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Abstract 
 
Introduction 
In order to improve the quality of life of amputees, biomechatronic researchers and biomedical engineers 
have been trying to use a combination of various techniques to provide suitable rehabilitation systems. 
Diverse biomedical signals, acquired from a specialized organ or cell system, e.g., the nervous system, are 
the driving force for the whole system. Electromyography(EMG), as an experimental technique,is concerned 
with the development, recording, and analysis of myoelectric signals. EMG-based research is making 
progress in the development of simple, robust, user-friendly, and efficient interface devices for the amputees.  
Materials and Methods 
Prediction of muscular activity and motion patterns is a common, practical problem in prosthetic organs. 
Recurrent neural network (RNN) models are not only applicable for the prediction of time series, but are also 
commonly used for the control of dynamical systems. The prediction can be assimilated to identification of a 
dynamic process. An architectural approach of RNN with embedded memory is Nonlinear Autoregressive 
Exogenous (NARX) model, which seems to be suitable for dynamic system applications.  
Results 
Performance of NARX model is verified for several chaotic time series, which are applied as input for the 
neural network. The results showed that NARX has the potential to capture the model of nonlinear dynamic 
systems. The R-value and MSE are 8.3 × 10   and 0.99 , respectively. 
Conclusion 
 EMG signals of deltoid and pectoralis major muscles are the inputs of the NARX  network. It is possible to 
obtain EMG signals of muscles in other arm motions to predict the lost functions of the absent arm in above-
elbow amputees, using NARX model. 
Keywords: Electromyography, Above-Elbow Amputation, Recurrent Neural Network, 
Signal Prediction. 
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1. Introduction 
Many individuals with amputations and other 
physical disabilities live in our society. Recent 
progress in biomechatronics has helped 
increase the mobility of above-elbow 
amputees in their daily activities. Arm 
muscles, acting as actuators for elbow motion, 
carry the load of forearm and hand during 
elbow movements. The forearm consists of 
muscles which facilitate grasp/release motions 
of the forearm, wrist, and hand[1].  
A transhumeral or above-elbow prosthetic arm 
is used to make amends for the lost functions 
of the above-elbow amputees. Currently, 
myoelectric prostheses are the most advanced, 
commercially available, externally powered 
transhumeral prostheses. Skin surface 
electromyographic(EMG) signals of amputee’s 
residual muscles are used as input signals for 
controlling myoelectric prosthesis. The EMG 
signals are among the most important 
biological signals, reflectingthe exact human 
motion intentions. The EMG signals, 
measured by surface electrodes, are then 
amplified and properly filtered for feature 
extraction. The feature values of EMG signals 
are used to control electromechanical active 
joints of prosthesis and activate prosthetic arm 
parts. EMG signals of three muscles including 
triceps brachii, pectoral is major, and deltoid 
were obtained from three  healthy subjects. 
The goal was the prediction of triceps brachii 
EMG signals, based on pectoral is major and 
deltoid EMG signals[1].  
   Many processes in various domains such as 
biology, physics, and economics are described 
by time series. In formal terms, a time series is 
a sequence of vectors, depending on time t:                         
y(t), t = 0, 1, 2, … (1) 
Accordingly, EMG signal, in nature, is a type 
of  time variable signal. Prediction by feature 
values of vector y is highly required for 
choosing a control strategy or optimizing 
activity and production[2]. In formal terms, 
prediction problem can be formulatedas 
finding a function in order to obtain an 
estimated ŷ (t + D) of the vector y at time t+D 
(D = 1, 2, …), considering the values of y up 

to time t and a number of additional time-
independent variables (exogenous features) ui: 
 
ŷ(t+D) = Γ(y(t), … y(t-dy), u(t), …, u(t-du))    
(2) 
 
