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Abstract This paper presents an improved general
dynamic formulation, inverse and direct dynamics, of
6-UPS Gough–Stewart parallel robot based on the vir-
tual work method. The new formulation offers a reduc-
tion in the computational time and improves accuracy
of the dynamics equations. This method allows elim-
ination of constraint forces/moments at the passive
joints from equations of motion. Since, the dynamic
formulations are derived in joint space, the concept of
direct link Jacobian matrices are employed to obtain
all rigid bodies’ twists. The direct link Jacobian matri-
ces convert the twist of the rigid bodies to actuated
joints velocities. Moreover, more accurate formula-
tion is obtained by considering the angular velocity
and acceleration vectors of the robot’s legs. In the
process of solving the direct dynamics problem, amod-
ified hybrid strategy is employed to obtain the near-
exact solution for the direct kinematics problem (DKP).
The modified hybrid strategy combines the artificial
neural network and the third-order Newton–Raphson
method. This strategy satisfies both goals to find the
nearest exact solution and reduces execution time for
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the DKP. Next, two numerical examples are presented
and the results are verified using a commercial dynam-
ics modeling software. Finally, for comparison, Euler–
Lagrange formulation is also obtained. Results indi-
cates that the proposed dynamics formulation offers a
significant improvement in both accuracy and execu-
tion time.

Keywords Direct dynamic analysis · Principle of
virtual work ·Modified hybrid strategy · Link Jacobian
matrix

List of symbols

B {x, y, z} Fixed coordinate frame which is atta-
ched to center of fixed platform

T {u, v, w} Moving coordinate framewhich is atta-
ched to center of moving platform, P

{F i} Local coordinate frames which is atta-
ched to ith cylinder at ith passive U-
joint

αi A constant value denotes the angle of
vector of Bai , about x-axis of frame {B}

γi Rotation angle of ith passive U-joint
about y-axis of local frame {Bi }

ψi Rotation angle of ith passive U-joint
about x-axis of local frame {Ti}

B
TR Rotation matrix to transfer a vector

defined in {T} to {B}
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B
F iR Rotation matrix to transfer a vector

defined in {F i} to {B} for ith U-joint
τϑ Arbitrary ϑ vector that is defined in

arbitrary coordinate frame {τ }
a1, . . . , a6 Distance between the center of fixed

platform and passive U-joints
b1, . . . , b6 Distance between the center of moving

platform and passive S-joints
qac1 , . . . , qac6 Translational variables for the actuated

prismatic joint
xP, yP, zP Translational variables of the tool tip,

point P
θ, ϕ, λ The Euler angles about the x-, y- and

z-axes of moving platform
e1 Center of gravity for cylindrical part of

the actuated prismatic joints
e2 Center of gravity for position of the

actuated prismatic joints
ai Position vector located on ith passive

U-joint in frame {B}
bi Position vector connecting the end-

effector to the ith passive S-joint, Si
qac
i Position vector which specifies length

of ith actuated prismatic joint
p Position vector of the tool tip, point P
q̂ac
i Unit vector along ith actuated link

r1i , r2i Position vectors located on the center
of gravity of ith actuator’s cylinder and
piston

q̇ac1 , . . . , q̇ac6 Values of prismatic actuated joints rate
ẋP, ẏP, żP Values of Cartesian velocities of the

tool tip
ωx , ωy, ωz Values of angular velocities of themov-

ing platform
ẋSi , ẏSi , żSi Values for velocities of the ith passive

S-joint, Si
q̈ac1 , . . . , q̈ac6 Values of prismatic actuated joints acc-

eleration
ẍP, ÿP, z̈P Values of Cartesian accelerations of the

tool tip
ω̇x , ω̇y, ω̇z Values of angular accelerations of the

moving platform
ẍSi , ÿSi , z̈Si Values for accelerations of the ith pas-

sive S-joint, Si
q̇ac Vector of the prismatic actuated joint

rates, {q̇ac1 . . . q̇ac6 }T
vP Cartesian velocity vector for the tip,

{vPx vPy vPz}T = {ẋP, ẏP, żP}T

ωMP Angular velocity vector of the moving
platform, {ωx ωy ωz}T

vSi Velocity vector of the ith spherical
joint, {ẋSi , ẏSi , żSi }T

ωLeg,i Angular velocity of the ith actuated link
vC.G.1 i Cartesian velocity of the mass center of

