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In order to design and develop an optimal gear transmission system, it is important to control the
occurrence of various types of nonlinear phenomena such as bifurcation and chaotic response.
This paper describes a control system for elimination of the chaotic behaviors in a gear dynamic
system. Analytical approach concerning the elimination of chaos in a gear system with applying
the external control excitation is given by using Melnikov method. The numerical simulations
are considered to check the validity of theoretical predictions, and also to investigate the efficien-
cy of the proposed control system to eliminate the homoclinic bifurcation and chaos in nonlinear
gear systems.
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1. Introduction

Gear systems are known as one of the most important sources of vibration and noise in industrial rotary machinery and power
transmission systems. As a consequence, many studies have been performed for the purpose of analyzing gear dynamics. The
more accurate evaluations and experimental investigations of the gear dynamic response have indicated some complicated
phenomena such as regular vibrations, non-periodic or even chaotic motions on some system parameters. With the development
of nonlinear dynamics theories, the nonlinear characteristics of these systems such as stability, periodic responses, bifurcations,
and chaotic behaviors, have become the most interesting research areas. For instance, the experimental results, were reported
by Kahraman and Blankenship [1], indicated that several nonlinear phenomena such as sub and super-harmonic resonances
and chaotic behaviors occur when a spur gear pair with clearance nonlinearity subjected to combined parametric and external
forced excitation is present. Also, they [2] had presented a single-degree-freedom gear system involving combined parametric
excitation and clearance to analyze the steady state solutions by means of multiple term HBM approach and experimental
validation. The IHBM was applied by Raghothama et al. [3] to investigate periodic responses and bifurcations of a nonlinear geared
rotor-bearing system with time varying mesh stiffness and backlash. Also, the chaotic response was investigated by using numer-
ical simulation method, and the Lyapunov exponent was calculated.

In [4], a generalized nonlinear time varying dynamic model of a hypoid gear pair with backlash nonlinearity was formulated.
Computational results reveal numerous nonlinear behaviors such as sub-harmonic and chaotic responses, especially for lightly
loaded and lightly damped cases. Also, Luczko [5] investigated a nonlinear model with the time varying stiffness and backlash
to describe vibration of a one-stage gearbox. The possibility of existence of chaotic response was studied using numerical integra-
tion and spectrum analysis. The simulation results reveal that the system exhibits a range of quasi periodic or chaotic behaviors. In
[6], Wang et al. developed a dynamic model of gear system in which sliding friction force between each tooth pair, backlash and
2
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time varying mesh stiffness was considered. The complex nonlinear phenomena such as periodic response, chaos and bifurcation
in system were investigated numerically.

Chang-Jian et al. [7] investigated dynamic responses of a single-degree-of freedom spur gear system with and without nonlin-
ear suspension and found periodic and chaotic dynamics in this system. In addition, they [8] analyzed dynamics of a gear pair
system supported by journal bearings. Nonlinear suspension effect, nonlinear oil film and gear mesh force are also considered.
The possibility of existence of periodic, sub-harmonic and chaotic responses for some regions of the parameters were studied
using numerical integration.

From the above mentioned references, one finds that non-periodic or chaotic motions have been widely found in nonlinear
gear systems. Chaotic motion as unusual and unpredictable behavior has been considered as an undesirable phenomenon in vi-
brations of a gear system. Though the previous studies investigated the existence of bifurcation and chaos in gear dynamics,
there is no attention to control these phenomena. Therefore, in order to design and develop an optimal gear transmission system,
it is important to control or eliminate these phenomena.

