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Abstract Motivated by the needs of multi-agent sys-
tems in the presence of sensing and communication
which is delayed, intermittent, and asynchronous, we
present a Kuramoto-type model as the delay inherent
in such systems is taken into account. First, we have
investigated a condition on maximum delay for the fre-
quency entrainment of non-identical Kuramoto oscil-
lators with heterogeneous delays and a constant cou-
pling gain. Our next mission is to investigate the model
of delayed coupled Kuramoto oscillators, which are
characterized by non-identical natural frequencies and
non-homogeneous coupling strength. We assume that
the difference between the coupling gains is less than a
certain limited value M , and on the basis of Lyapunov
stability theorem, we present a strictly positive lower
bound for M to achieve a consensus on the derivatives
of the phases. This consensus property is even more
surprising because the phases themselves do not nec-
essarily reach a consensus.We apply our results to these
oscillators and show that synchronization is guaranteed
for appropriate initial conditions.
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1 Introduction

Synchronization phenomena in large populations of
interacting elements are the subject of intense research
efforts in physical, biological, chemical, and social sys-
tems. Over the past two decades, myriad researchers
have spent a great deal of time studying synchroniza-
tion, which combines ideas from nonlinear dynamics
and network theory. Examples in biology and physics
include groups of synchronously flashing fireflies [1]
and Josephson junctions [2] and the natural circadian
rhythms of the human brain [3]. A successful approach
to the problem of synchronization consists of model-
ing each member of the population as a phase oscil-
lator. Synchronizations the process by which interact-
ing, oscillating objects affect each other such that they
spontaneously lock to a certain frequency or phase [4].

Collective synchronization was first studied by
Wiener [5], who conjectured its involvement in the
generation of alpha rhythms in the brain. It was then
taken up by Winfree [6] who used it to study circa-
dian rhythms in living organisms.Winfree’s model was
significantly extended by Kuramoto [7] who devel-
oped results for what is now popularly known as the
Kuramotomodel. Similar to “all-to-all” case, a problem
of frequency synchronization for a system ofKuramoto
oscillators in the case where interconnection graph is
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2 M. Tousi et al.

not necessary to be symmetric is considered [8]. It was
also observed that the system achieves synchronization
for arbitrary topologies when the oscillators are iden-
tical. Recent works in the control community investi-
gate the close relationship between Kuramoto oscilla-
tors and consensus networks [9].

The pinning synchronization on complex networks
withweak couplingwas investigated in [10].Also some
selected links were strengthened to reduce the energy
cost in the process of achieving and keeping synchro-
nization. Kuramoto oscillator networks are what this
paper dealswith, butwe included a feature thatwas usu-
ally ignored in the previous dynamical network models
and is focused on synchronization in general oscilla-
tor networks with delays. Time delay is a fundamen-
tal reality of physical systems due to the finite speeds
of transmission and spreading as well as traffic con-
gestion. Since the finite speed of signal transmission
over a distance gives rise to a finite time delay, it is
well known that the information flow in complex net-
work is not instantaneous in general. In view of the
time-delay phenomenon, which is frequently encoun-
tered in practical situations, the complex network is
further extended to include coupling delays among its
nodes, and synchronization conditions of these net-
works have been investigated analytically. For exam-
ple, the problem of sampled-data exponential synchro-
nization of complex dynamical networks with time-
varying coupling delay and variable sampling is inves-
tigated in [11]. By the usage of the time-dependent
Lyapunov functional approach and convex combina-
tion technique, sufficient conditions were proposed to
ensure the stability of error dynamics.

