations, and describe the degree of similarity of rumen and camelid foregut 
microbial communities worldwide. Statistical analyses of microbial data were performed using GenStat 
for Windows51, R software52, and QIIME43. Principal coordinate analysis of Bray-Curtis dissimilarity 
matrices, analysis of variance, sparse partial least squares discriminant analysis (sPLS-DA, using a sPLS 
regression approach), and canonical discriminant analyses (CDA) of microbial community composition 
data in context of the metadata (Supplementary Data 1) were used to identify impacts of factors such 
as host lineage, diet, etc. on rumen and camelid foregut microbial communities and to identify the 
groups associated with these factors. Pearson, Spearman, SparCC53, and regularised canonical correlation 
analyses (CCA) were used to identify associations within and between archaeal, bacterial, and proto-
zoal groups. Association scores were visualised as relevance networks and clustered image maps (CIM, 
heatmaps) representing the first two dimensions. González et al. provides a comprehensive overview of 
sPLS-DA, CCA and the corresponding ‘pairwise associations’, network and CIM techniques and their 
application54.
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