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A B S T R A C T  
 

 

Nonlinear function approximation is one of the most important tasks in system analysis and 
identification. Several models have been presented to achieve an accurate approximation on nonlinear 

mathematics functions. However, the majority of the models are specific to certain problems and 

systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure 
definition and optimization of nonlinear systems. The proposed model involves structure identification 

and also a parameter tuning phase to be adapted for modeling of an arbitrary system. The proposed 

structure and the learning algorithm are validated by comparing with some other most commonly used 
alternatives. The simulation shows the performance and adaptability of the proposed model in 

approximating multivariate nonlinear mathematics functions. 

 

doi: 10.5829/idosi.ije.2015.28.10a.04 
 

 
1. INTRODUCTION1 
 

An important issue involved in system modeling is the 

identification of structure and function of a system. The 

aim of system identification is to identify a predefined 

simulation model that approximates a real world system 

[1-5] such as a controller. Hence, the process of system 

identification can be treated as a kind of function 

approximation. This process is commonly encountered 

in systems where a set of input-output pairs is also 

available. System identification has an extensive use in 

engineering problems, where the input output 

relationship is not linear. Some examples are: crack 

detection [6], the relationship between the input 

(Voltage and Velocity) and output (Force) in magneto-

rheological (MR) dampers [4, 7], turbojet engines 

function [5], fuel cells functions [3] and some 

environmental cases [8]. Many more applications may 

be found in other references.  Neural networks (NNs) 

have demonstrated great potential for system modeling 

even where the system dynamics is nonlinear [6, 9-12]. 

Lapedes and Farber [9] first proposed to use a 

                                                           
1*Corresponding Author’s Email: hkazemi@um.ac.ir  (H. Haji 

Kazemi) 

multilayer perceptron (MLP)  neural network for 

nonlinear time series prediction. However, conventional 

neural networks process signals only on their finest 

resolutions. 

The introduction of wavelet decomposition [7, 13, 

14] provides a new tool for approximation. It produces a 

good local representation of the signal in both the time 

and the frequency domains. Inspired by both the MLP 

and wavelet decomposition, Zhang and Benveniste [8] 

proposed a wavelet network. This has led to the rapid 

development of neural network models integrated with 

wavelets. Most researchers have used wavelets as the 

basis functions that allow for hierarchical, multi-

resolution learning of input-output maps from data.  

A wavelet neural network (WNN) has a nonlinear 

regression structure that employs localized basis 

functions in the hidden layer to achieve the desired 

input–output mapping. Wavelet neural networks 

combine the learning ability of NNs and the capability 

of waveletdecomposition. The integration of the 

localization properties of wavelets and the learning 

abilities of NN results in the advantages of WNNs over 

conventional neural networks for complex nonlinear 

system modeling.  
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WNNs have been used in the literature for 

approximation, classification, prediction and control 

problems [15, 16]. Unlike the sigmoidal functions used 

in conventional neural networks,wavelet functions are 

spatially localized, therefore the learning capability of 

WNN for system identification and control is more 

efficientthan the conventional sigmoidal function neural 

network. Thetraining algorithms for WNN typically 

converge more rapidly than those ofconventional NNs. 

Thus, WNN has been proved to be superior to the 

Gaussian-type neuralnetwork in that the structure can 

provide more potential to enrich the mapping 

relationship between inputs and outputs. 

In this paper a Mexican-hat wavelet activation 

function neural network is used for chaotic function 

approximation. The proposed structure is optimized by 

an evolutionary algorithm. Structure definition and 

identification are described in section 2. Section 3 gives 

the results of implementation of the proposed method in 

comparison to some other methods. Finally some 

conclusions are drawn in section 4.  