Coupled dynamic networks with time-varying delay
have been considered in [12]. A new closed-loop
coupled dynamic error system with Markovian jump
parameters and interval time-varying delays has been
constructed. In [13], a projective synchronization of
chaotic complex system was investigated. First, the
cross-projective synchronization in coupled partially
linear complex nonlinear dynamic system was realized
without adding any control term. Then, the substan-
tial conditions of projective synchronization of chaotic
complex systems on whole state variable with time
delay and adaptive controllers are investigated. The
problem of adaptive synchronization for a complex
dynamical network with coupling time-varying delay
is investigated in [14,15]. In the latter problem, condi-
tions ensuring stability of congestion control schemes

for arbitrary topologies with delays at the linearized
level have beenproposed [16]; recently, these have been
extended to cover the nonlinear cases [17,18]. How-
ever, these techniques would bring some fixed cou-
pled gains, while non-uniform Kuramoto oscillators
inevitably exist in natural and man-made networks. So
it should be pointed out that they restrict applications
of the synchronization criteria. For this reason, in this
paper, we have decided to present a synchronization
phenomenon for Kuramoto oscillators with delayed,
non-identical coupled strength. Non-identical coupled
strength means coefficients with small bounded vari-
ations from nominal values. We consider all values
of εki are smaller than limited value. The methodol-
ogy we used is based on an invariance principle for
Lyapunov–Razumikhin functions. The main ideas of
the proof are based on recent results in Münz et al.
[19]. The remainder of this paper is organized as fol-
lows: Sect. 2 is devoted to some preliminary results on
functional differential equations (FDE) as well as alge-
braic graph theory that will be used in the rest of this
paper. In Sect. 3, we describe our delay coupled non-
identical Kuramoto oscillator model. Our main result,
synchronization of delayed Kuramoto oscillators with
non-uniform coupled coefficients, is proved in Sect. 4.
The conclusions and discussion are given in Sect. 5.

2 Notations and definitions

Definition 1 [Functional differential equations (FDE)]
We denote the functional differential equations (FDE)
on � as:

ẋ(t) = f (xt ) (1)

It is clear that a unique solution for Eq. (1) exists if
f (φ) is Lipschitz in each compact set in �.

Definition 2 (Equilibrium point) An element � ∈
C ([−T, 0] , Rn) is called a steady state or equilibrium
of (1) if xt (�) = � for all t ≥ 0. In the sequel with-
out loss of generality, we consider � = 0 to be the
equilibrium point.

Proposition 1 Consider f :� → Rn be a locally Lip-
schitz function that maps bounded subsets of � into
bounded subsets of Rn and consider (1). Suppose
v, ω : R+ → R+ are continuous, non-decreasing
functions, v (s) be positive for s > 0, v (0) = 0, for
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Synchronization in oscillator networks 3

such systems if there exists a Lyapunov–Razumikhin
function V :D → R such that:
⎧
⎪⎨

⎪⎩

V (x) ≥ v (|x |) for x ∈ D, and
V̇ (ϕ (0)) ≤ −ω (ϕ (0)) if V (ϕ (0))

= max−T ≤s≤0
V (ϕ (s))

Then, the equilibrium x = 0 of (1) is stable [20].
The idea of the Razumikhin-type theorem is to treat
the stability problem by utilizing a Lyapunov function
instead of a Lyapunov functional [21]. In the beginning
of his research, Razumikhin considered the single sys-
tem (1) and investigated the stability problem on the
basis of first approximations. He demonstrated that the
zero solution of this system is asymptotically stable if a
positive-definite function V (x) has a negative-definite
derivative along the solution of (1) [22].

Theorem 1 Suppose there are a Lyapunov–Razumi-
khin function V = V (x) and a positively invariant
closed set � with respect to (1) such that:

V̇ (ϕ) ≤ 0 ∀ϕ ∈ � s.t. V (ϕ (0))

= max s [−T, 0] V (ϕ (s)) (2)

Then, for any ϕ ∈ �, x (ϕ) is defined and bounded
on [−T,∞), ω (ϕ) ⊆ MV ⊆ EV and xt (φ) converges
to MV , that is limt→∞xt (φ) = MV .