ith actuator’s cylinder
vC.G.2 i Cartesian velocity of the mass center of

ith actuator’s piston
q̈ac Vector of the prismatic actuated joint

accelerations, {q̈ac1 , . . . , q̈ac6 }T
v̇P Cartesian acceleration vector for the

tip, {v̇Px v̇Py v̇Pz}T = {ẍP, ÿP, z̈P}T
ω̇MP Angular accelerationvector of themov-

ing platform, {ω̇x ω̇y ω̇z}T
v̇Si Acceleration vector of the ith spherical

joint, {ẍSi , ÿSi , z̈Si }T
ω̇Leg,i Angular acceleration of the ith actuated

link
v̇C.G.1 i Cartesian acceleration of the mass cen-

ter of ith actuator’s cylinder
v̇C.G.2 i Cartesian acceleration of the mass cen-

ter of ith actuator’s piston
ṫMP Twist vector of the moving platform,

{vTP ωT
MP}TF i tcyl,i Twist vector of ith actuator’s cylinder

F i tpis,i Twist vector of ith actuator’s piston
ṫMP Vector of the moving platform acceler-

ation, {v̇TP ω̇T
MP}TF i ṫcyl,i Acceleration vector of ith actuator’s

cylinder,
{
F i v̇TC.G.1i

F i ω̇T
Leg,i

}T
in

{F i}
F i ṫpsi,i Acceleration vector of ith actuator’s

piston, {F i v̇TC.G.2i
F i ω̇T

Leg,i }T in {F i}
JMPi A3×6matrixwhichmaps tMP toveloc-

ity of the ith spherical joint, vSi
JMP Inverse Jacobian matrix (6 × 6matrix)

which maps tMP to q̇ac

Jωi A 3 × 6 matrix which maps tMP to
F iωLeg,i

Jv1,i A 3 × 6 matrix which maps tMP to
F ivC.G.1i

Jv2,i A 3 × 6 matrix which maps tMP to
F ivC.G.2i

Jinv,cyl,i Inverse ith link Jacobian matrix (6 ×
6matrix) which maps tMP to F i tcyl,i

Jinv,pis,i Inverse ith link Jacobian matrix (6 ×
6matrix) which maps tMP to F i tpis,i
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Jdir,cyl,i Direct ith link Jacobian matrix (6 ×
6 matrix) which maps tMP to q̇ac

Jdir,pis,i Direct ith link Jacobian matrix (6 ×
6 matrix) which maps tMP to q̇ac

wext Applied external wrench exerted to
end-effector define in {B}

fac Actuated joints forces
wMP Resultant wrench due to external

wrench and inertia of the moving plat-
form

F iwcyl,i Resultant wrench due to inertia of ith
actuator’s cylinder defined in {F i}

F iwpis,i Resultant wrench due to inertia of ith
actuator’s piston defined in {F i}

δ qac Virtual translational vector of actuated
joints

δ tMP Virtual twist vector of the moving plat-
form

δ
F i tcyl,i Virtual twist vector of ith actuator’s

cylinder defined in {F i}
δ
F i tpis,i Virtual twist vector of ith actuator’s pis-

ton defined in {F i}
mMP Mass of the moving platform
mcyl,i Mass of the ith actuator’s cylinder
mpis,i Mass of the ith actuator’s piston
g Gravitational acceleration vector defi-

ned in {B} , g = {0 0 9.81}T
BIMP Inertia matrix of the moving platform

with respect to the base frame, {B}
F i Icyl,i Inertia matrix of ith actuator’s cylinder