Chaotic behavior is a very interesting nonlinear phenomenon, and it has been found in a large number of nonlinear science
and engineering systems. In general, chaos is an unwanted behavior and as a consequence a major attention has received in re-
cent years, to control and/or eliminate the chaos in these systems. Design and proper choice of system parameters are the basic
ideas for suppression or elimination of the chaotic behavior. It is clear that for each parameter, there are some boundaries and
limits. Beyond this area is causing serious influence on the system performance and the design is not possible. In such conditions
the methods of controlling chaos are proposed. Generally, these methods have been classified in two main groups. First of them is
to stabilize a determined unstable periodic orbit which is embedded in a chaotic attractor, usually achieved by the use of feedback
control method [9–14]. Second is to eliminate the chaotic behaviors by applying an additional periodic excitation force or by
perturbing a system parameter with small harmonic identified as non-feedback control method [15–21]. To control a determined
unstable periodic orbit by feedback control methods, the OGY control approach being the most representative was introduced by
Ott, Grebogi and Yorke [22]. This method does not require the information of the system equations, but one must determine the
unstable periodic orbits and require performing several calculations to create the control signal. The feedback control methods
seem to be efficient but have some difficulties in practical experiments.

In such cases, non-feedback control methods might be more useful and can be easily realized in practical experiments. There
are numerous experimental and numerical examples of converting chaos to a periodic motion by applying an additional excitation
force or by perturbing a system parameter. This method requires information of the system equations to create control forces. It
does not require continuous tracking of the system state, and also, it is more robust to noise.

The main objective of this study is to develop a practical model of gear system for controlling and suppressing the chaotic be-
havior. To this end, a nonlinear dynamic model of a spur gear pair with backlash and static transmission error often investigated
in the literature [23–25], is formulated. Non-feedback control method is used to control chaos by applying an additional excitation
torque to the driver gear. The parameter space regions of the control excitation where homoclinic chaos can be eliminated are
obtained analytically by generalization of Melnikov approach, which is one of the few analytical methods to study the occurrence
of homoclinic bifurcation and transition to chaotic behavior in the nonlinear systems [25–33].

The organization of the paper is as follows. In Section 2, a nonlinear dynamic model of a spur gear pair including the backlash
and static transmission error is formulated. The analyzing of the unperturbed system and the conditions for existence of chaotic
behavior in terms of homoclinic bifurcation by using Melnikov analysis are performed in Section 3. In Section 4, the control model
is described. The parameter space regions of the control excitation for elimination of chaos are investigated. In Section 5, numer-
ical simulation results are performed to verify the theoretical analysis and show effectiveness of the proposed control system.
Finally, the conclusions are presented in Section 6.
Fig. 1. Schematic of the gear model.
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2. Model description and equation of motion

In this paper, a nonlinear dynamic model of a gear pair system supported by rigid mounts including the backlash and static
transmission error is investigated. In this model, the gear mesh is represented as a pair of rigid disk connected by a spring damper
set along the line of action, as shown in Fig. 1. The backlash function fh, is usually used to represent gear clearances, and the
displacement function e(t), is also applied at the gear mesh interface to represent static transmission error. Considering θp and
θg as the torsional displacements of pinion and gear, the equations of torsional motion of the 2-degree of-freedom model are
given as
Ip
d2θp
dt2

þ rpcm rp
dθp
dt

−rg
dθg
dt

−
de tð Þ
dt

� �
þ rpkm f h rpθp−rgθg−e tð Þ

� �
¼ Tp ð1� aÞ
Ig
d2θg
dt2

−rgcm rp
dθp
dt

−rg
dθg
dt

−
de tð Þ
dt

� �
−rgkm f h rpθp−rgθg−e tð Þ

� �
¼ −Tg : ð1� bÞ
In these equations, rp and rg, are the base circle radius of the pinion and the gear. Ip and Ig are the mass moment of inertia of
the gears. km and cm represent the gear mesh stiffness and damping coefficients. Additionally, external torques Tp and Tg act on the
pinion and the gear, respectively. Eqs. (1-a) and (1-b) can be reduced into Eq. (2) by defining a new variable ~x ¼ rpθp−rgθg−eðtÞ,
which is the difference between the dynamic and static transmission error.
m
d2~x
dt2

þ cm
d~x
dt

þ km f h ~xð Þ ¼ F̂m þ F̂e tð Þ ð2Þ
Where
m ¼ IpIg
Igr

2
p þ Ipr

2
g
; F̂m ¼ m

Tprp
Ip

þ Tgrg
Ig

 !
; F̂e tð Þ ¼ −m

d2e tð Þ
dt2

:

Here, m is the equivalent mass representing the total inertia of the gear pair, F̂m is the average force transmitted through the
gear pair, and the internal excitation term F̂eðtÞ arises from the static transmission error. The gear pair has a clearance equal to 2b
along the line of action, which may be designed for better lubrication and reduction of interference, or caused by wear and
mounting errors. The backlash function fh, is a nonlinear displacement function and can be expressed as
f h ~xð Þ ¼
~x− 1−αð Þb b b ~x
α~x −b ≤ ~x ≤ b
~xþ 1−αð Þb b b−~x

8<
: : ð3Þ
The static transmission error due to any manufacturing errors and teeth deformations from perfect involute form is one of the
most important sources of vibration and noise in gear systems which also affect all gearbox elements. Since the mean angular
velocities of the gears are constant, the static transmission error can be approximated as a periodic function, its fundamental fre-
quency is the meshing frequency [23]. So, the static transmission error is considered as harmonic with e(t) = e(t + 2π/ωe) =
e cos(ωet + ϕe). A non-dimensional form of the above equation can be obtained by defining
x ¼ ~x=b; ωn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
km=m

q
; τ ¼ ωnt; Ωe ¼ ωe=ωn ;

~μ ¼ c=2mωn;
~Fm ¼ F̂m=bkm; ~Fe ¼ e=b :
So, the dimensionless equation of the gear pair can be written as
d2x
dτ2

þ 2~μ
dx
dτ

þ f h xð Þ ¼ ~Fm þ ~FeΩ
2
e cos Ωeτ þ ϕeð Þ ð4Þ
where
f h xð Þ ¼
x− 1−αð Þ 1 b x
αx −1≤ x ≤ 1
xþ 1−αð Þ 1 b−x

8<
: :
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fh is a stepwise linear function and a 3-order approximation polynomial is recommended to express this function. For α = 0,
the approximated function can be expressed as: fh(x) = −0.1667x + 0.1667x3. Substituting fh into Eq. (4), the equation of motion
can be obtained as
d2x
dτ2

þ 2~μ
dx
dτ

þ −0:1667xþ 0:1667x3
� �

¼ ~Fm þ ~FeΩ
2
e cos Ωeτ þ ϕeð Þ : ð5Þ
Eq. (5) presents a generalized dynamic model of a spur gear pair system. The proposed study is focused on the prediction and
control of the homoclinic bifurcation and chaos in this equation.

3. Global bifurcation and chaos prediction for gear model equation

Global homoclinic bifurcation is the occurrence of transverse intersection of the stable and unstable manifolds of the
homoclinic orbits and defined as a criterion for prediction of the chaotic behavior. The Melnikov analysis is one of the few ana-
lytical methods to study the global bifurcation of the system and provides the estimate in the parameter space for existence of the
chaos in nonlinear systems [28–33]. In this section, the conditions for existence of the chaotic behavior in terms of homoclinic
bifurcation are performed by using Melnikov analysis. In order to apply this technique and carry out this study, the homoclinic
orbits, stable and unstable manifolds of the unperturbed system are derived. The damping term, the average force, and also the
excitation term are considered as small perturbations to the Hamiltonian system. Thus, considering ε as a small parameter and
scaling ~μ ¼ εμ , ~Fm ¼ ε f m, and ~Fe ¼ ε f e, the perturbed Eq. (5) can be rewritten as
x
� ¼ y
y
� ¼ −2εμ x

� þ 0:1667x−0:1667x3
� �

þ εð f m þ f eΩ
2
e cos Ωeτ þ ϕeð Þ :

ð6Þ
For the unperturbed system, when ε = 0, the differential Eq. (6) is simplified to
x
� ¼ y
y
� ¼ 0:1667x−0:1667x3
� �

¼ ax−cx3
� �

:
ð7Þ
The unperturbed system Eq. (7) is a planar Hamiltonian system with a Hamiltonian function as H(x, y) = 0.5y2 −
0.5ax2 + 0.25cx4. The unperturbed system has three fixed points. From the linear stability analysis, ðþ ffiffiffiffiffiffiffiffi

a=c
p

;0Þ and ð− ffiffiffiffiffiffiffiffi
a=c

p
;0Þ

are centers, and (0, 0) is a saddle point. The saddle point is connected to itself by two homoclinic orbits, and can be obtained
as
xh τð Þ; yh τð Þð Þ ¼ �
ffiffiffiffiffiffi
2a
c

r
sech

ffiffiffi
a

p
τð Þ� �

; ∓

ffiffiffi
2
c

r
a � sech

ffiffiffi
a

p
τð Þ� �

tanh
ffiffiffi
a

p
τð Þ� � !

