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Abstract Motivated by the needs of multi-agent sys-
tems in the presence of sensing and communication
which is delayed, intermittent, and asynchronous, we
present a Kuramoto-type model as the delay inherent
in such systems is taken into account. First, we have
investigated a condition on maximum delay for the fre-
quency entrainment of non-identical Kuramoto oscil-
lators with heterogeneous delays and a constant cou-
pling gain. Our next mission is to investigate the model
of delayed coupled Kuramoto oscillators, which are
characterized by non-identical natural frequencies and
non-homogeneous coupling strength. We assume that
the difference between the coupling gains is less than a
certain limited value M, and on the basis of Lyapunov
stability theorem, we present a strictly positive lower
bound for M to achieve a consensus on the derivatives
of the phases. This consensus property is even more
surprising because the phases themselves do not nec-
essarily reach a consensus. We apply our results to these
oscillators and show that synchronization is guaranteed
for appropriate initial conditions.
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1 Introduction

Synchronization phenomena in large populations of
interacting elements are the subject of intense research
efforts in physical, biological, chemical, and social sys-
tems. Over the past two decades, myriad researchers
have spent a great deal of time studying synchroniza-
tion, which combines ideas from nonlinear dynamics
and network theory. Examples in biology and physics
include groups of synchronously flashing fireflies [1]
and Josephson junctions [2] and the natural circadian
rhythms of the human brain [3]. A successful approach
to the problem of synchronization consists of model-
ing each member of the population as a phase oscil-
lator. Synchronizations the process by which interact-
ing, oscillating objects affect each other such that they
spontaneously lock to a certain frequency or phase [4].

Collective synchronization was first studied by
Wiener [5], who conjectured its involvement in the
generation of alpha rhythms in the brain. It was then
taken up by Winfree [6] who used it to study circa-
dian rhythms in living organisms. Winfree’s model was
significantly extended by Kuramoto [7] who devel-
oped results for what is now popularly known as the
Kuramoto model. Similar to “all-to-all” case, a problem
of frequency synchronization for a system of Kuramoto
oscillators in the case where interconnection graph is
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not necessary to be symmetric is considered [8]. It was
also observed that the system achieves synchronization
for arbitrary topologies when the oscillators are iden-
tical. Recent works in the control community investi-
gate the close relationship between Kuramoto oscilla-
tors and consensus networks [9].

The pinning synchronization on complex networks
with weak coupling was investigated in [10]. Also some
selected links were strengthened to reduce the energy
cost in the process of achieving and keeping synchro-
nization. Kuramoto oscillator networks are what this
paper deals with, but we included a feature that was usu-
ally ignored in the previous dynamical network models
and is focused on synchronization in general oscilla-
tor networks with delays. Time delay is a fundamen-
tal reality of physical systems due to the finite speeds
of transmission and spreading as well as traffic con-
gestion. Since the finite speed of signal transmission
over a distance gives rise to a finite time delay, it is
well known that the information flow in complex net-
work is not instantaneous in general. In view of the
time-delay phenomenon, which is frequently encoun-
tered in practical situations, the complex network is
further extended to include coupling delays among its
nodes, and synchronization conditions of these net-
works have been investigated analytically. For exam-
ple, the problem of sampled-data exponential synchro-
nization of complex dynamical networks with time-
varying coupling delay and variable sampling is inves-
tigated in [11]. By the usage of the time-dependent
Lyapunov functional approach and convex combina-
tion technique, sufficient conditions were proposed to
ensure the stability of error dynamics.