 

 

2. EVOLUTIONARY-BASED WAVELET NEURAL 
NETWORK MODEL 
 
2. 1. Wavelet Neural Network Model     The 

proposed structure of the wavelet neural network is 

assumed to be a three-layer network comprising an 

input layer with   nodes, a hidden layer with  ̂ nodes, 

each having a wavelet activation function, and an output 

layer with   nodes with a linear transfer function. A 

 ̂    dimension weight matrix and a  ̂    dimension 

vector are applied to the outputs of the first layer. A 

weight matrix of dimension    ̂ will then be applied 

to outputs of the second layer and the row summation 

will be outputted for each node of the third layer. The 

mathematical operation of the network is described as 

follows.  
Assume the input vector of   

  as the  th
 array set of 

dimension   taken from the original set   

   {    
 }   (1) 

Then the input to the second layer will be 

      ̂     
    ̂    (2) 

where 

  ̂             ̂           (3) 

And 

  ̂   {  }
     ̂

  (4) 

in which   ̂   and   ̂   are the weights matrix and 

bias vector of first to second layer transit, respectively 

and  ̂ is the number of neurons in the second layer. 

Inputs of layer 2 have undergone the wavelet transfer 

functions, e.g. the Mexican hat as 

      
 

 

    
      

  
   (5) 

while 

      
       ̂  (6) 

and 

      
       ̂  (7) 

in which     is the output vector of the second layer and 

     is the wavelet function. The outputs of the third 

layer can be calculated as 

    ∑  ́   ̂     ̂
     (8) 

where ́   ̂ is the second to third layer weight matrix. 

 

2. 2. Structure Identification      To identify the 

structure of the constructed network a localized 

Genetic-based optimization algorithm is used. For a 

general optimization problem the aim is to minimize the 

objective function 

   
            

    
  (9) 

             (10) 

where    and      refer to the  ’th parameter and 

optimum parameter set, respectively, in the network 

structure and   is the total number of parameters.To 

achieve the minimum objective value, optimum 

structure of the network should be found. The optimum 

structure is subject to the optimum parameters set which 

is considered as the chromosomes after converted to 

binary format. A chromosome can be represented as 

  
 
 [  ]                                    

                  

(11) 

For the structure described earlier,   is the sum of the 

total number of weights, biases and wavelet parameters 

as 

   ̂     ̂    ̂     ̂          ̂  (12) 

The length of each chromosome will then be 

            ̂      (13) 

where   is the resolution of real to binary conversion. 

Using Equation (13) one can estimate the size of the 

solution space of the problem by 

            ̂     (14) 

Hence, it can be inferred that the resolution of real to 

binary conversion,   , in one side attains the precision 

of structure parameters identification and in the other 
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side, determines the enormousness of the solution space. 

Problems with more precise structure identification of 

desire require more efficient structure optimization 

algorithms. Operations of the genetic optimization 

algorithm are defined as follows. Reproduction 

operation selects a chromosome with the probability of 

   where for chromosome   
 
 it is defined as 

  
      

   ̇    

   (  
 
)
 

   ̈    

   (  
 
)
           (15) 

in which    ̇  and    ̈  are the best network outputs 

(minimum objective values) gained in  th
 generation and 

the total generations, respectively. It can be shown that 

for the best chromosome in each population  
   . 

  
     refers to the  th

 selected chromosome through 

this operation and for the second selection, the last term 

in Equation (15) shows the coefficient of 
 

 
. This term 

constrains the number of chromosomes which are 

reproduced through this operation independent of their 

respective objectives. The second operation is defined 

as crossing over two or more qualified parents to create 

an intelligent offspring with inheritable features. In this 

operation to schemes of diversity preservation and good 

inheritance are embedded. Two or more parents, far 

from together, share their appropriate features to create 

a cross over offspring as 

        ({    

 
}
                         

)  (16) 

where 

      
      

   ̇    

   ( { 
   

 
})

 
   ̅̅ ̅̅ ̅(    

 
)

   ( { 
   

 
})

           (17) 

in which       and     is the embedding function. 

Subscript    determines the number of crossing parents 

which is chosen according to the dimension of the 

solution space. Parameter    is initially set as    

    √        ̂ .   
     Refers to the probability of 

creation of the offspring        for the next generation. 