ð8Þ
where τ−τ0 ¼ τ. Stable and unstable manifolds of the homoclinic orbits for the unperturbed system are shown in Fig. 2.
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Fig. 2. Stable and unstable manifolds of the homoclinic orbits.
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When the perturbation terms are added to the unperturbed system, the closed homoclinic orbits break, and may intersect
manifolds. The Melnikov method measures the distance between the stable and unstable manifolds of the perturbed system in
the Poincare section, and provides the estimate for transverse intersection of the stable and unstable manifolds of the homoclinic
orbits, and hence the occurrence of homoclinic bifurcation and transition to chaotic behavior. According to this theory, the
conditions for transverse intersection of the stable and unstable manifolds are given by M(τ0) = 0 and dM(τ0)/dτ0 ≠ 0, where
M(τ0) is the Melnikov function and defined as follows [26,27]
Mð

⇒

M τ0ð Þ ¼
Zþ∞

−∞

p Xh τ−τ0ð Þð Þ ∧ qðXh τ−τ0ð Þ; τÞdτ ¼
Zþ∞

−∞

p Xh τð Þð Þ ∧ qðXh τð Þ; τ þ τ0Þdτ : ð9Þ
In this equation, Xh = (xh, yh) is homoclinic orbit. p and q represent the vector field and the perturbed vector of Eq. (6) given
by
p x; yð Þ ¼ y; ax−cx3
� �

q x; y; τð Þ ¼ ð0;−2μ x
� þ f m þ Ω2

e f e cos Ωeτ þ ϕeð Þ :
ð10Þ
Using Eqs. (8) and (10) to carry out integration of Eq. (9), the Melnikov integral can be rewritten as
τ0Þ ¼
Zþ∞

−∞

yhð−2μyh þ f m þΩ2
e f e cos Ωe τ þ τ0ð Þ þ ϕeð ÞÞdτ

M τ0ð Þ ¼
Zþ∞

−∞

∓

ffiffiffi
2
c

r
a� sech

ffiffiffi
a

p
τ

� �
tanh

ffiffiffi
a

p
τ

� � !
−2μ

�
∓

ffiffiffi
2
c

r
a� sech

ffiffiffi
a

p
τ

� �
tanh

ffiffiffi
a

p
τ

� ��þ f m þ f eΩ
2
e cos Ωe τ þ τ0ð Þ þ ϕeð Þ

 !
dτ

ð11Þ
After evaluation of the above integral, the Melnikov function is given by
M� τ0ð Þ ¼ −
8
3
μ að Þ2
c
ffiffiffi
a

p �
ffiffiffi
2
c

r
f eΩ

3
eπ � sech

πΩe

2
ffiffiffi
a

p
� �

sin Ωeτ0 þ ϕeð Þ : ð12Þ
Using this equation, the condition for transverse intersection of the stable and unstable manifolds is obtained as
−
8
3
μ að Þ2
c
ffiffiffi
a

p
					

					 b
ffiffiffi
2
c

r
f eΩ

3
eπ � sech

πΩe

2
ffiffiffi
a

p
� �

:

					
					 ð13Þ
From this relation, the threshold values for the occurrence of homoclinic bifurcation and transition to chaotic behavior are
obtained.