Here, ω (ϕ) is the ω-limit set of ϕ and non-empty,
compact, connected, and invariant, If x(ϕ) is a solution
of (1) that is defined and bounded on [−T,∞) , then the
orbit through ϕ which is the set {xt (ϕ) : t ≥ 0} is pre-
compact, and limt→∞ xt (ϕ) = ω (ϕ). EV is the set of
functions ϕ ∈ � which can serve as initial conditions
for (1) and is defined as:

EV = {
ϕ ∈ � : maxs∈[−T,0]V (xt (ϕ) (s))

= maxs∈[−T,0]V (ϕ (s)) ,∀t ≥ 0
}

(3)

Note that the above condition guarantees that for a
Lyapunov–Razumikhin function V and for any ϕ ∈
EV , we have V̇ (xt (ϕ)) = 0 for any t > 0 such that:

maxs∈[−T,0]V (xt (ϕ) (s)) = V (xt (ϕ) (0))

And MV is the largest invariant set in EV [20]. Theorem
1 will be used extensively in our work. It proves the
attractivity of invariant subsets MV for the solutions of
multi-agent systems.

2.1 Graph theory

Let G (V, E) be a graph with vertex set V {v1, v2,
. . . , vn} and edge set E{e1, e2, . . . , em). For each edge
e j = {vi , vk}, choose one of the vi , vk to be the positive
end of e j and the other to be the negative end.

Definition 3 The vertex-edge incidence matrix affor-
ded by an orientation of n-by-m matrix Q = Q (G) =
(qi j ), where:

hqi j =
⎧
⎨

⎩

+1, if vi is the positive end of e j

−1, if it is the negative end,
0, otherwise.

The number of parents of system i, also called thein-
degree di of vertex vi , is defined by di = ∑N

j=1 qi j [23].

2.2 Consensus in multi-agent systems

Before illustrating the synchronization of delayed
Kuramoto oscillators, we consider to a simple car fol-
lowingmodel inmulti-agent systems (MAS) as follows
and apply the proposed theorem 2 for Kuramoto oscil-
lator in the next section.

ẋi (t)= − Ki

N∑

k=1

αki

di
gki (xi (t) − xk (t − τki )) (4)

where xi (t) ∈ R is the position of driver i at time t,
Ki 	= 0 models the car-agility, αki are the elements
of the adjacency matrix that models the sight of the
drivers, di is the in-degree of the node i in the graph,
gki : R → R are continuously differentiable, possi-
bly nonlinear coupling functions. The main result is
to provide conditions for MAS (4) to reach consensus
asymptotically; i.e., all agents eventually converge to
the same state xi = xk for all i, k.

Assumption 1 There exists a set B ⊆ R such that gki

and Ki satisfies Ki
dgki (y)

dy
> 0 for all k, i , all y ∈ B.

Furthermore, xi (t) − xk (t − τki ) ∈ B for all i , k and
all t ≥ 0.

Theorem 2 Assume the communication network of
MAS (4) contains N agents with dynamics, where gki

satisfies Assumption 1, and with initial condition ϕ, as
well as an underlying network topology of a directed
graph with a spanning tree, then the consensus of
the state derivatives (4) is asymptotically achieved for
any fixed delay τki if all initial ϕi conditions fulfill
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ϕi (0) − ϕk (s) ∈ B for all i, k ∈ {1, . . . , N } and for
all s ∈ [−T, 0].
Proof Themain ideas of the consensus proof are based
on the invariance principle of Lyapunov–Razumikhin
functions and results in Theorem 1. See Theorem 7 of
[19].

