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ABSTRACT 

 In this paper, the complete nonlinear modeling of dynamical quadrotor is studied. The modeling is conducted in two parts of body modeling 

using Newton – Euler’s method and propulsion system modeling. The propulsion system is modeled in eight phases of movement. According 

to the movement phase, the system dynamic switches on one of the models. Convenient access to the nonlinear model is one of the distinct 

advantages that, in issues related to quadrotor control, can easily utilize non- linear model, and unlike the body of research, is restricted to 

the body model due to the difficult access to propulsion system. After that, the complete nonlinear model is simulated in MATLAB soft. 

Further in the study, virtual inputs are presented to create a strong physical sense of the issue, which can also be used in designing a 

controller for controlling the system. Then, the accuracy of the system is evaluated by designing and implementing six dynamic performance 

tests on the model and three PD controllers are designed and applied to the system with the aim of controlling the attitudes.  
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Quadrotor is an unmanned aerial vertical take-off-landing 

vehicle that is classified among aerial vehicles with rotary 

wings. This aerial vehicle has four motors whose propulsion 

thrust is generated by transmission of power to propellers. 

This vehicle can be controlled and stabilized by altering 

engine rpm.  

Since quadrotor control, which is a vehicle with six degrees of 

freedom, is possible using four actuators, it is considered as an 

under-actuated system. Unlimited size and cost, under-

actuation, high maneuverability and low sound during the 

movement have made this vehicle the center of attention of 

many researchers around the world (Hoffman et al., 2008). 

Quadrotor control requires an accurate model of the system. 

The first dynamic model of quadrotor was designed by Altug 

et al (2002) using Newton-Euler’s method.It was a linear 

model with only body dynamics, which had been derived from 

simple hypotheses (Altug et al., 2002).  

 The first Lagrangian model of quadrotor was proposed and 

used by Castillo et al (In 2005). This model, which had been 

used after linearization, only included the dynamics of the 

body (Castillo et al., 2005).   

Since 2004, propulsion system was also taken into account by 

researchers. PID vs LQ (2008) and [ 5] used the propeller 

speed as the system input, which was more exhaustive than 

previous models. After that, the research aimed at more 

complex dynamic control of the vehicle turned to resistant 

methods to compensate for inaccuracy of modeling Coza et 

al.,  (2006) and Modes and Efe  (2007). The engine model was 

added to Quadrotor model for the first time in 2006 by 

researchers at Aalborg University (Technical report, 2006).  In 

this study, the engine model was defined by body equations. 

The use of these equations required several tests to identify 

each parameter. Thus, De Lellis (Modeling, 2011) presented 

this research in his Ph.D. thesis. Given the complexity of De 

Lellis’s model, the complete quadrotor model was once again 

removed from quadrotor system model because of the 

numerous tests which were required to identify parameters and 

mount the engine model on the body. This paper presents a 

model of vehicle, which is more exhaustive and accessible 

than De Lellis’s test. The proposed model consists of two 

parts: 

A) Body modeling which is derived form of Newton-Euler’s 

equations. 

B ) Propulsion system model, which is presented as a 

switching model. In this model, seven efficient operating 

points are calculated. Further, three linear models of the 

engine are identified by RLS method and applied to dynamic 

model. The use of these seven models in switching mode 

resolves the issue of linear approximation of the model and 

demonstrates the dominant feature of the nonlinear model.  

After modeling, to have a stronger physical sense of issue, 

virtual input is presented using voltage's terms combination. 

Similar virtual inputs were used by Balas (2007) Claudia and 

Luminita  (2010) to link system actual inputs, i.e. voltages, 

and system control inputs, which were derivatives of the 

fourth considered modes. Here, however, these inputs are 

considered as control input and the benefits of each one are 

examined.  

After defining inputs, the model is simulated in Simulink 

environment of MATLAB software and by designing and 

applying six performance tests to the system, the accuracy of 

the model is examined. 
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DEGREES OF FREEDOM AND THE MOVEMENT 

OF VEHICLES 

Quadrotor is an aerial vehicle with 6 degrees of freedom, i.e., 

three direct movements and three rotary movements. In this 

device, propellers, which are positioned opposite to each 

other, rotates in a direction reverse to the rotation of the 

coupling propellers. By changing the rpm, the size of lift force 

changes, and this propels the aerial vehicle. To increase or 

decrease the height, the rmp of all engines should change 

proportionally. By keeping constant the rmp of the opposite 

engines, and increasing the torque generated by a pair of these 

engines, the vehicle begins to rotate around z axis. The 

rotation around z-axis is called yaw. Fig. 1 is a schematic 

display of the engine speed during yaw movement.  