4. Controller design based on chaos control concept

This section presents the design of a practical control model for a gear system for which homoclinic bifurcation and consequently
chaotic behavior can be eliminated. To this end, a non-feedback control approach is used to control chaos by applying an additional
excitation torque to the driver gear. For the practical implementation of this concept, the gear body and corresponding shaft are
Fig. 3. Schematic of the controlled gear model including the actuator.
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connected via several actuators for one set of gear–shaft coupling, as shown in Fig. 3. These actuators can transmit themean torque and
simultaneously generate additional excitation torque. The suitable parameter spaces for the additional excitation, where homoclinic
chaos can be eliminated, are obtained analytically by generalization of Melnikov approach. The dynamic equations of this system
including the actuator can be rewritten as
Ip
d2θp
dt2

þ rpcm rp
dθp
dt

−rg
dθg
dt

−
de
dt

� �
þ rpkm f h rpθp−rgθg−e tð Þ

� �
¼ Tp þ Up tð Þ ð14� aÞ
Ig
d2θg
dt2

−rgcm rp
dθp
dt

−rg
dθg
dt

−
de
dt

� �
−rgkm f h rpθp−rgθg−e tð Þ

� �
¼ −Tg : ð14� bÞ
The additional external excitation Up(t) is the chaos elimination excitation and is considered as harmonic with Up(t) =
Up cos(ωpt + ϕp). Where Up, ωp, and ϕp are the amplitude, frequency, and phase of the excitation term, respectively. Similar
to Eq. (1-a to 1-b), the vibration Eq. (14-a to 14-b) can be simplified as
m
d2~x
dt2

þ cm
d~x
dt

þ km f h ~xð Þ ¼ F̂m þ F̂e tð Þ þ F̂p cos ωpt þ ϕp

� �
: ð15Þ
Where F̂p ¼ mrpUp=Ip. Further, by defining the dimensionless excitation frequency and amplitude as Ωp ¼ ωp=ωn; ~Fp ¼
F̂p=bkm and also considering the dimensionless parameters defined in Eq. (4), the following equation is obtained
d2x
dτ2

þ 2~μ
dx
dτ

þ f h xð Þ ¼ ~Fm þ ~FeΩ
2
e cos Ωeτ þ ϕeð Þ þ ~Fp cos Ωpτ þ ϕp

� �
: ð16Þ
The amplitude of excitation term is considered as weak perturbations as ~Fp ¼ ε f p. Similar to Eq. (6), the Melnikov function is
obtained as
M τ0ð Þ ¼
Zþ∞

−∞

yhð−2μyh þ f m þΩ2
e f e cos Ωe τ þ τ0ð Þ þ ϕeð Þ þ f p cosðΩp τ þ τ0ð Þ þ ϕpÞÞdτ

⇒M τ0ð Þ ¼
Zþ∞

−∞

∓

ffiffiffi
2
c

r
a� sech

ffiffiffi
a

p
τ

� �
tanh

ffiffiffi
a

p
τ

� � !
ð−2μ ∓

ffiffiffi
2
c

r
a� sech

ffiffiffi
a

p
τ

� �
tanh

ffiffiffi
a

p
τ

� � !
…

…þ f m þ f eΩ
2
e cos Ωe τ þ τ0ð Þ þ ϕeð Þ þ f p cosðΩp τ þ τ0ð Þ þ ϕpÞÞdτ

ð17Þ
After evaluating the above integral, the Melnikov function can be presented as
M� τ0ð Þ ¼ A� B sin Ωeτ0 þ ϕeð Þ � C sin Ωpτ0 þ ϕp

� �
ð18Þ
with
A ¼ −
8
3
μ að Þ2
c
ffiffiffi
a

p ; B ¼
ffiffiffi
2
c

r
f eΩ

3
eπ � sech

πΩe

2
ffiffiffi
a

p
� �

; C ¼
ffiffiffi
2
c

r
f pΩpπ � sech

πΩp

2
ffiffiffi
a

p
� �

:

ffiffiq

Compared with Eq. (12), the control excitation term� 2

c f pΩpπ � sechðπΩp

2
ffiffi
a

p Þ sinðΩpτ0 þ ϕpÞ appears in the Melnikov function.
In the following, this function will be used to establish the chaos elimination results. The objective is to choose the control param-
eter values of fp, Ωp, and ϕp such that the chaotic behavior in primary system be eliminated.