In this function, u(t) and y(t) represent the 
input and output of the model at time t, 
respectively; du and dy are the lags of system 
input and output, respectively, and Γ is a 
nonlinear function. For instance, D=1, 
meaning one-step ahead, can take any value 
larger than 1 (multi-step ahead) [2].  
Therefore, prediction becomes a function 
approximation problem, where the goal of the 
method is to estimate the continuous function 
Γ as closely as possible. Consequently, in case 
of function approximation or regression 
problems, many methods can be applied from 
this domain. Usually, the evaluation of 
prediction performance is carried out by 
computing an error measure ‘E’ over a number 
of time series elements such as a validation or 
test set[2]: E =  ∑ (ŷ(t− k), y(t− k))                         (3) 
Here, E is a function computing the error or 
gap between the predicted and real sequence 
elements. Normally, a distance measure (e.g., 
Euclidean distance) is used, but depending on 
the problem, any function can be applied [e.g. 
a function computing the costs resulting from 
an incorrect prediction of y(t+D)]. The 
problem of chaotic time series prediction is 
studied in various disciplines including 
engineering and medical applications. Chaotic 
time series are the output of a deterministic 
system with a positive Lyapunov exponent. 
Therefore, the behavior of time series becomes 
unpredictable and the prediction of chaotic 
time series becomes a difficult task unless the 
initial conditions are specified with 
precision[2].  
Neural Networks (NN) are powerful when 
used for problems whose solutions require 
knowledge which is difficult to specify, but for 
which there is an abundance of examples. 
Prediction of chaotic processes implies finding 
interdependencies between time series 
components. These dependencies are minimal 
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in random time series and maximal in 
complete deterministic processes. However, 
random and deterministic time series are only 
margins of the large set of chaotic time series 
signals with weak dependencies between 
components in short or long term. A special 
case is represented by fractal time series, 
characterized by auto similarity or non
periodic cycles [2,9]. 
 
2. Materials and Methods 
In order to find the relationship between the 
motions and activities of human upper
muscles in elbow extension mode (according 
to the defined protocol), the experiment 
performed on three healthy male subjects, 
aged 24, 30, 32 years old (subjects Y
T, respectively). Informed consents were 
obtained from each of the participants.
experiment, the upper-limb motions and 
selected activities were performed five times 
by each subject. EMG and kinematic data of
the upper limb were recorded for each subject, 
while making a specified movement (
1).  

 
 
 

 
 
Figure 1. Arm extension movement protocol
(c), (d) shows motion sequences. 
 
The subjects performed push-ups, which fully 
flexed their elbows and raised their 
Recording electrodes, with a bipolar electrode 
configuration, were placed on 3
muscles, which control the movements of the 

            (a)                                               (b) 

            (c)                                               (d) 

elbow Motions Using NARX Model 

, Vol. 11, No. 2 & 3, Spring & Summer 2014

in random time series and maximal in 
complete deterministic processes. However, 
random and deterministic time series are only 

f the large set of chaotic time series 
signals with weak dependencies between 

or long term. A special 
case is represented by fractal time series, 
characterized by auto similarity or non-

relationship between the 
motions and activities of human upper-limb 
muscles in elbow extension mode (according 
to the defined protocol), the experiment was 

on three healthy male subjects, 
subjects Y, H, and 

T, respectively). Informed consents were 
each of the participants. In this 

limb motions and 
selected activities were performed five times 
by each subject. EMG and kinematic data of 

or each subject, 
movement (Figure 

 

 

Arm extension movement protocol. (a), (b), 

which fully 
 bodies. 

a bipolar electrode 
3 target 

which control the movements of the 

upper limb (pectoral is major, anterior deltoid
and triceps brachii)(Figure 2). 
 