If the torque of opposite motors is unequal, the vehicle begins 

to rotate around its vertical axis (Y and X). Rotation around x 

axis is called roll movement and rotation around y axis is 

called pitch movement. Fig. 2 and 3 present a schematic 

display of engine speeds in both roll and pitch movements. 

 

 

 

 

 

Figure 1. Schematic display of the 

engine speed during yaw 

movement (Huang, 2009) 

 

Figure 2. Roll movement (Huang, 

2009) 

 

 

 

Figure 3. Pitch movement 

(Huang, 2009) 

 

  

 If the vehicle is rotated around one of its axes, and the vertical 

component is equal to the total mass, the vehicle will have 

translational motion along horizontal components of X or Y 

(Fig. 4). 

 

Figure 4. The position of quadrotor during translational 

movement (Pipatpaibul and Ouyang, 2011) 

Figure 5.  

Given that the number of degree of freedom is larger than 

operators (6 degrees of freedom and 4 engines) in the vehicle, 

quadrotor is considered as an under-actuator system.  In recent 

years, under-actuator systems have attracted the attention of 

designers for reasons such as a) low energy consumption, b) 

lower number of actuators and c) low cost. Obviously, the 

most important advantage of using under-actuator systems is 

that under certain conditions, system control with less 

operators (or control input) is possible. Using fewer operators 

makes the control design more difficult, especially in the 

presence of uncertainty.  

OPERATING POINTS OF THE SYSTEM 

In this section, the operating points of the system are 

determined, which can be used to measure the operating 

velocity of propulsion system in each operating point of 

quadrotor. These operating speeds will be used to identify the 

engine model around each point. The quadrotor movement 

system can be simulated by combining seven movements  1) 

increasing height; 2) decreasing height; 3) rotation around y 

axis; 4) movement along the  x axis; 5) rotation around x axis 

6) movement along y axis and 6) rotation around z axis.  

To determine the speed of engine, first the desired operating 

characteristics of the quadrotor need to be determined for each 

movement. These characteristic include angular and linear 

position as well as angular and linear velocity. Table 1 shows 

the assumptions and the equations of the system in each 

movement.  

To simulate quadrotor, we need to initialize the parameters. To 

this purpose, Reference (Mahmudi et al., 2013) is used. Here, 

specifications of Table 2 have been given to supplement the 

discussion.  

 

Table 1. operating points and equations for each movement phase 

Equations of movement phase Operating points Movement phase 
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Table 2. Parameter initialization used in the dynamical equations  

Parameter Definition  Value 

l Quadrotor arm length 0.232m  

b Propeller lift coefficient 5 23.13 10 .N s−×  

d Propeller resistance coefficient 7 27.5 10 .m s−×  

m Total quadrotor mass 0.52kg  

Ix Moment of inertia about X axis 3 26.228 10 .kg m−×  

Iy Moment of inertia about Y axis 3 26.228 10 .kg m−×  

Iz Moment of inertia about Z axis 2 21.121 10 .kg m−×  

Jr Moment of propeller inertia about Z axis 5 26 10 .kg m−×  

tad Coefficient of drag force exerted on the body in 

translational motion 
20.5 .kg s  

rad Coefficient of drag force exerted on the body in 

rotational motion 
20.02 . .kg m s  

 

The engine used in this study was a DC brushless model (T. 09/2215 E, M, A, X 6). Technical characteristic of this model are shown 

in Table 3: 

 

Table 3. Technical characteristics of the engine T. 09/2215 E, M, A, X 6 

Characteristic  Value  

Voltage (v) 12 

Maximum power (W) 130 

Weight (gr) 55 

relative propulsion force (g / g) 13.64 

Using the equations of the system as well technical characteristics of quadrotor and engines, we will need engine model around 

operating points given in Table 4: 

 

Table 4. operating speed of engines 

Operating point 1 2 3 4 5 6 7 

Angular speed (rpm) 1895 1900 1905 1910 1915 1920 2090 

 

According to Table 4, linear model of engine around seven operating point is required.  