As mentioned in the previous section, in the absence of chaos elimination excitation, Eq. (13) provides a condition for trans-
verse intersection of the stable and unstable manifolds, and hence occurrence of chaotic behavior. Now, the additional excitation
is added on the system, such that the Melnikov function always has the same sign. In the present case, a necessary condition for
M±(τ0) to be the same sign for all τ0 is obtained as [15]
Cj j N Bj j− Aj j ¼ Cminffiffiffi
2
c

r
f pΩpπ � sech

πΩp

2
ffiffiffi
a

p
� �					

					 N
ffiffiffi
2
c

r
f eΩ

3
eπ � sech

πΩe

2
ffiffiffi
a

p
� �					

					 − −
8
3
μ að Þ2
c
ffiffiffi
a

p
					

					 :
ð19Þ
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The optimal excitation phase (ϕp = ϕoptimum), which corresponds to the widest amplitude range for the chaos elimination, is
obtained for the situation in which the maximum (maximum for A b 0 and minimum for A N 0) of A ± B sin(Ωeτ0 + ϕe) and
∓ Cmin sin(Ωpτ0 + ϕoptimum) occur at the same τ0. In the following, B and C will be considered to be the same sign and also as
a positive term. It is clear that changing this sign is equivalent to shift the phase as ϕe → ~ϕe þ π . In this case, for Ωp =
mΩe, (m = 1, 2, 3, …), two different sets of the optimal values of excitation phase are obtained as
(a
f or Mþ andA b 0
� �

or M− andA N 0ð Þ⇒ ϕoptimum ¼

π þ ϕeð Þ f or m ¼ 4n−3ð Þ
π
.

2
þ ϕe

� �
f or m ¼ 4n−2ð Þ

0þ ϕeð Þ f or m ¼ 4n−1ð Þ
3π
.

2
þ ϕe

� �
f or m ¼ 4nð Þ

8>>>><
>>>>:

f or Mþ andA N 0
� �

or M− andA b 0ð Þ⇒ ϕoptimum ¼

π þ ϕeð Þ f or m ¼ 4n−3ð Þ
π
.

2
þ ϕe

� �
f or m ¼ 4nð Þ

0þ ϕeð Þ f or m ¼ 4n−1ð Þ
3π
.

2
þ ϕe

� �
f or m ¼ 4n−2ð Þ :

8>>>><
>>>>:

ð20Þ
Moreover, for the optimal excitation phase the upper threshold value of excitation amplitude can be easily obtained, for which
M±(τ0) have the same sign for all τ0. Also, the Melnikov function indicated that the excitation phase can be changed in allowed
interval as [ϕoptimum − Δϕmax , ϕoptimum + Δϕmax], such that the Melnikov function always have the same sign. Δϕmax, is the max-
imum deviation of excitation phase from optimal phase. It is clear that the maximum deviation of excitation phase is obtained
based on the nearest zeros of A ± B sin(Ωeτ0 + ϕe) and ± C sin(Ωpτ0 + ϕoptimum) given by
Δϕmax ¼ Ωp τ20−τ10
� �

¼ m arcsin
A
B
−ϕe

� �
−kπþ ϕoptimum : ð21Þ
The value of τ01 and τ02 is the nearest zeros of ± C sin(Ωpτ0 + ϕoptimum) and A ± B sin(Ωeτ0 + ϕe), respectively. For an arbitrary
deviation of excitation phase from ϕoptimum (0 b Δϕ b Δϕmax), one can easily obtain the allowed amplitude value of Cmax(bCmax at
ϕoptimum), and Cmin(NCmin at ϕoptimum). Therefore, there exist certain suitable excitation phase and amplitude intervals for control-
ling the chaotic behavior in a gear system.