Smaller values of   will result in a higher probability of 

the cross over operation and vice versa. Equation (16) 

applies a higher probability of creation for the offspring 

which is better than the average of its parents and also 

the best chromosome in the  th
 generation. The third 

operation is defined as the mutation operator which 

mainly turns around better chromosomes in each 

generation. A mutated offspring is created as 

        ({  
 
}
                       

)  (18) 

where 

      
      

   ̇    

   ( {  
 
})

 
   ̅̅ ̅̅ ̅(  

 
)

   ( {  
 
})

           (19) 

in which     is the mutating function and       

since the probability of mutation operator is preferred to 

be lower that the probability of cross over operation. 

Some newly created chromosomes are transferred to the 

next generation according to their probability of 

creation. Some other chromosomes are also created to 

enroll the local search around the local optimum values. 

To this end, two operations are defined to trace the 

gradient of objective function in a discrete manner. The 

progressive operation is proposed as the fourth 

operation which is defined as follows 

  (  )   ({  
 
}
      

)  (20) 

where 

 (  
 
)    (  )              (21) 

subject to 

   ( (  
 
))     (  (  ))  (22) 

while        is the minimum possible parameter 

gradient regarding the conversion to binary. The 

probability of the progressive operation is the unit value 

which means for a preset of   trials Equations (20) - 

(22) are retried iteratively to find a possible   (  ).  

If the search is not successful, subscript   changes to 

its next value to search for another genome. Binary step 

size for the trials is a relatively short walk in the 

solution space random in all directions. The shareholder 

operation as the fifth operation is another localized 

search operation which creates a number of offspring by 

contributing randomly to select a genome from   

chromosomes and producing a chromosome from the 

selected genomes as 

         ({  
 }

                             
)  (23) 

where     is the embedding function for the   genomes 

randomly selected from   individuals in the  th
 

generation. An assessment can be added to this 

operation to make it directive shareholder operations as 

              (         
 )     (  ̇      

 )  

        
                            

(24) 

The conditional term in Equation (24) implies the 

genome assessment of both the created shareholder 

offspring and the best chromosome with this genome. 

Assessment is performed by comparing the created 

offspring with the best chromosome when the 

corresponding genome of the best chromosome is 

replaced with the genome under investment. Equation 

(24) determines with some level of confidence whether 

the selected genome is selected appropriately or not. 
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3. SIMULATION RESULTS 
 
In this section, the approximation capability of the 

evolutionary-based wavelet neural network (E-WNN) 

model for some benchmark mathematical functions is 

investigated. For the proposed model two validation 

processes are considered. First the structure is validated 

and then the structure identification algorithm is 

compared to other learning algorithms. In all validation 

processes the criterion will be the accuracy of nonlinear 

function approximation. To this end, four nonlinear 

multi-variable mathematical functions, commonly used 

as the benchmarks, are utilized to verify the 

convergence speed and structure optimization capability 

of the proposed model. The Mackey Glass time series is 

the first case of comparison. 1000 input-output data 

pairs as 

[                                  ]  (25) 

are extracted from the following delay differential 

equation 

     

  
 

         

          
           (26) 

For which       and         . This consideration 

means the embedding dimension and the lag are 4 and 6 

respectively. The first 500 pairs are the training data set, 

while the remaining 500 pairs are the testing data set. 

 The Rossler map is considered as the second case 

 ̇                    
 ̇                    

 ̇            
  (27) 

where  , for i=1, 2, 3 is the state variable of system, and 

a, b, and c are positive constants which are set is this 

paper as a=0.15, b=0.2 and c=10. It is used in part as a 

chaotic function benchmark to test the model. In the 

Rossler map and the matrix of its first order partial 

derivative are estimated based on 1000 observations 

with the sample rate of 0.1. The third example is another 

well-known benchmark attractor named Lorenz attractor 

which is a three-dimensional continuous-time system 

 ̇        

 ̇          
 ̇                 

  (28) 

where a, b and c are parameters and set to     , 

        and     and the approximation is 

performed for 1000 observations.  