3 Synchronization problem in delayed Kuramoto
oscillators

In this section, we provide the model and conclude the
results and contributions. Consider a set of N coupled
oscillators with phases θi and natural frequencies ωi .
The phase of each oscillator θi is associated with a ver-
tex vi ∈ V of an underlying undirected graph G. In par-
ticular, we consider the following delayed Kuramoto
dynamics at the i-th oscillator for a complete graph the
“all-to-all” case:

θ̇i = ωi + K

N

N∑

k=1

sin(θk(t − τki ) − θi (t)), (5)

where K is the coupling strength between the oscil-
lators and τki i = 1, . . ., N is the delay between the
oscillator k and i . In order to synchronize theKuramoto
oscillators, the following equation is considered:

∀i, j ∈ {1, . . . , N } : limt→∞ θ̇i (t) − θ̇ j (t) = 0 (6)

Lemma 1 The phase difference of the delayed Kura-
moto oscillators (5) satisfies θi (t) − θ j (t) ∈ D for all
i, j ∈ I and for all t ≥ 0 if the following conditions
satisfied:

• Coupling gain K is sufficiently large,
• The maximal delay T = maxi∈I τki satisfies

T <min

⎧
⎨

⎩

arcsin(cos (δ)− N (ωmax−ωmin)
K (N−2)

2(max
i∈I

|ωi |+k)
,

δ

2(max
i∈I

|ωi |+k)

⎫
⎬

⎭

(7)

The initial condition of the oscillators satisfies
θi (0) − θ j (0) ∈ D = {

x ∈ R |‖x‖∞ < π
2 − δ

}

• The rate bound
∣
∣θ̇i (s)

∣
∣ ≤ (K + maxi∈I |ωi |) for all

i, j ∈ I and all s ∈ [−T, 0]. [19]

Proof
∣
∣θi (t) − θ j (t)

∣
∣ ≤ π

2 − δ is satisfied as long as
the difference of the initial conditions for θi and θ j

at time t = 0 is in D [19]. Thus, we consider the case

where at least two oscillators are at the critical distance.
Therefore, V is defined by:

V = maxi∈I θi (t) − min j∈I θ j (t) (8)

Consider the set of all points with V = π
2 −δ. If V̇ < 0

holds at these points, we are sure that
∣
∣θi (t) − θ j (t)

∣
∣

cannot grow beyond π
2 − δ.

Choosing θU = maxi∈I θi (t) and θL = min j∈I

θ j (t) leads to:

V̇ = θ̇U − θ̇L = ωU − ωL − K

N

N∑

k=1

(sin (θU − θk (t−τkU ))+sin (θk (t − τkL) − θL))

(9)

The delay in (9) can be rewritten as:

θk (t − τki ) = θk (t) −
∫ 0

−τ

θ̇ (t + s)ds
︸ ︷︷ ︸

=εki

(10)

The rate bound is
∣
∣θ̇i (s)

∣
∣ ≤ (K + maxi∈I |ωi |), so

from (10) we have:

|εki | ≤
∫ 0

−τki

∣
∣θ̇i (t + s)

∣
∣ ds

≤ maxi,k∈I τki
︸ ︷︷ ︸

=T

(maxi∈I |ωi | + k) = δ̌ (11)

The second term in (7) implies that δ̌ < δ
2 . Therefore,

|εkU | ≤ δ̌ <
δ

2
, |εkL | ≤ δ̌ <

δ

2
(12)

Inserting (10) into (9) results in

V̇ = θ̇U − θ̇L

= ωU − ωL − K

N

N∑

k=1

sin(θU − θk + εkU )

+ sin (θk − θL − εkL) (13)

As stated before, V̇ has to be negative. Since the cou-
pling gain K is the tunable parameter in (5), we have to
find a strictly positive lower bound for

sin(θU − θk + εkU ) + sin (θk − θL − εkL)

= 2 sin

(
θU − θk + εkU − εkL

2

)

× cos

(
θU − θk + εkU − (θk − θL − εkL

2

)

(14)

We want to find a lower bound for equation in (14), so
we use the relations
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Synchronization in oscillator networks 5

0 ≤ θU − θk ≤ π

2
− δ, 0 ≤ θk − θL ≤ δ − π

2
(15)