Figure 2.Upper-limb target muscles including
is major, deltoid, and triceps brachii 
 
 
EMG signals, acquired from the 
were amplified using a differential amplifier 
and 10Hz low-pass filter (sixth
Butterworth zero-phase filter), and were
sampled at 1200 Hz. The lower frequency 
limit of the filter was chosen to minimize 
movement artifacts [3]. 
Overall, the recording lasted 9
each session. The subjects were asked to relax 
their muscles for 2 seconds
performed push-ups for approximately 
finally, they remained in the full extension 
mode for 2 seconds (Figure 1). 
subjects reported muscle fatigue.
 
2.1. EMG Processing/Pre-Processing
All off-line processing was performed using 
MATLAB(R2013a) software. 
negative amplitudes were converted
ones, and all negative spikes were reflected by 
the baseline or were moved up
Based on the square root calculation 
Mean Square (RMS) reflects the mean power 
of the signal (also called RMS EMG) and is 
the preferred recommendation for 
(Figure3). 

major, anterior deltoid, 

 
limb target muscles including pectoral 

from the 3 muscles, 
were amplified using a differential amplifier 

pass filter (sixth-order 
phase filter), and were 

The lower frequency 
limit of the filter was chosen to minimize 

9 seconds for 
each session. The subjects were asked to relax 

 seconds, and then 
ups for approximately 5 sec; 

finally, they remained in the full extension 
). None of the 

subjects reported muscle fatigue. 

Processing 
line processing was performed using 

 At first, all 
were converted to positive 

negative spikes were reflected by 
up to positive. 

Based on the square root calculation (4), Root 
Mean Square (RMS) reflects the mean power 
of the signal (also called RMS EMG) and is 
the preferred recommendation for smoothing 
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RMS =     ∑ V                                                (4) 

 In this research, 70 ms time window was 
selected and EMG signals were normalized to 

the maximum value of amplitude detected 
signal[9]. 

 

Figure 3.Left: raw EMG signal of pectoralis major muscle; Right: RMS of pectoralis major muscle 
 
2.2 NARX Networks 
In this study, we applied a type of recurrent 
neural network (RNN) of Nonlinear 
Autoregressive Exogenous (NARX) model to 
predict the triceps brachii EMG signals based 
on the EMG signals of the other two muscles 
(deltoid and pectoral is major). This powerful 
model has been shown to be well suited for 
modeling nonlinear systems, particularly time 
series. One principal application of NARX 
dynamic neural networks is controlling 
systems. The context input for NARX is not 
selected from the hidden layer but from the 
output layer with certain time delays [4]. The 
important qualities of NARX networks with 
gradient-descending learning algorithm 
include: 1) more effective learning in NARX 
networks, compared to other neural networks 
(gradient-descent learning is better in NARX 
model),and 2) faster converging and 
generalizing of NARX model, compared to 
other networks [2]. 
A state space representation of recurrent 
NARX neural networks can be expressed 
as(5): 
 z (k + 1) =   φ u(k), z (k) i = 1,z (k)i = 2,3, . . , N            (5) 

 
where the outputs y(k) =  z (k) and z , i=1,2, 
… N arestate variables of RNN. The RNN 
exhibits forgetting behavior if: 
 lim →∞

   ( )   (   ) = 0        ∀k, m ∈ K,   i ∈ O,   j ∈ I,   (6) 
 
Here, ‘z’ is a state variable, ‘I’ denotes the set 
of input neurons, ’O‘ indicates the set of 
output neurons, and ‘K’ denotes the time index 
set [9].  
Several methods have been proposed to 
eradicate the problem of vanishing gradient in 
training RRNs. Most of these methods rest on 
embedding memory in neural networks, 
whereas several others suggest making better 
learning algorithms such as the extended 
Kalman filter, Newton type, and annealing 
algorithms [2]. 
 Embedded memory is of significance 
particularly in NARX RNN. This embedded 
memory can help speed up the propagation of 
gradient information and consequently reduce 
the vanishing gradient effect. There are diverse 
methods for introducing memory and temporal 
information into neural networks. These 
include creating a spatial representation of 
temporal pattern, setting time delays in the 
neurons or their connections, employing 
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recurrent connections, and using neurons with 
activations that sum the input over time[2,4]. 
 