In what follows, these models are derived.  
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ENGINE MODELING 

As noted earlier, DC Brushless motor was used in this study. According to reference (Dvorak, 2012)  and based on recursive least 

squares model, this engine was evaluated and the results are shown in Table 5 (Eq.1 to 7). 

 

Table 5. Functions identified for engine model about operating points 

Linear function identified around operating points in point … 

1 2 3 4 5 6 7 

≈
+

625
( )

19.02
G s

s  
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s  
(2) 
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s  
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+
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( )
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s  
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+

649
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s  
(5) 

≈
+
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( )
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s  
(6) 

≈
+
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( )
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G s
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MODELING THE BODY 

This section deals with nonlinear modeling of quadrotor. This 

model is used in the following sections to be simulated in the 

Simulink environment of MATLAB software and design 

controller. The assumptions used in developing the models 

include assumptions concerning the dynamic modeling of the 

body and the modeling of propulsion system. Assumptions 

concerning the dynamic modeling of the body are as follows: 

A) Quadrotor is a rigid vehicle. 

B ) Quadrotor has the intended symmetrical structure (the 

inertia matrix is diagonal). 

C) Estimating the aerodynamic resistance forces, which are 

generated by translational and rotational movements of the 

vehicle, exerted on the body of the quadrotor with a linear 

function of rotational and translational speed (Madani and 

Benallegue, 2006).  

And assumptions used in modeling the propulsion system 

include: 

A) Estimating the resistance torque acting on the propeller as a 

proportional function of the square of the propeller’s velocity 

(Meriam and Kraige, 2007). 

B) Estimating the thrust force as a proportional function of the 

square of the propellers’ velocity (Dvorak, 2012). 

 

COORDINATE SYSTEM 

Quadrotor modeling requires defining various coordinate 

systems, each of which have different applications. For 

example, to determine the movement equations, a coordinate 

system fixed on the quadrotor is required; forces and torques 

are measured in body coordinate system and GPS finds 

positions in the fixed land system. Therefore, the knowledge 

of coordinate systems and their applications is a perquisite. 

The necessary coordinate systems have been defined in Table 

6. Fig.6 show the body and inertial coordinate system 

Using definitions presented in Table 6, the transfer equation 

from body coordinate system to inertial coordinate system was 

achieved according to Eq. 8 

 

 

Figure 6.  Representation of body and inertial coordinate 

systems (the system attached to quadrotor is the body 

coordinate system and the system on the left is inertial 

coordinate system [3] 

= = × ×1 2

1 2 b

v vi v v

b b v v v
R R R R R  (8) 

 

Body Modeling Using Newton-Euler’s Method 

In mathematical modeling of the body, the famous Newton – 

Euler’s formula is used. For the translational and rotational 

motion, Newton – Euler’s formula is defined according to Eq. 

9 and Eq. 10: 

=
v

v d(mv)
F

dt
 

( 9 )
 
 

=
v

v d(H)
M

dt
 

( 10 )
 
 

Where 
v
F  is the sum of external forces and 

v
M  is the sum of 

external torques acting on the vehicle.  

Linear velocity of the vehicle 
r
V  and 

v
H  is the angular 

momentum of the vehicle. The main forces acting on 

quadrotor are mass and lift forces. These equations can be 

written in the body coordinate system and inertia coordinate 

systems. To derive equations form body coordinate system, 

forces need to be displayed in body coordinate system. In Eq. 

11, the gravity force is displayed in body coordinate system 

and in Eq. 12, the total force acting on the body in the body 

coordinate system are measured.  

Table 6. Coordinate systems 

Coordinate system Position Transition matrix 
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:[ , , ]i i i iF i j k  Fixed system and origin point, based on the desired point 

on the ground  

 

:[ , , ]v v v vF i j k  Axis is along system iF  and origin point, based on the 

gravity center of the vehicle 
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In the above formula, components of linear acceleration are in the direction of body coordinate system and T is the total "lift" force. 

Lift force and total "lift" force are calculated according to Eq. 13 and Eq. 14:. 
2T , 1 4ω= =

v

i ib i to  (13) 

=

=∑
4

1

i

i

T T  
(14) 

The Eq. 13, b is the aerodynamic coefficient of the thrust 

force. To obtain transitional movement equations in inertia 

coordinate system, the total lift force vector needs to be 

transferred from body coordinate system to inertial coordinate 

system. As such, we will have (Eq.15) : 

( )
( )

θ

θ

θ

Ψ Φ Ψ Φ

Ψ Φ Ψ Φ

Φ

 +  
   = − =   
   − +   

v
(c c s ).
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s s T a

F s T m a
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(15) 

Where 
X

a , 
Y

a  and 
Z

a  are the components of linear 

momentum in the direction of inertia coordinate system.   