By summing up the results from (12) and (15), we
obtain:

− 2δ̌ + δ − π

2
≤ θU − θk + εkU − (θk − θL − εkL)

≤ π

2
− δ + 2δ̌ (16)

Inequality (16) directly yields to a lower bound for the
cosine term in (14); i.e.,

cos

(
θU − θk + εkU − (θk − θL − εkL

2

)

≥ cos

(
π
2 − δ + 2δ̌

2

)

(17)

Similarly, we attain a lower bound for the sine term in
(14), i.e.,

sin

(
θU − θk + εkU − εkL

2

)

≥ sin

(
π
2 − δ − 2δ̌

2

)

(18)

The inequalities (17) and (18) give a bound for (14);
i.e.,

sin(θU − θk + εKU ) + sin (θk − θL − εK L)

≥ 2 sin

(
π
2 − δ − 2δ̌

2

)

cos

(
π
2 − δ + 2δ̌

2

)

= cos (δ) − sin
(
2δ̌
)

(19)

We abbreviate η = cos (δ) − sin
(
2δ̌
)
, since δ̌ < δ

2 <
π
8 . So we have η > 0. Combining (13) and (19) results
in an upper bound for V̇ , i.e.,

V̇ ≤ ωmax − ωmin − K

N
(N − 2)η (20)

The factor N − 2 in (20) comes from the fact that we
consider no delay in the self-coupling. Therefore, one
of the sine summands in (9) vanishes for k ∈ {U, L};
because the other summand is positive, we bound them
by zero.

The inequality (20) directly yields a condition for K
such that V̇ < 0 if V = π

2 − δ, namely

K >
N (ωmax − ωmin)

(N − 2) η
(21)

And solving the inequality for T gives:

T <
arcsin(cos (δ) − N (ωmax−ωmin)

K (N−2)

2(maxi∈I |ωi | + k)
(22)

Since (22) holds by (7), we get V̇ < 0, therefore∣
∣θi (t) − θ j (t)

∣
∣ ≤ π

2 − δ for all t ≥ 0. [19]

Theorem 3 The Kuramoto oscillators (5) achieve the
synchronization under the conditions of Lemma1.

Proof First, we observe that (5) is a special case of
(4) with gki (y) = sin (y) . Also we consider all-to-
all coupled oscillators; i.e., αki = 1 for all i , k and
di = N for all i . According to assumption 1, B is given
by B = {

x ∈ R |‖x‖∞ < π
2

}
. Lemma1 yields to D ={

x ∈ R |‖x‖∞ < π
2 − δ

}
such that θi (t) − θ j (t) ∈ D

for all i, j ∈ {1, . . . , N } and t ≥ 0. Lemma 1 results
in following inequality:
∣
∣θi (t)−θ j

(
t−τi j

)∣
∣≤max

i, j∈I

∣
∣θi (t)−θ j

(
t − τi j

)∣
∣

≤max
i, j∈I

(
∣
∣θi (t) − (θ j (t)

∣
∣

+
∫ 0

−τi j

∣
∣θ̇i (t+s)

∣
∣ ds)≤ π

2
−δ

+ T

∣
∣
∣
∣max

i∈I
|ωi | + k

∣
∣
∣
∣

Since (7) holds, we have:

π

2
− δ + T

∣
∣
∣
∣max

i∈I
|ωi | + k

∣
∣
∣
∣ <

π

2

Consequently, θi (t) − θ j
(
t − τi j

) ∈ B forall i, j ∈ I
and t ≥ 0. According to Theorem 2, in such condition
the synchronization Eq. (6) is satisfied [19].