Coupled dynamic networks with time-varying delay
have been considered in [12]. A new closed-loop
coupled dynamic error system with Markovian jump
parameters and interval time-varying delays has been
constructed. In [13], a projective synchronization of
chaotic complex system was investigated. First, the
cross-projective synchronization in coupled partially
linear complex nonlinear dynamic system was realized
without adding any control term. Then, the substan-
tial conditions of projective synchronization of chaotic
complex systems on whole state variable with time
delay and adaptive controllers are investigated. The
problem of adaptive synchronization for a complex
dynamical network with coupling time-varying delay
is investigated in [14,15]. In the latter problem, condi-
tions ensuring stability of congestion control schemes
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for arbitrary topologies with delays at the linearized
level have been proposed [16]; recently, these have been
extended to cover the nonlinear cases [17,18]. How-
ever, these techniques would bring some fixed cou-
pled gains, while non-uniform Kuramoto oscillators
inevitably exist in natural and man-made networks. So
it should be pointed out that they restrict applications
of the synchronization criteria. For this reason, in this
paper, we have decided to present a synchronization
phenomenon for Kuramoto oscillators with delayed,
non-identical coupled strength. Non-identical coupled
strength means coefficients with small bounded vari-
ations from nominal values. We consider all values
of &k are smaller than limited value. The methodol-
ogy we used is based on an invariance principle for
Lyapunov—Razumikhin functions. The main ideas of
the proof are based on recent results in Miinz et al.
[19]. The remainder of this paper is organized as fol-
lows: Sect. 2 is devoted to some preliminary results on
functional differential equations (FDE) as well as alge-
braic graph theory that will be used in the rest of this
paper. In Sect. 3, we describe our delay coupled non-
identical Kuramoto oscillator model. Our main result,
synchronization of delayed Kuramoto oscillators with
non-uniform coupled coefficients, is proved in Sect. 4.
The conclusions and discussion are given in Sect. 5.

2 Notations and definitions

Definition 1 [Functional differential equations (FDE)]
We denote the functional differential equations (FDE)
on 2 as:

X(1) = f(x) 6]

It is clear that a unique solution for Eq. (1) exists if
f(¢) is Lipschitz in each compact set in 2.

Definition 2 (Equilibrium point) An element ® €
C ([-T,0], R") is called a steady state or equilibrium
of (1) if x;(®) = @ for all # > 0. In the sequel with-
out loss of generality, we consider ® = 0 to be the
equilibrium point.

Proposition 1 Consider f:Q2 — R" be a locally Lip-
schitz function that maps bounded subsets of <2 into
bounded subsets of R" and consider (1). Suppose
v,w : RY — RT are continuous, non-decreasing
functions, v (s) be positive for s > 0, v(0) = 0, for
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such systems if there exists a Lyapunov—Razumikhin
function V:D — R such that:

\_/ (x) > v (|x|)for x € D, and
Vip(0) = —w(p(0) if V(¢ (0))
= _max V(g (s))

Then, the equilibrium x = 0 of (1) is stable [20].
The idea of the Razumikhin-type theorem is to treat
the stability problem by utilizing a Lyapunov function
instead of a Lyapunov functional [21]. In the beginning
of his research, Razumikhin considered the single sys-
tem (1) and investigated the stability problem on the
basis of first approximations. He demonstrated that the
zero solution of this system is asymptotically stable if a
positive-definite function V (x) has a negative-definite
derivative along the solution of (1) [22].

Theorem 1 Suppose there are a Lyapunov—Razumi-
khin function V. = V (x) and a positively invariant
closed set Q with respect to (1) such that:

V(p) <0 VYo eQst V(p0))
=maxs [—-T,0]V (¢ (s)) (2

Then, for any ¢ € 2, x (¢) is defined and bounded
on[—T,00), w(p) € My C Ey and x; (¢) converges
to My, that is lim;_, 5o X; () = My .

Here, w (¢) is the w-limit set of ¢ and non-empty,
compact, connected, and invariant, If x (¢) is a solution
of (1) thatis defined and bounded on [T, o0) , then the
orbit through ¢ which is the set {x; (¢) : t > 0} is pre-
compact, and lim;_, » X (¢) = w (¢). Ey is the set of
functions ¢ € € which can serve as initial conditions
for (1) and is defined as:

Ey = {¢ € Q: maxse—1,01V (5 (9) (5))
= maxe(—7,01V (¢ (5)) .Vt = 0} 3)

Note that the above condition guarantees that for a
Lyapunov—Razumikhin function V and for any ¢ €
Evy,wehave V (x; (¢)) = 0 for any t > 0 such that:

maxge[—1,01V (x; (¢) (5)) =V (x; () (0))

And My is the largest invariant setin E'y [20]. Theorem
1 will be used extensively in our work. It proves the
attractivity of invariant subsets My for the solutions of
multi-agent systems.