To derive the equations of rotational motion, Newton- Euler’s 

equation is used for rotational movement. In Eq. 10, total 

angular momentum is made of two angular momentums, one 

generated by body rotation and the other generated by the 

propeller’s rotation. Eq.16 and eq.17: 

ω
ω
ω

   
   =    
      

v
0 0

0 0 .

0 0

x x

Body y y

z z

I

H I

I

 

(16) 

 
 =  
  

v
0

0
Blade

r blades

H

J Ω

 

(17) 

Where 
v

Body
H is angular momentum of the body,

 

v

Blade
H  is the 

angular momentum caused by rotation of the propeller in body 

coordinate system and Ix, Iy and Iz are the moments of inertia 

of the vehicles. Because of body symmetry, the products of 

inertia became zero. 
blades
Ω is the difference between clockwise 

and counterclockwise propeller’s rotation. As a result, the 

angular momentum in body coordinate system is calculated 

according to Eq. 18.  

ω
ω

ω

 
 =  
 + 

v

Ω

x x

y y

z z r blades

I

H I

I J

 
( 18 

)
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Now, the total drag force in inertia coordinate system needs to 

be computed, which requires general Eq. 19 [17]. This 

equation is used to calculate torque in inertial coordinate 

system based on angular moments in body coordinate system 

as well as the rotation velocity of body coordinate system. 


= = + ×



v v
v v( ) ( )

i

d H d H
M H

dt dt
Ω  ( 19 

)

 

 

 

In the above equation, 
r
M  is external torque vector acting on 

inertia coordinate system and H is angular momentum in body 

coordinate system that rotates with angular velocity of 

ω ω ωΩ =
r

[ ]
x y z

. Drawing on Eq. 18 and Eq. 19, the 

following equation is derived: (20). 
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(20) 

In Eq. 20, the angular velocity of the body can be calculated using Euler’s angular velocity as follows (21) : 

ω ϕ
ω ϕ θ ϕ
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θ
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&

&

&

2

2 2 1
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(21) 

Which results in (22): 

ω ϕ θ ϕ θ ϕ
ω ϕ ϕ θ
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−
     
     = −     
          

&

&

&

1
1   

0

0   

x
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cos sin
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(22 ) 

 

To find the left side of Eq.19, the external torques acting on the system should be calculated. Such torques is the result of lift or 

moments differences caused by rotations of the propeller. External torques in the body coordinate system is calculated according to 

Eq. 23.  

( )
( )

τ
τ
τ τ τ τ τ

 
 
 
 

 −


 

= = − 
 − + − + 

v
1 3

4 2

1 2 3 4

.

.

( )

x

b y

z

T T l

M T T l  

(23) 

In the above equation, xτ  , 
yτ  and zτ  are respectively roll, 

pitch and yaw torques; l is the distance between the center of 

body mass and the axis of propeller rotation and iτ  is the 
resistant torque, which is generated in the opposite direction of 

propeller rotation and is exerted on the propeller by air. This 

torque is defined as follows (24) : 

  
2d

i i
τ ω= =i 1 to 4  (24) 

In Eq. 24, d is the aerodynamic coefficient of resistant torque. 

Now, the external torques acting on inertia coordinate system 

can be achieved (25) : 

b
M R MθΨ Φ

=
v v

 
(25)  

AERODYNAMIC RESISTANCE  

What is meant by aerodynamic resistances, which are added to 

the equations in this section, are forces and torques exerted on 

the vehicle by the air. Given the small cross section of the 

quadrotor and its low velocity (1 to 2 meters per second), the 

effect of resistant forces will be negligible. However, the 

following two equations are used to add these two to the set of 

equations (Eq. 26 and Eq. 27). 

ad ad
F t V= −
r r

 
(26) 

ad ad
M r= Ω
r

 
(27) 

In the above equations, 
ad
r  and adt  are the coefficients of total 

drag force acting on a body in translational movement and 

total drag force acting on the body in rotational movement. 

These two equations yield force in inertia coordinate system 

[13]. 