As the forth function, one system can be described as 

       
          [        ]

               
       

  [     ]                           

           (
   

  
)  

(29) 

The model is identified in series-parallel mode defined 

as:  

 ̂       (                )  (30) 

It is a three-input–single-output fuzzy model. There are 

200 input-target data sets chosen as training data. 

Another 200 input-target data in the interval are chosen 

as the testing data. 

Table 1 shows the results of the experiment on 

evaluation of the proposed method in comparison with 

another commonly used models. Feed forward neural 

network as another structure is used to be trained by 

either Levenberg-Marquardt back propagation, Gradient 

descent back propagation learning algorithm or adaptive 

evolutionary learning algorithm. The wavelet neural 

network structure is also trained by either of the latter 

two. The model is validated in both structure 

identification and optimization. The criterion for 

function approximation has been selected as the mean 

square error (MSE) which is defined as follows 

    
 

 
∑      ̅  

  
     (31) 

where    and  ̅  are real and desired outputs of the 

network, respectively, and N is the total number of 

samples. MSE of the testing samples indicates the 

system’s modeling capability. It can be seen from the 

results given in Table 1 that in the same running time of 

the models the wavelet neural network has better 

performance in nonlinear function modeling compared 

with the feed forward neural network while the same 

learning algorithm is used. However, Levenberg-

Marquardt back propagation learning algorithm as a fast 

learning method require less time to reach a target value 

of the MSE but requires a much larger memory to 

process. It can also be inferred from the results of Table 

2 that the adaptive evolutionary learning algorithm 

better tunes the parameters of the network structure 

while the network may be either a feed forward neural 

network or a wavelet neural network. From these 

discussions one can deduce that both the wavelet neural 

network structure and the adaptive evolutionary learning 

algorithm are superior to their competitors used in the 

experiments discussed in this paper. 

For the experiments the results of which are given in 

Table 1 the proposed model was implemented with a 

population size of 100, and a generation size of 500. 

Different values of population and generation sizes are 

applied to the adaptive genetic algorithm and 

conventional genetic algorithm to tune the parameters of 

the wavelet neural network. The results of nonlinear 

function approximation for the Mackey-Glass time 

series are given in Table 2. It is seen that for the same 

parameters, the adaptive learning algorithm more 

accurately tunes the parameters of the network which 

leads to a comparatively smaller error. When a target 

error of MSE=0.3 is considered for the learning process, 

though some sets of parameters may not lead to a valid 
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response, the adaptive evolutionary algorithm reaches 

an optimized solution in a shorter time, compared to the 

conventional genetic algorithm. The results of Table 2 

show how the adaptation of the genetic algorithm can 

improve it in terms of optimization capability and 

convergence speed. 

 
 

TABLE 1. Comparison of the proposed model with some other models. For the proposed model Population=100 & Generation=up 

to 500 

 Function  Parameters  MSE10 second MSE30 second MSE60 second TimeMSE:10
-2 TimeMSE:10

-3 

S
tr

u
ct

u
re

 i
d

en
ti

fi
ca

ti
o

n
 

 Feed forward neural network structure + Levenberg-Marquardt back propagation 

Function 1 ([16,1], ‘Logsig’,’Purelin’,‘Trainlm’) 0.212 0.207 0.203 91s 121s 

Function 2 ([16,1], ‘Logsig’,’Purelin’,‘Trainlm’) 0.315 0.311 0.309 94s 134s 

Function 3 ([16,1], ‘Logsig’,’Purelin’,‘Trainlm’) 0.114 0.108 0.107 87s 114s 

Function 4 ([16,1], ‘Logsig’,’Purelin’,‘Trainlm’) 0.367 0.356 0.351 97s 129s 

 Feed forward neural network structure + Gradient descent back propagation learning algorithm 