4 Synchronization in delayed Kuramoto oscillators
with limited heterogeneity coupled strength

In this section, we propose a Kuramoto model with
limited heterogeneity coefficients. In the previous part,
we assumed that coupling gain K is a tunable and
fixed parameter, whereas in real models of classical
Kuramoto, this value is not constant and there is much
heterogeneity. For example, in the network-reduced
model of a power system with non-trivial transfer
conductance, there is some equivalence between the
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6 M. Tousi et al.

classic power network model equations and a non-
uniform Kuramoto model which is described by non-
homogeneous coupling and non-uniform phase shifts.
The establishment of sufficient conditions for synchro-
nization of non-uniform Kuramoto oscillators can be
derived from concise and purely algebraic conditions
which relate synchronization and transient stability of
a power network to the underlying system parame-
ters and initial conditions. Since we consider a non-
uniform Kuramoto model which states that coupling
gains are heterogeneous, the differences between them
are less than a certain level similar to known M . In
other words, the constant coefficients K in Eq. (5) are
replaced with heterogeneous coefficients (K+ ∈ki ).
Therefore, Eq. (5) will be changed as follows:

θ̇i (t) = ωi + 1

N

N∑

k=1

(K+ ∈ki )

× sin (θk (t − τki ) − θi (t)) (23)

We consider all values of ∈ki to be smaller than lim-
ited value M by using results in a synchronous delayed
system and the maximum delay Lemma1. In this part,
we obtain the maximum amount available extensions
of M . Similar to Eq. (13), the derivative of Lyapunov
function in case coupling values are heterogeneously
obtained.

V̇ =ωU −ωL − 1

N

N∑

k=1

(K+∈kU ) sin(θU −θk +εkU )

+ (K+ ∈kL) sin (θk − θL − εkL) (24)

Proposition 2 Consider the oscillators with heteroge-
neous coupling gain (23). The related derivative of Lya-
punov function defined in (24) can be rewritten based
on Kuramoto model with fixed strength as it is illus-
trated in (13).

Proof Let f (X) and f (Y ) be the derivatives of Lya-
punov function, respectively, for delayed Kuramoto
model with heterogeneous and fixed strength coupling.
It is clear that f (X) and f (Y ) can be rewritten as:

f (K+ ∈)
︸ ︷︷ ︸

f (X)

= ωU − ωL − 1

N

N∑

k=1

(K+ ∈kU )

× sin(θU − θk + εkU )

+ (K+ ∈kL) sin (θk − θL − εkL) (25)

f (K )
︸ ︷︷ ︸

f (Y )

= θ̇U − θ̇L = ωU − ωL

− K

N

N∑

k=1

sin(θU − θk + εkU )

+ sin (θk − θL − εkL) (26)

where

X = (K+∈1U , K+∈2U , . . . , K+∈1L , . . . , K+∈ K L )

(27)

X − Y = (∈1U ,∈2U , . . . ..,∈1L , . . . .,∈K L) (28)

Considering Taylor expansions for linear functions
around points K and after omitting the higher-order
terms (relating to the fact that values of ∈ki are closed
to each other), one can rewrite f (X) as follows:

f (X) = f (Y ) + ∇ f (Y ) (X − Y ) (29)

which is equal to

f (K+ ∈) = f (K ) + ∇ f (K ) (∈) (30)

Lemma 2 For the delayed Kuramoto oscillators (24)
with heterogeneous coefficients (K+ ∈ki ), the syn-
chronization condition is satisfied under the following
inequality ∀i, j ∈ I : |εki | ≤ M

M ≤
ωmax−ωmin− K

N (N −2)

(

cos (δ)−sin

(

2T

(

max
i∈I

|ωi |+k

)))

1
N (N −2)

{

cos (δ)−sin

(

2T

(

max
i∈I

|ωi |+k

))}

(31)

Proof As is proved in Lemma1, the maximum delay
is calculated for V̇ < 0, namely f (K ) < 0. Simi-
larly, this method is applied for proving the stability
of delayed Kuramoto (13). So the following inequality
should be established:

f (K+ ∈) < 0 (32)

Inserting (29) into (32) results in

f (K ) + ∇ f (K ) (∈) < 0 →∈< − f (K )