DEFINING NEW CONTROL INPUTS 

In determining the system inputs, i.e., control inputs, it is 

necessary to understand the correct structure of the system and 

control targets. Actual system inputs are the type of inputs that 

are fed to the system during operation. As to the quadrotor, 

actual inputs are voltage systems. In many cases, control 

targets need to define other inputs, which are known as virtual 

inputs. 

In this study, the following categories of inputs are introduced 

as input virtual to the system. 

1 1 3 := −U V V  Rotation around X horizontal axis 

2 4 2 := −U V V  Rotation around Y horizontal axis 

3 1 2 3 4 := − + −U V V V V  Rotation around Z axis 
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4 1 2 3 4 := + + +U V V V V  Movement along Z axis   

As it can be seen, the new inputs are a mixture of system 

actual inputs. If system actual inputs are used to control 

system, they cannot provide a detailed understanding of the 

system behavior. For example, it is not possible to determine 

the kind of movement generated by an increase or decrease in 

engine voltage (which is one of the system actual inputs), 

without observing other system inputs. However, since the 

voltage corresponding to the external force and torque are 

generated by the engine and the propeller, an increase or 

decrease in the first input of the new control inputs system is 

equal to an increases or decreases in the difference of two 

opposite engines. Given the description provided in Section 2, 

zero, positive or negative values of the difference between 

opposite engines would lead to the stability, clockwise and 

counterclockwise rotation around the axis perpendicular to the 

connecting axis of two engines. Thus, the new set of inputs 

provides a better description of subsequent behavior of the 

system.  

Dynamic Simulation Of The System In Simulink 

Environment Of MATLAB Software 

The propulsion system has been simulated in the Simulink 

environment of MATLAB software. 

In Fig. 6m it has been shown as a sub-system of propulsion 

system-total 

 

 

Figure 7.  Sub-System Of Propulsion System-Total 

In Fig. 6, propulsion system block contains the motor and 

propeller. In Fig. 7, a part of body modeling, which has been 

modeled under the title of Rigid Body in Simulink 

environment, has been shown.   

In this subsystem, inputs, forces and the total drag force are 

exerted on the center of mass of the vehicle. Total drag forces, 

before entering the body dynamic calculations sub-system, 

which has been written based on Newton - Euler’s law, is 

transferred from body coordinate system to inertia coordinate 

system. Fig. 8 shows dynamic model sub-system. In this sub-

system, propulsion system and the transition of forces and 

moments from body coordinate system to inertia coordinate 

system are added to the Rigid Body sub-system   
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Figure 8.  Rigid Body Subsystem: simulator of dynamic equations - the relationship between forces and the location of the 

vehicle 

Figure 9.  

Figure 10.   Dynamic model subsystem 

MODEL EVALUATION 

This section examines the reliability of the dynamic model and 

the designed simulator. Verification is conducted on the model 

using the following five tests:  

 

TEST ONE 

In this test, all inputs are equal to zero. Since all voltages are 

zero and only weight force is exerted, vehicle is expected to 

stay on the ground. Given the fact that ground proviso has not 

been taken into account, this is equivalent to a continuous 

decrease of the height. Fig. 9 shows the system outputs in 

terms of four zero inputs.As it can be sees, the system 

performance is as expected. 

 

 

 

 
 

Figure 11. system response in the test in which all inputs 

are zero 
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TEST TWO 

In this test, all system inputs except for the lift force are 

estimated to be zero. The total force is equal to mg given to 

the system. The lack of difference between opposite engines 

halts the rotary movement around the horizontal axes and 

vertical axes. Further, quadrotor is expected to stay in place 

without any variation in its height. The output torque of 

engines should also halt any movement. The system response 

to the test is shown in Fig. 10. 

 

 

Figure 12.  System response in a test in which all inputs 

except for lift force are equal to zero and total lift force 

equals the mass 

 

TEST THREE 

In this test, total lift force equals the mass, the difference 

between the two opposite engines (the first and the third 

engine) equals zero, the difference between the first and the 

fourth engines is a positive value and the sum of resisting 

torques equals zero. It is expected that the vehicle begins 

rotating about one of its horizontal axes, and moves along 

another horizontal axis. Further, since the rotation of vehicle 

around horizontal axis has a reducing effect on the vertical 

component of total lift, the height of vehicle is decreased. The 

results of these tests are shown in Fig.11, which indicate the 

compatibility of the system performance with the expectations 

of the tests. 