3.2. Architecture and learning 
The NARX model for the estimation of 
function Γ can be implemented in many ways. 
However, the straight forward method seems 
to be using a feed-forward neural network with 
embedded memory, as shown in figure 4, and 

a delayed connection from the output of the 
second layer to the input layer[2].  
Making the network dependent on du previous 
sequence elements is similar to using du input 
units fed with du provides adjacent sequence 
elements. This input is usually referred to as a 
time window since it provides a limited view 
on parts of the series. It can be also viewed as 
a simple method of transforming the temporal 
dimension into another spatial dimension [2]. 

 
 
Figure 4. NARX model with tapped delay lines at the input 
 
In practice, it was observed that the prediction 
of a time series would be enhanced by 
simultaneous analysis of related time series. A 
generalized implementation of this model 
allows the input and output to be 
multidimensional and thus be applied to the 
“multivariate” type of time series[2]. 
In the architectural model in figure 4, the 
notation used is NN(du, dy; N)which denotes 
the NN with du input delays, dy output delays, 
and N neurons in layer 1. Similarly, inthe 
architectural model in figure 2, the notation 
used is NN(du1, du2, dy; N). 
In this study, for the NN models with level 1 
as the input layer and level 2 as the output 
layer, the general prediction equations for 
computing the next value of time series y(n+1) 
(output), using the model in figure 4, the 
previous observation u(n), u(n-1), …, u(n-du) 

and outputs y(n), y(n-1), …, y(n-dy) as inputs 
may be written in the following form[2]: 
 y(n + 1) = Φ  w  + ∑ w      .Φ  w  +i=0duwih.un−i+j=1dywjh.y(n−j)(7) 

 
4.2. Learning algorithms 
For learning purposes, a dynamic back-
propagation algorithm is required to compute 
the gradients. Additionally, error surfaces for 
dynamic networks can be more complicated 
than those for static networks[2,9].  
The selected training method in this study uses 
the benefit of availability at the training time 
of real output set. In fact, it is feasible to use 
the true output instead of the predicted output 
to train the network[9]. 
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The training process has some difficulties. One 
is related to the number of parameters, which 
refers to the number of links or weights in the 
network [9]. This number is usually large and 
there is a possibility of “overtraining” the data 
and producing a false fit, which does not 
produce reliable predictions. For the NARX 
neural network model, the number is given by 
p=(du + dy + 2)N. One solution to this 
problem is penalizing the increase in the 
parameter [2]. This motivates the use of an 
algorithm based on regularization technique, 
which involves modifying the performance 
function for reducing the values of parameters. 
Practically, the typical performance function 
used in training, mean squared error (MSE) is 
as follows(8): 
 MSE =    ∑ (e ) =    ∑ (t − y )              (8) 
 
In this function, t is the target. The network 
training function, which updates the weight 
and bias values based on Levenberg-
Marquardt algorithm(LMA) optimization, was 
modified to include the regularization method. 
In mathematics, the LMA, also known as the 
damped least-squares (DLS) method, provides 
a numerical solution to the problem of 
minimizing a function (generally nonlinear) 
over a space of function parameters. These 
minimization problems arise especially in least 
squares curve-fitting and nonlinear 
programming [2].  
The LMA interpolates between the Gauss–
Newton algorithm (GNA) and gradient descent 
method.  LMA is more robust than GNA, i.e., 
it can find a solution in many cases even if it 
starts very far off the final minimum. For well-
behaved functions and reasonable starting 
parameters, LMA tends to be a bit slower than 
GNA, and can be also viewed as Gauss–
Newton using a trust region approach[2,9].  
LMA is a very popular curve-fitting algorithm, 
used in many software applications for solving 
generic curve-fitting problems; however, LMA 
finds only a local minimum, not a global 
minimum. In general, in function estimation 
problems for networks containing up to a few 
hundred weights, LMA has the fastest 

convergence. This advantage is of high 
importance if highly accurate training is 
required [6]. 
 