2.1 Graph theory

Let G (V, E) be a graph with vertex set V {vy, va,
..., vy} and edge set Ef{ey, ea, ..., ey). Foreach edge
e;j = {v;, vi }, choose one of the v;, vy to be the positive
end of ¢; and the other to be the negative end.

Definition 3 The vertex-edge incidence matrix affor-
ded by an orientation of n-by-m matrix Q = Q (G) =
(gij), where:

+1, ifwv;is the positive end of e;
hq[j = { —1, ifitis the negative end,
0, otherwise.

The number of parents of system i, also called thein-
degree d; of vertex v;, is defined by d; = Z?’zl qi;[23].

2.2 Consensus in multi-agent systems

Before illustrating the synchronization of delayed
Kuramoto oscillators, we consider to a simple car fol-
lowing model in multi-agent systems (MAS) as follows
and apply the proposed theorem 2 for Kuramoto oscil-
lator in the next section.

N
X ()=—K; Z, Ojd—’jfgki () —x(t— 1) (4)

where x; (t) € R is the position of driver i at time t,
K; # 0 models the car-agility, ay; are the elements
of the adjacency matrix that models the sight of the
drivers, d; is the in-degree of the node i in the graph,
gki © R — R are continuously differentiable, possi-
bly nonlinear coupling functions. The main result is
to provide conditions for MAS (4) to reach consensus
asymptotically; i.e., all agents eventually converge to
the same state x; = x; for all i, k.

Assumption 1 There exists a set B C R such that gi;
. dg,: (v .
and K; satisfies Ki%’y(—}) > O forallk,i,all y € B.

Furthermore, x; (t) — x; (t — ;) € B for all i, k and
allt > 0.

Theorem 2 Assume the communication network of
MAS (4) contains N agents with dynamics, where g;
satisfies Assumption 1, and with initial condition ¢, as
well as an underlying network topology of a directed
graph with a spanning tree, then the consensus of
the state derivatives (4) is asymptotically achieved for
any fixed delay ty; if all initial ¢; conditions fulfill
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0i (0) — @k (s) € Bforalli,k € {1,..., N} and for
alls € [-T,0].

Proof The main ideas of the consensus proof are based
on the invariance principle of Lyapunov—Razumikhin
functions and results in Theorem 1. See Theorem 7 of
[19].

3 Synchronization problem in delayed Kuramoto
oscillators

In this section, we provide the model and conclude the
results and contributions. Consider a set of N coupled
oscillators with phases 6; and natural frequencies ;.
The phase of each oscillator 6; is associated with a ver-
tex v; € V of anunderlying undirected graph G. In par-
ticular, we consider the following delayed Kuramoto
dynamics at the i-th oscillator for a complete graph the
“all-to-all” case:
. K<
6 = i + 5 D sin(Oh(t — i) — 6 (1)), (5)
k=1
where K is the coupling strength between the oscil-
lators and ;i = 1,..., N is the delay between the
oscillator k and i. In order to synchronize the Kuramoto
oscillators, the following equation is considered:

Vi,je{l,...,N}:limo6: (1) —0;(1) =0 (6)

Lemma 1 The phase difference of the delayed Kura-
moto oscillators (5) satisfies 0; (t) — 0 (t) € D for all
i,j € I and for all t > 0 if the following conditions
satisfied:

e Coupling gain K is sufficiently large,
o The maximal delay T = max;cy Tk satisfies

arcsin(cos (§) — K(N=2) )

2(max |w; |+k)
iel

T < min

N (®max —®min)
" 2(max |w; | +k) ]
iel
(7N
The initial condition of the oscillators satisfies
6; (0) —0; (0) € D={x € R|lIxlloc <% —3}

o The rate bound \9} (s)’ < (K + max;¢; |wi|) for all
i,jelandalls € [-T,0]. [19]

Proof |9i (1) —6; (t)| < % — & is satisfied as long as

the difference of the initial conditions for ; and 6;
at time ¢t = 0 is in D [19]. Thus, we consider the case
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where at least two oscillators are at the critical distance.
Therefore, V is defined by:
V = max;e 6; (t) —minjes 0 (1) 3

Consider the set of all points with V = 7 —§.If V<0
holds at these points, we are sure that |9,~ (t)—0; (t)|
cannot grow beyond 5 — 8.