 

Figure 13. Fig. 11: System response in the test in which 

total lift force equals mass, the difference between the first 

and the third engines equal a positive value and other 

inputs are equal to zero 

 

TEST FOUR 

In this test, total lift force is equal to the mass; the sum of 

resistant torques is equal to a positive value in the system and 

other inputs are zero. In this test, it is expected that the system 

begins rotating about z axis. The system response to the test is 

shown in Fig. 12. As it can be seen, test four also was able to 

fulfill the intended expectations.  

 

 

 

Figure 14. System response to the test in which total lifts 

force equals the mass, resistant torques is equal to a 

positive value and other inputs are zero  

 

TEST FIVE 

In this test, by feeding positive input into the total velocity of 

engines, and feeding positive input into the force difference 

between the first and the third engines, it is expected that 
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propeller rotation about z axis and the body rotation around its 

horizontal axis generate rotation around the other axis. In fact, 

in this test, the gyroscopic movement of the system is 

investigated. Fig.13 shows the system output in this test. 

 

Figure 15. gyroscopic effect of the propeller 

As it can be observed, gyroscopic phenomenon has not 

affected outputs. The torque generated by the gyroscope of 

propeller is equal to 53.005 10−× . Since the inertia of propeller 

is insignificant, the gyroscopic thrust force would be paltry, 

making it unable to generate a significant movement. 

ANGLES CONTROL 

In this section, angles are controlled in the buoyancy phase 

and PD controller is used. Control laws used in Eq. 28 to 30 

are shown below. 

1 1 1
( ) ( )

d d
U Kp Kdϕ ϕ ϕ ϕ= − + −& &  (28) 

2 2 2
( ) ( )

d d
U Kp Kdθ θ θ θ= − + −& &  (29) 

3 3 3
( ) ( )

d d
U Kp Kdψ ψ ψ ψ= − + −& &  (30) 

Controller’s coefficients were obtained by trial and error. 

These coefficients are shown in Table 7: 

Table 7. Coefficients of angles controllers  

Value Coefficient Value Coefficient 

0.055 
1

Kd
 

0.4 
1

Kp
 

0.06 
2

Kd
 

0.25 
2

Kp
 

-2 
3

Kd
 

-4 
3

Kp
 

 

To evaluate the efficacy and accuracy of the presented control 

laws, they were used to control the stability of quadrotor in 

Hover movement condition. In this case, quadrotor, which is 

floated 1 meter above the ground, is released with initial 

conditions. Quadrotor is expected to reach equilibrium state 

(ϕ θ ψ= = = 0 .rad ) in an optimal time.  

Fig.14 shows the variation of quadrotor’s external angles after 

applying the above rules and conditions. Further, the findings 

of Mian andWang (Mian and Wang, 2007),  which is shown 

by dashed line, have been shown for the comparison of the 

results. In their study, Mian and Wang examined a quadrotor 

control (0.6 m and 0.6 kg) using feedback linearization 

method.  

 

 

 

 T

ime response of roll, pitch and yaw angels of the quadrotor 

with the initial conditions (dashed line in graph: Mian and 

Wang’s response; solid graph, response to the designed 

controller) 

 

As it can be seen, in this study the effective time of roll and 

pitch responses for the quadrotor was about 0.7s, which 

compared to the study of Mian and Wang (6 s) was 85% 

faster. Also, yaw angels were controlled using PD controller.  

CONCLUSION 

This paper presented a nonlinear model for quadrotor STOL 

vehicle. The model consists of two parts: a dynamic model 

and the propulsion system model. In body modeling, Newton- 

Euler’s method was used. Moreover, the propulsion system in 

each phase was modeled separately using recursive least 

squares method. To do so, first the movement phase was 

defined and operating points were identified. The model 

switches on propulsion system in each movement phase. An 

advantage of this model was convenience of obtaining 

nonlinear model. Such modeling helps researchers include 

propulsion system in their study model. After that, it was 

simulated in the Simulink environment of MATLAB software. 

Finally, the design and implementation of six tests on the 

model confirmed the accuracy of the obtained model. In the 

final section, three angle controllers for controlling design 

angels were designed and applied to the system. A comparison 

of this controller with the one proposed by Mian and Wang 
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shows that PD controllers were able to detect system inputs 85 

% faster.  
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