Function 1 ([16,1], ‘Logsig’,’Purelin’,‘learngd’) 0.241 0.221 0.214 112s 153s 

Function 2 ([16,1], ‘Logsig’,’Purelin’,‘ learngd’) 0.363 0.334 0.331 123s 162s 

Function 3 ([16,1], ‘Logsig’,’Purelin’,‘ learngd’) 0.129 0.118 0.114 107s 124s 

Function 4 ([16,1], ‘Logsig’,’Purelin’,‘ learngd’) 0.385 0.373 0.367 145s 178s 

 WNN structure + Gradient descent back propagation learning algorithm 

Function 1 ([16,1], ‘Mexicanhat’,’Purelin’,‘learngd’) 0.232 0.209 0.207 94s 129s 

Function 2 ([16,1], ‘Mexicanhat’,’Purelin’,‘learngd’) 0.337 0.324 0.321 99s 141s 

Function 3 ([16,1], ‘Mexicanhat’,’Purelin’,‘learngd’) 0.118 0.113 0.109 92s 118s 

Function 4 ([16,1], ‘Mexicanhat’,’Purelin’,‘learngd’) 0.381 0.371 0.359 112s 137s 

L
ea

rn
in

g
 a

lg
o

ri
th

m
 v

al
id

at
io

n
  Feed forward neural network structure + Adaptive Evolutionary learning algorithm 

Function 1 ([16,1], ‘Logsig’,’Purelin’,‘learnae’) 0.219 0.211 0.209 99s 145s 

Function 2 ([16,1], ‘Logsig’,’Purelin’,‘learnae’) 0.314 0.304 0.302 118s 159s 

Function 3 ([16,1], ‘Logsig’,’Purelin’,‘learnae’) 0.108 0.104 0.101 102s 121s 

Function 4 ([16,1], ‘Logsig’,’Purelin’,‘learnae’) 0.371 0.352 0.349 117s 146s 

 WNN structure + Adaptive Evolutionary learning algorithm 

Function 1 ([16,1], ‘Mexicanhat’,’Purelin’,‘learnae’) 0.207 0.202 0.194 94s 127s 

Function 2 ([16,1], ‘Mexicanhat’,’Purelin’,‘learnae’) 0.311 0.303 0.301 101s 136s 

Function 3 ([16,1], ‘Mexicanhat’,’Purelin’,‘learnae’) 0.108 0.102 0.097 97s 118s 

Function 4 ([16,1], ‘Mexicanhat’,’Purelin’,‘learnae’) 0.345 0.332 0.327 109s 132s 
*Logsig, Purelin and Mexicanhat are activation functions.  

**Trainlm, Learngd and Learnae are Training functions. 

 

 

 

TABLE 2. Evaluation of the proposed model with different structural parameters ([Net size], Transfer function, Learning algorithm, 

Population size, Generation size) for Mackey-Glass Time series modeling 

Structure  Learning algorithm  Parameters MSE of test Learning time Target MSE=0.3 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 20, 50) 0.342 - 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 20, 50) 0.412 - 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 20, 100) 0.331 - 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 20, 100) 0.389 - 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 50, 100) 0.312 - 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 50, 100) 0.367 - 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 50, 200) 0.246 134s 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 50, 200) 0.319 - 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 100, 200) 0.208 125s 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 100, 200) 0.273 149s 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 100, 500) 0.171 94s 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 100, 500) 0.212 128s 

E-WNN Adaptive Evolutionary Algorithm ([16,1], ’Purelin’,‘learnae’, 100, 1000) 0.165 89s 

GA-WNN Conventional Genetic Algorithm ([16,1], ’Purelin’,‘learnga’, 100, 1000) 0.184 104s 
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TABLE 3. Comparison of the proposed model with some other methods. 

Method Function Parameters MSE 

LS-SVM Neuro-Fuzzy Model [17] Mackey Glass time series 6 local LSSVM 6.24e-07 

Neuro-Fuzzy Model [18] Mackey Glass time series 3 MF: ‘Gaussmf’, 350 epochs 4.63e-06 

CGA-ANFIS Model [19] Mackey Glass time series 3 MF: ‘Gaussmf’, 350 epochs 1.04e-07 

The proposed Model Mackey Glass time series ([16,1], ’Purelin’,‘learnga’, 200, 4000) 2.34e-07 