Choosing 0y = max;e; 0; (t) and 0 = min ¢,
0; (1) leads to:
N

. . . K
V:QU—QLza)U—a)L—N;
(sin Oy — O (t—tky))+sin (O (t — kL) — L))
©
The delay in (9) can be rewritten as:
0
O (t — ki) = Ok (t)—/ ot + s)ds (10)
—T
—

=¢ki

The rate bound is |6; (s)| < (K + max;e; |wi]), so
from (10) we have:

0
sl < / 6 (1 + 5] ds
—Tki

< max; yes i (Maxeg |o;| + k) =48 (11)
————
=T

The second term in (7) implies that § < %. Therefore,

. 8 v 6
|8kU|58<§,I8kL|§5<§ (12)
Inserting (10) into (9) results in
V =6y —6r

kY
= oy —oL— ];sin(QU — O + &xw)
+ sin (6 — 01, — exr) (13)

As stated before, V has to be negative. Since the cou-
pling gain K is the tunable parameter in (5), we have to
find a strictly positive lower bound for

sin(fy — Ok + exv) + sin (6 — 0L — ekL)
. (9U — Ok + v —8kL)
= 2sin

2

Oy — 6, — (6 — 01, —
XCOS(U k+5kU2(k L 5kL)(14)

We want to find a lower bound for equation in (14), so
we use the relations
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T T
0§9U—9k55—5,0§9k—9L§5—5 (15)

By summing up the results from (12) and (15), we
obtain:

v T
—25+3—5SGU_9k+8kU_(9k_9L_8kL)
T v
<5 -8+2 (16)

Inequality (16) directly yields to a lower bound for the
cosine term in (14); i.e.,

(9U — Ok + ey — O — 0L — SkL)
COS 2

T-5+28
> cos( 2 (17)

Similarly, we attain a lower bound for the sine term in
(14), i.e.,

. (9u—9k+8kU—€kL) . (%—5—23)
sin 5 > sin s

(18)

The inequalities (17) and (18) give a bound for (14);
i.e.,

sin(fy — 6 +exy) +sin (6 — 0 — exr)

T_§5-2§ T _§5+4+28
> 2sin 2 " Jecos L
2 2

= cos (6) — sin (25) (19)

We abbreviate n = cos (§) — sin (25), since § < % <
%. So we have n > 0. Combining (13) and (19) results
in an upper bound for V, i.e.,

. K
V < wmax — Omin — N(N —2)n (20)

The factor N — 2 in (20) comes from the fact that we
consider no delay in the self-coupling. Therefore, one
of the sine summands in (9) vanishes for k € {U, L};
because the other summand is positive, we bound them
by zero.

The inequality (20) directly yields a condition for K
such that V < 0if V = 7 — 8, namely

N (wmax — ®min)
K > —-max — ®min) 1)
(N=2)n

And solving the inequality for T gives:

arcsin(cos (8§) — Y @max—@min) (‘I%"E‘}\X,:“z’;"i")

T < (22)
2(max;es |w;| + k)

Since (22) holds by (7), we get vV < 0, therefore
|0; (1) —0; (1)| < % — S forall > 0. [19]

Theorem 3 The Kuramoto oscillators (5) achieve the
synchronization under the conditions of Lemma .