3. Results  
We used parameters of EMG signals of 
triceps, pectoral is major, and deltoid muscles, 
mentioned in section 2, to characterize the 
network prediction performance. Simulations 
in this study were performed using the neural 
network tool box in MATLAB® software 
(R2013a)We used a network with 1 hidden 
layer, and applied a hyperbolic tangent 
sigmoid transfer function (tansig) for the first 
hidden layer and a linear transfer function 
(purelin) for the output layer. The hidden layer 
had 10 neurons and the output layer had 1 
neuron. We adopted MSE as the performance 
function of the network model. For all other 
parameters, the default values were adopted in 
MATLAB. 
Triceps EMG prediction using NARX neural 
network 
The aim of this experiment was to verify the 
algorithm used to predict EMG signal of 
triceps muscle in the arm extension mode of 
the specified protocol. The duration of push-up 
was 9 seconds and data sampling frequency 
was 1200 Hz; therefore, there were 10,800 
samples for each muscle.  
To reliably detect such a nonlinear behavior, a 
NARX-based approach was used. We selected 
participant H to train the network. The 
performance of a trained network can be 
measured by the errors in training, validation, 
and test sets; therefore, data were arbitrary 
divided into three segments: 70% for network 
training, 15% for validation, and 15% for 
network testing. Network training continued 
until the desired level of error was obtained; 
the MSE was0.01 after 534 iterations (figure 
5). In this study, the correlation coefficient R 
between the outputs and targets of the neural 
network was used. In fact, R is a measure of 
the variation between the generated outputs 
and targets. The R-value was0.99, Figure5 
shows the predicted output(+) and the desired 
output (.) 
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Afterwards, we set the EMG signals of deltoid 
and pectoral is major muscles of  participant H 
as the input sets of the trained NARX network 
and set the EMG signals of subject T as the 
target. Figure 6 shows the response of network 
output and target. The R-value and MSE 
are8.3 × 10   and 0.99 respectively. 

If we set the pectoral is major and deltoid 
signals of subject T as the input of NARX 
network (which was trained by subject H) and 
included the triceps signals of participant Y as 
the target. The R-value and MSE are 3.5 ×10   and 0.99 respectively. Figure 7 shows 
the responses of network output and target.  

 

 

Figure 5. Response of network output(+) and target(.);the network was trained by subject H, and the red points show the 
errors; bottom figure shows the error variations 
 
 
 

 
 
Figure 6.Network response with subject T as thetarget and subject H as the input (the network was trained by subject H) 
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Figure 7. Network response with subject T as the input and subject Yas the target (network was trained by subject H)
 
 

4. Discussion 
However, in [3],by using probabilistic 
methods was not greater than 0.74. In [7], the 
FFNN(feed forward neural network) method 
was proposed and the maximum value of R 
was obtained (R=0.89) but in this study the R-
value and MSE are 8.3 × 10 3 and 0.99 
respectively. In [8], the correlation coefficient 
(R-value)was not greater than 0.80, given the 
use of post-hoc method. 
 
5. Conclusion 
In this study, the prediction of EMG signal 
was tested using a NARX dynamic RNN. The 
results showed that NARX RNN has the 
potential to capture the dynamics of nonlinear 
dynamic systems The R-value and MSE are 
8.3 × 10 3 and 0.99 respectively, as shown in 
the evaluations. This is based on the fact that 

correlation coefficient R, estimated for the 
target and network output, was close to 1 in 
many cases, and the prediction could be 
considered of real interest and significance if 
R>0.98. Therefore, it is possible to obtain 
EMG signals of muscles in other arm motions 
to predict the lost functions of the absent arm 
in above-elbow amputees, using NARX 
model. 
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