∇ f (K )
(33)

First via Eq. (26), we get gradient around each point of
K as:

∇ f (K ) = − 1

N
{sin (θU − θ1 (t − τ1U ))

+ sin (θ1 (t − τ1L) − θL) + · · ·
+ sin (θU − θN (t − τNU ))

+ sin(θN (t − τN L) − θL) (34)

Inserting (26) and (34) into (33) causes
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Synchronization in oscillator networks 7

∈ <
−
{
ωU − ωL − K

N

∑N
k=1 sin(θU −θk (t − τkU ))+sin (θk (t−τkL)−θL)

}

− 1
N {sin (θU −θ1 (t−τ1U ))+sin (θ1 (t−τ1L) − θL) . . .+sin (θU −θN (t − τNU ))+sin (θN (t−τN L)−θL)}

(35)

Assuming that all values of∈ki are smaller than limited
value M results in (36)

M =
{
ωU −ωL − K

N

∑N
k=1 sin(θU −θk (t−τkU ))+sin (θk (t−τkL) − θL)

}

1
N {sin (θU −θ1 (t−τ1U )) + sin (θ1 (t−τ1L)−θL) . . .+sin (θU −θN (t−τNU ))+sin (θN (t − τN L)−θL)}

(36)

According to (20), we can find an upper bound for the
numerator of (36) as follows:

ωU − ωL − K

N

N∑

k=1

sin(θU − θk (t − τkU ))

+ sin (θk (t − τkL) − θL) ≤ ωmax − ωmin

− K

N
(N − 2) η (37)

To calculate M, we have to find a strictly positive lower
bound for the denominator of (36). Moreover, we con-
sider no delay in the self-coupling, so one of the sine
summands in (9) vanishes for k ∈ {U, L}, because the
other summand is positive. Based on inequality (19),
we obtain:

1

N

N∑

k=1

sin(θU − θk (t − τkU ))

+ sin (θk (t − τkL) − θL) ≥ 1

N
(N − 2) η (38)

Inverting (38) gives

[
1

N

N∑

k=1

sin(θU −θk (t−τkU ))+sin (θk (t

−τkL) − θL)

]−1

≤
(
1

N
(N − 2) η

)−1

(39)

With inserting (37) and (39) into (36), yields:

M ≤ ωmax − ωmin − K
N (N − 2) η

1
N (N − 2) η

(40)

As before, we know 0 < η = cos (δ)−sin
(
2δ̌
)
. Com-

bining (11) and (40) results in an upper bound for M ,
as:

M ≤
ωmax−ωmin− K

N (N −2)

(

cos (δ)−sin

(

2T

(

max
i∈I

|ωi |+k

)))

1
N (N − 2)

{

cos (δ)−sin

(

2T

(

max
i∈I

|ωi |+k

))}

Consequently, we get V̇ < 0. We computed the maxi-
mum acceptable value of M , which is the largest region
where f (x) < 0. The largest sphere around the K point
of the delayed system is stable inwhich the systemstays
synchronized.

5 Conclusions

In this paper, we have studied the problem of synchro-
nizationof coupledoscillator networks in theKuramoto
framework with delay. First, we have investigated a
condition on maximum delay for the synchronization
of non-identical Kuramoto oscillators with heteroge-
neous delays and constant coupling gain. Then,wehave
considered that the model of delay coupled Kuramoto
oscillators are characterized by non-identical natural
frequencies and heterogeneous coupling gain, but the
difference between the values is less than a certain lim-
ited value as M . Basedon the stability theory of theLya-
punov function and by using previous conclusions, we
proposed the certain criteria of M . A completely non-
uniform delay coupled Kuramoto oscillators with cou-
pling weight matrix similar to the one obtained in the
case of network congestion control would be desirable,
at least in the case in which there is a unique attracting
set. This will be the focus of our future research.
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