Proof First, we observe that (5) is a special case of
(4) with g (y) = sin(y). Also we consider all-to-
all coupled oscillators; i.e., ax; = 1 for all i, k and
d; = N foralli. According to assumption 1, B is given
by B = {x € R|Ix]loo < %}.Lemmal yieldsto D =
{x €ER|lxlo < F — 8} such that 6; (1) —6; (t) € D
foralli, j € {I,..., N} and t > 0. Lemma 1 results
in following inequality:

0: (=6 (1) | < max 0; ()6 (1 — )|
<max(|6; (1) — (0, (1)]
i,jel
0 . T
+ / |0; (t+s)|ds) <= =8
—1 2
+T ‘max lwi| + k‘
iel
Since (7) holds, we have:

£—8+T‘max|wi|+k
2 iel

T
<_
2

Consequently, 6; (t) — 0; (t — 7;;) € B foralli, j € I
and ¢t > 0. According to Theorem 2, in such condition
the synchronization Eq. (6) is satisfied [19].

4 Synchronization in delayed Kuramoto oscillators
with limited heterogeneity coupled strength

In this section, we propose a Kuramoto model with
limited heterogeneity coefficients. In the previous part,
we assumed that coupling gain K is a tunable and
fixed parameter, whereas in real models of classical
Kuramoto, this value is not constant and there is much
heterogeneity. For example, in the network-reduced
model of a power system with non-trivial transfer
conductance, there is some equivalence between the

@ Springer



M. Tousi et al.

classic power network model equations and a non-
uniform Kuramoto model which is described by non-
homogeneous coupling and non-uniform phase shifts.
The establishment of sufficient conditions for synchro-
nization of non-uniform Kuramoto oscillators can be
derived from concise and purely algebraic conditions
which relate synchronization and transient stability of
a power network to the underlying system parame-
ters and initial conditions. Since we consider a non-
uniform Kuramoto model which states that coupling
gains are heterogeneous, the differences between them
are less than a certain level similar to known M. In
other words, the constant coefficients K in Eq.(5) are
replaced with heterogeneous coefficients (K+ €;).
Therefore, Eq. (5) will be changed as follows:

N

. 1
0; (1) = w; + N;(K-i- €ki)
x sin (O (t — ;) — 6; (1)) (23)

We consider all values of €;; to be smaller than lim-
ited value M by using results in a synchronous delayed
system and the maximum delay Lemma 1. In this part,
we obtain the maximum amount available extensions
of M. Similar to Eq. (13), the derivative of Lyapunov
function in case coupling values are heterogeneously
obtained.

N
. 1
V:CUU_CUL_N ]; (K+€y) sin(0y — 0k +eru)

+ (K+ €rp)sin (6 — 0L — exr) (24)

Proposition 2 Consider the oscillators with heteroge-
neous coupling gain (23). The related derivative of Lya-
punov function defined in (24) can be rewritten based
on Kuramoto model with fixed strength as it is illus-
trated in (13).

Proof Let f(X) and f(Y) be the derivatives of Lya-
punov function, respectively, for delayed Kuramoto
model with heterogeneous and fixed strength coupling.
It is clear that f(X) and f(Y) can be rewritten as:

L
K+ €)= — —- — K+ €
J(K+¢€)=wy —oL NZ( + <)
FX) k=l
x sin(By — O + erv)
+ (K+ €gp)sin (G — 0L — gxr)  (25)
f(K)=0y -0, =wy—wL
——
)
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K N
- > sin(Oy — 6 + exv)

k=1
+ sin (6 — O — &) (26)
where
X =(K+ey, K+ew, ..., K+€1, ..., K+€kr)
(27
X—Y =(€1U,€2Us-++-» EILs -+ -+ EKL) (28)

Considering Taylor expansions for linear functions
around points K and after omitting the higher-order
terms (relating to the fact that values of €; are closed
to each other), one can rewrite f(X) as follows:

fFXO=fM+Vfd)X-Y) (29)
which is equal to
f(K+e)=f(K)+Vf(K)(e) (30)

Lemma 2 For the delayed Kuramoto oscillators (24)
with heterogeneous coefficients (K+ €y;), the syn-
chronization condition is satisfied under the following
inequality Vi, j € I : |ei| <M