5. Simulation results and discussion

In this section, numerical simulations are presented to demonstrate the accuracy of the theoretical predictions, and also to
investigate the performance of the proposed control system to eliminate the homoclinic bifurcation and chaos in nonlinear
gear systems. As mentioned in Section 3, in the absence of chaos elimination excitation, Eq. (13) provides the conditions for
which the Melnikov function changes its sign (to have simple zeros). Fig. 4(a) shows the Melnikov threshold surface for the
occurrence of homoclinic bifurcation in the parameter space (μ, fe, Ωe). In the parameter region below the threshold surface,
both M+(τ0) and M−(τ0) change their sign. As a result, in this region transverse intersection of the stable and unstable manifolds
occurs, appearance of chaos is expected.
) (b)

Fig. 4. (a) Threshold surface in the parameter space (μ, fe, Ωe), (b) threshold curve in the (μ, Ωe) plane for fe = 28.
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According to Eq. (13) and by choosing μ as the control parameter, the condition for transverse intersection of the stable and
unstable manifolds is obtained as
μ b
3
4a

ffiffiffiffiffiffi
c
2a

r
f ej jπΩ3

e � sech
πΩe

2
ffiffiffi
a

p
� �

; f or μ N 0ð Þ : ð22Þ
The critical values of μ versus frequency Ωe, at fe = 28 are plotted in Fig. 4(b). In the region below the threshold curve the
system has transverse homoclinic orbits and resulting occurrence of the chaotic behavior.
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In order to verify the analytical predictions, the bifurcation and maximum Lyapunov exponent diagrams are exhibited
corresponding to some control parameters. Fig. 5(a) presents the bifurcation diagram of the system Eq. (5) for control parameter
~μ (~μ ¼ εμ) at fm = 1, Ωe = 0.5, fe = 28, ε = 0.01 and initial conditions x = 0.01 and ẋ = 0.01. Periodic and chaotic behaviors are
clearly visible at some values of control parameter, when ~μ is increased from 0 to 0.25. Observe that the gear system exhibits the
period doubling bifurcation and also transition to the chaotic responses at low values of ~μ , i.e., ~μ b 0:101. The corresponding
maximum Lyapunov exponent diagram is also plotted in Fig. 5(b). The positive Lyapunov exponents are characteristic of chaotic
behaviors. As expected, one can see a good agreement between the bifurcation diagrams and the maximum Lyapunov exponent
diagram. According to Fig. 4(b), in Ωe = 0.5, the theoretical prediction for the occurrence of homoclinic bifurcation is obtained at
μ ≅ 10.06, which is in good agreement with the numerical simulation results.

Now the system parameters are chosen as fe = 28, Ωe = 0.5, fm = 1, and μ = 8, and controlling of chaotic behavior for this
case is considered. According to Fig. 4, it can be observed that this point situates below the threshold value and corresponds to the
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Fig. 8. Uncontrolled and controlled systems at fp = 4, ϕp = π, (a) Mþ
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τ0 , and (c) time response.
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chaotic motion (see Fig. 5). The numerical simulation of Eq. (5) is performed for this point. The chaotic motion is identified from
the time history, Poincare section and Fourier spectra, as shown in Fig. 6.

Now, the additional excitation Up(t) is added on the chaotic system. When Up(t) affects the system, the control excitation term

�
ffiffi
2
c

q
f pΩpπ� sechðπΩp

2
ffiffi
a

p Þ sinðΩpτ0 þ ϕpÞ, appears in the Melnikov function. The objective is to choose the control parameter values

of fp, Ωp, and ϕp, such that the chaotic behavior in primary system be eliminated. The frequency of the excitation term is chosen as
ωp = ωe in the following. According to Eq. (20), the optimal value of excitation phase is ϕoptimum = π + ϕe. Thus, for this optimal
phase the lower and upper threshold values of excitation amplitude are obtained as
Cmin ¼ Bj j− Aj j ¼
ffiffiffi
2
c

r
f p minð ÞΩpπ � sech

πΩp

2
ffiffiffi
a

p
� �

¼ 2:1842⇒ f p minð Þ ¼ 1:4
Fig. 10. (a) Bifurcation diagram, and (b) corresponding maximum Lyapunov exponent diagram for control parameter ~Fp at ϕp = π.
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and
x