defined in {F i}
F i Ipis,i Inertia matrix of ith actuator’s piston

defined in {F i}

1 Introduction

The Gough–Stewart platform is a type of parallel
manipulator, which consists of a mobile platform and
a stationary base, connected to each other using six
linear actuators. The first structure of this robot with
spherical joints at both end of a leg is called 6-SPS
(Spherical–Prismatic–Spherical) Gough–Stewart plat-
form, while the second one, having a universal joint
at the base and a spherical joint at the moving plat-
form is called 6-UPS (Universal–Prismatic–Spherical)
Gough–Stewart platform. A number of studies exist
on the kinematics, dynamics and control of paral-
lel manipulators. Kinematics problems can be divided

into two different branches: direct kinematics prob-
lems (DKP) and inverse kinematics problems (IKP).
In inverse kinematics, we determine the leg lengths
given the position and orientation of the mobile plat-
form. In the direct kinematics, we determine position
and orientation of the mobile platform by giving leg
lengths. Unlike serial manipulators, the application of
inverse dynamic for parallel manipulators in control
requires the additional solution of the direct kinemat-
ics [1]. In the inverse dynamics, the desired trajec-
tory of the end-effector as well as the mass distribu-
tion of each link is given, and the required actuator
moments and/or forces necessary to generate this tra-
jectory are determined. In the direct dynamics, initial
actuated joint positions, initial actuated joint veloci-
ties, applied actuated torques, applied external forces
to end-effector, and the mass distribution of all links
are supplied, and the resulting motion of the end-
effector is determined [2–4]. Several approaches have
been employed to solve inverse dynamic of Gough–
Stewart robot including the Newton–Euler laws [5–9],
the Euler–Lagrange formulation [10–14] and the prin-
ciple of the virtualwork [15,16].Although to the best of
author’s knowledge, only two studies, Kane’s method
[17] and the Newton–Euler method [18], exists for
obtaining the direct dynamic of Gough–Stewart Plat-
form. The Newton–Euler formulation is obtained from
the free-body diagrams. The approach is not suitable
for motion simulation, as it finds the internal moments
and forces that do not affect the motion of the sys-
tem [2–4,17]. The Euler–Lagrange equations results
from the kinetic and potential energies of the sys-
tem. Euler–Lagrange equations give an independent
set of equations of motion that is good for motion
simulation; however, it requires complex calculations
of partial derivatives. The principle of virtual work
is the most efficient method for the dynamic analy-
sis of parallel manipulators. This method allows elim-
ination of all reaction forces and moments. Moreover,
one can derive the equations of motions in terms of
independent generalized coordinates. The virtual work
method is an efficient approach to derive dynamic
equations for the inverse dynamics of the Gough–
Stewart platform. However, for the direct dynamics,
the method of virtual work is not straightforward
because of the complicated velocity transform between
the joint space and task space [17]. In this study,
we present a novel method to overcome this prob-
lem.
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The direct dynamic solution requires the solution of
direct kinematics. Similar to the dynamics, there exist
many studies on the kinematics. In general, there are
two approaches, analytical and numerical, for kinemat-
ics solution. Analytical approaches exist for solving the
DKP of Gough–Stewart robots such as ‘the elimination
method’ [19–21] and ‘theGröebner basismethod’ [22–
24]. These methods are not useful for real-time control
and simulation due to the need to determine the accept-
able solution among the many available solutions [25–
28]. Moreover, in general, DKP does not admit closed-
form solutions, and therefore, numerical approaches
need to be adopted [28,29]. There exist convenient
numerical iterativemethodswhich start the search from
an initial guess and converge to one of the direct kine-
matics solutions. Newton’smethod is widely employed
in the DKP of parallel robots [28–30]. However, the
initial guess plays an important role on the number of
iterations needed for finding a solution and even the
convergence of the process. Pratik and Lam [30] pre-
sented a novel strategy for providing an appropriate
initial guess for a standardNewton–Raphson technique
using neural network.