Wmax — Omin — % (N=2) (cos (8) —sin (ZT (malx |w;i | +k)))
1€
M<

< % (N=2) (cos (8) —sin (2T (malx Iw,-\—i-k))]

Proof As is proved in Lemma 1, the maximum delay
is calculated for V < 0, namely f (K) < 0. Simi-
larly, this method is applied for proving the stability
of delayed Kuramoto (13). So the following inequality
should be established:

f(K+¢e) <0 (32)
Inserting (29) into (32) results in

€19

J(K)
Vf(K)
First via Eq. (26), we get gradient around each point of
K as:
L .
ViK) = Y {sin Oy — 61 ¢t — T1v))
+sin(0y (t —t12) —O01) + -~
+ sin (By — On (t — TNU))
+sin(On(t — tnz) — 1) (34)
Inserting (26) and (34) into (33) causes

fEK)+VF(K)(E) <0—e<—

(33)
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- {wU —op— % >l sin(@y — 6y (t — Tey))+sin (6 (t—ka)—OL)}
€<
—% {sin (Oy —01 (t —t1y))+sin (61 (t—71L) —OL) .. .+sin (Oy —Oy (t — Tvy))+sin Oy (t—tNL)—0L)}

(35)

Assuming that all values of €; are smaller than limited

value M results in (36)

{wU —wp — % Zlivzl sin(Oy — 6k (t —tky))+sin (O (t—1%) — 9L)}
a +{sin Oy —0; (t—T10)) + sin (01 (t—712) —6L) .. .+sin Gy —On (t—TNu))+sin @y (1 — Tve) —61)}

(36)

According to (20), we can find an upper bound for the
numerator of (36) as follows:

K N
oy — oL = > sinOy — 0 (1 = 7))

k=1
+ sin (6x (t — L) — 0L) < Omax — Omin
K
_ 2 (N=2 37
N ( )n (37)

To calculate M, we have to find a strictly positive lower
bound for the denominator of (36). Moreover, we con-
sider no delay in the self-coupling, so one of the sine
summands in (9) vanishes for k € {U, L}, because the
other summand is positive. Based on inequality (19),
we obtain:

N

1 :

N E sin(Oy — Ok (t — wv))
k=1

1
+sin (O (1 — L) —0L) = N (N=2)n (38)
Inverting (38) gives
|
[ﬁ > sin(Oy — 6k (t—w))+sin (O (¢
k=1

-1 1 —1
—TkL) — 9L)i| < (ﬁ (N-=2) 77) (39)

With inserting (37) and (39) into (36), yields:

Wmax — Wmin — % (N—=2)n

M < i
yWN=2)n

(40)

As before, we know 0 < 1 = cos (§) —sin (25). Com-

bining (11) and (40) results in an upper bound for M,
as:

Wmax — Omin — % (N=2) (cos (8) —sin (ZT (ma[x |w,-\+k)))
e

% (N —-2) [cos (8)—sin (ZT (ma]x |w; |+k)) ]
1€

Consequently, we get V < 0. We computed the maxi-
mum acceptable value of M, which is the largest region
where f(x) < 0. The largest sphere around the K point
of the delayed system is stable in which the system stays
synchronized.

M<

5 Conclusions

In this paper, we have studied the problem of synchro-
nization of coupled oscillator networks in the Kuramoto
framework with delay. First, we have investigated a
condition on maximum delay for the synchronization
of non-identical Kuramoto oscillators with heteroge-
neous delays and constant coupling gain. Then, we have
considered that the model of delay coupled Kuramoto
oscillators are characterized by non-identical natural
frequencies and heterogeneous coupling gain, but the
difference between the values is less than a certain lim-
ited value as M. Based on the stability theory of the Lya-
punov function and by using previous conclusions, we
proposed the certain criteria of M. A completely non-
uniform delay coupled Kuramoto oscillators with cou-
pling weight matrix similar to the one obtained in the
case of network congestion control would be desirable,
at least in the case in which there is a unique attracting
set. This will be the focus of our future research.
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