(a)
Cmax ¼ Bj j þ Aj j ¼
ffiffiffi
2
c

r
f p maxð ÞΩpπ � sech

πΩp

2
ffiffiffi
a

p
� �

¼ 19:6046⇒ f p maxð Þ ¼ 12:6 :
Thus, for ϕoptimum = π + ϕe, the maximum theoretical interval of excitation amplitude is approximately fp = [1.4 12.6]. By
using Eq. (21), the maximum deviation of excitation phase from ϕoptimum is obtained as
Δϕmax ¼ Ωp τ20−τ10
� �

¼ arcsin
A
B
¼ 0:926 :
The maximum allowed interval of excitation phase is now ϕp = [π + ϕe − 0.926 π + ϕe + 0.926 ]. For each value of ϕp be-
longing to such interval there is certain suitable amplitude. The suitable amplitude and phase intervals for the control excitation
F Δ(b)

x

Fig. 12. Bifurcation diagram for: (a) control parameter ~Fp at ϕp = π + 1.1, (b) control parameter Δϕ at fp = 14.
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term are shown in Fig. 7 (white region). By selecting the additional excitation belonging to this interval, chaotic motion can be
controlled. To illustrate the accuracy of the analytical predictions, the time responses and the Melnikov function for the parame-
ters ϕe = 0, Ωp = 0.5 and two values of fp and ϕp, are shown in Figs. 8 and 9. Fig. 8(a) and (b) shows the Melnikov function
associated with the values fp = 4, and ϕp = π. After the additional excitation is added on the system, Melnikov functions do
not change their sign, for which elimination of chaotic behavior is expected. The time history of this point is given in Fig. 8(c).
According to this figure, as controller is implemented at τ = 1000, chaotic motion is vanished and lead to the appearance of
periodic response. Also, Fig. 9 demonstrates controlling the chaos for the control excitation parameters fp = 10, ϕp = π + 0.5.
Observe that after the additional excitation is added on the system, the Melnikov functions do not change sign (Fig. 9(a) and
(b)), and thus elimination of chaos is occurred (Fig. 9(c)).

In the following, the dynamic behaviors of system are shown using bifurcation and maximum Lyapunov exponent diagrams
for some system parameters. The theoretical intervals are compared with the numerical intervals of chaos elimination obtained
using the bifurcation diagrams and the maximum Lyapunov exponent diagrams. According to Fig. 7, when the value of ϕp is
ϕoptimum, the allowed amplitude interval is ~Fp ¼ ½0:014 0:126�, and hence corresponds to the widest amplitude interval for the

chaos elimination excitation. Fig. 10(a) presents the bifurcation diagram for control parameter ~Fp ¼ ε f p at Ωe = Ωp = 0.5,
fm = 1, μ = 8, fe = 28, ε = 0.01 and ϕp = π. Fig. 10(b) presents the corresponding maximum Lyapunov exponent diagram
for these values of the parameters. From these figures, the numerical interval of chaos elimination is [0.013 0.13] and confirms
the theoretical prediction. The bifurcation diagram and the corresponding maximum Lyapunov exponent for control parameter
Δϕ at fp = 4, are shown in Fig. 11. The theoretical interval of Δϕ is now [−0.926 0.926], and the numerical results show the
chaos elimination interval as [−0.96 1.01]. Fig. 12(a) and (b) shows the bifurcation diagrams for control parameter ~Fp ¼ ε f p at
ϕp = π + 1.1 and for control parameter Δϕ at fp = 14, which are not in the suitable interval, chaos elimination is not expected.
The numerical simulations confirm the theoretical predictions and show the efficiency of the proposed system to control the
homoclinic bifurcation and consequently chaos elimination in a gear system.

6. Conclusion

In this paper, a practical model of gear system has been proposed to control and eliminate the chaotic behaviors. To this end,
non-feedback control method has been used to control the chaos by applying an additional excitation torque to the driver gear.
The parameter spaces of the control excitation, where homoclinic chaos can be eliminated, have been obtained analytically by
generalization of Melnikov approach. The controller performance has been validated with the numerical simulations. Numerical
simulation results show effectiveness of the proposed system to control the homoclinic bifurcation and chaos in gear system.
The proposed control system can be easily realized in practical system and can be used for design and development of an optimal
gear transmission system.
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