LS-SVM Neuro-Fuzzy Model [17] Rossler Map - N.A 

Neuro-Fuzzy Model [18] Rossler Map 3 MF: ‘Gaussmf’, 350 epochs 5.78e-06 

CGA-ANFIS Model [19] Rossler Map 3 MF: ‘Gaussmf’, 350 epochs 2.11e-06 

The proposed Model Rossler Map ([16,1], ’Purelin’,‘learnga’, 200, 4000) 2.08e-06 

LS-SVM Neuro-Fuzzy Model [17] Lorenz Attractor - N.A 

Neuro-Fuzzy Model [18] Lorenz Attractor 3 MF: ‘Gaussmf’, 350 epochs 1.21e-06 

CGA-ANFIS Model [19] Lorenz Attractor 3 MF: ‘Gaussmf’, 350 epochs 7.27e-07 

The proposed Model Lorenz Attractor ([16,1], ’Purelin’,‘learnga’, 200, 4000) 4.31e-07 

LS-SVM Neuro-Fuzzy Model [17] Forth Nonlinear Function - N.A 

Neuro-Fuzzy Model [18] Forth Nonlinear Function 3 MF: ‘Gaussmf’, 350 epochs 8.29e-07 

CGA-ANFIS Model [19] Forth Nonlinear Function 3 MF: ‘Gaussmf’, 350 epochs 2.82e-07 

The proposed Model Forth Nonlinear Function ([16,1], ’Purelin’,‘learnga’, 200, 4000) 4.58e-07 

 

 

In order to compare the efficiency of the proposed 

model with other recently published methods this study 

implements the function approximation of four 

benchmark chaotic functions by LS-SVM Neuro-fuzzy 

model [22], Neuro-fuzzy model [23], CGA-ANFIS [24] 

and the proposed method. The results are given in Table 

3 along with the parameters of the models. It can be 

seen that the proposed method outperforms the first two 

models for all benchmark functions. For two out of the 

four functions the proposed method attains a smaller 

error compared to the third method. It can be concluded 

that the proposed method yields better performance than 

the other methods in the approximation of the chaotic 

functions. 
 
 
4. DISCUSSION AND CONCLUSION 
 

In this paper a wavelet neural network was established 

in two phases. First the structure was constructed and 

then the parameters of the network were tuned by an 

adaptive evolutionary algorithm. The structure was 

described in details and the tuning process was also 

introduced. The proposed model was validated by 

comparing with other models commonly used in 

nonlinear function approximation. The experiments 

demonstrated the capability of the proposed model in 

the approximation of four nonlinear mathematics 

functions. Although the capability of the proposed 

model was validated in terms of modeling accuracy, the 

shorter learning times for the network may also be of 

interest. Therefore, for the future works the authors may 

seek other adaptation techniques for the genetic 

algorithm or try to combine the adaptive genetic 

algorithm with a fast convergent method to accelerate 

the convergence to the global optimum.  
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چكيده
 

 

از موارد مهم در تشخیص و آنالیز سیستم ها می باشد. مدلهای مختلفی به منظور تقریب دقیق   تقریب توابع غیر خطی یکی

توابع غیر خطی ریاضی ارائه شده است، هر چند که عمده این مدلها، برای مسائل و سیستم های خاص تعریف شده اند. در 

سازی سیستم های غیر خطی پیشنهاد شده موجکی تکاملی به منظور تعیین ساختار و بهینه -این مقاله یک شبکه عصبی

است. مدل پیشنهاد شده از یک مکانیزم شناسایی ساختار و تنظیم پارامترهای ساختار برای مدلسازی توابع و سیستم های 

غیرخطی دلخواه استفاده می نماید. ساختار پیشنهادی و الگوریتم آموزشی به کار گرفته شده برای آن از طریق مقایسه با 

روشهای معمول و متداول راستی آزمایی و اعتبارسنجی می شود. شبیه سازی های انجام شده، نمایانگر کارایی و سایر 

 توانایی مدل پیشنهادی در تقریب توابع چندمتغیره غیرخطی ریاضی می باشد.
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