In this paper, the principle of virtual work is
employed for the first time, for solving both the
inverse and direct dynamics of a Gough–Stewart paral-
lel manipulator. Section 2 covers the Gough–Stewart
platform description and kinematical parameters. In
Sects. 3 and 4, the moving platform velocity is dis-
cussed and concept of inverse and direct link Jacobian
matrices is used to relate the motion between joints
(active and/or passive) and actuators velocity vector.
Next, in Sect. 5, the moving platform accelerations and
in Sect. 6 the link accelerations are analyzed. Section 7
covers resultant wrench and inertia of the moving plat-
form. In Sect. 8, the dynamics equations of motion are
formulated by employing the concept of virtual work.
In Sect. 9, improved hybrid strategy is applied for solv-
ing the DKP of Gough–Stewart platform. Two exam-
ples, covering the direct and inverse dynamics, are also
presented. In the first example, a robot trajectory is
selected, and the inverse dynamics using the virtual
work is solved to obtain requiredmotor torques.Results
are next verified with commercial dynamics software.
In the second example, the input of the direct dynamics
is compared with the output of the inverse dynamics.
To do this, another trajectory is first selected and the
inverse dynamics is used to obtain the required motor
torques. These motor torques are next used as input for

the direct dynamics formulation, and a resulting MP
trajectory is obtained. This section also covers com-
parison between Lagrange–Euler formulation and the
proposed dynamics method.

2 Inverse position analysis

Consider Fig. 1a. Frame {T} and frame {B} are
attached to the moving platform, MP, and fixed base,
respectively.

The rotation matrix, B
TR, consists of three Euler

angles θ, ϕ and λ rotated about x, y and z-axes, respec-
tively and can be defined as

B
TR = R(x, θ)R(y,ϕ)R(z, λ)

=
⎡
⎣

cλ cϕ − cϕsλ sϕ
cθ sλ+ cλ sϕ sθ cλ cθ− sλ sϕ sθ −cϕ sθ
sλ sθ− cλ cθ sϕ cλ sθ+ cθ sλ sϕ cϕ cθ

⎤
⎦

(1)

where c and s represent cosine and sine, respectively.
Therefore, to express an arbitrary Tϑ , defined in {T}
to {B}, we have

Bϑ = B
TRTϑ (2)

In this paper, a leading superscript represents the coor-
dinate frame in which the vector is referenced. Addi-
tionally, bold lower and upper case lettering desig-
nate vectors and matrices, respectively. For brevity, the
superscript “B” denoting the frame {B} in which vec-
tors are defined is eliminated.

Figure 1b represents vectors and coordinate frames
used for the kinematic problem of the 6-UPS manip-
ulator. For each kinematic chain, a closed vector-loop
equation can be written as follows

ai + qac
i = B

TRTbi + p for i = 1, . . . , 6 (3)

where B
TR is a rotation matrix to transfer a vector

defined in {T} to {B}. Vectors ai , Tbi and p denote
position of point Ui relative to frame {B}, posi-
tion of point Si relative to frame {T} and the trans-
lation vector of the tip, point P, respectively. The
constraint equations, Eq. (3), is a system of nonlin-
ear algebraic equations as F(q) = 0, where q ={
qac1 , . . . , qac6 , xP, yP, zP, θ, ϕ, λ

}
. The actuated joints
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Fig. 1 a The physical
model and b a closed loop
vector for ith leg of the
6-UPS parallel robot

(a) (b)

Fig. 2 a Local coordinates
frames for ith passive
universal joint, b position
vectors and dimensional
parameters of ith actuated
limb

(a) (b)

values, qaci , and unit vectors along the actuated pris-
matic joints, q̂ac

i , can be obtained using Eq. (3) as fol-
lows

qaci =
∥∥∥BTRTbi + p − ai

∥∥∥

q̂ac
i = 1

qaci

(
B
TRTbi + p − ai

)
for i = 1, . . . , 6 (4)

As shown in Fig. 2b, the actuated prismatic joints
include two cylindrical parts. The center of gravity
positions of these parts can be calculated as follows

r1i = ai + e1q̂ac
i and r2i = ai + (

qaci − e2
)

q̂ac
i

for i = 1, . . . , 6 (5)

Furthermore, to calculate the rotation values of U-joint,
the following method is utilized. As shown in Fig. 1a,
the rotationmatrix, which transfers local moving frame
{Fi } to fixed frame {B} for ith passive U-joint, can be
obtained as

B
F iR = R (z, αi ) R (y, γi ) R (x, ψi )

=
⎡
⎣
cαicγ i −sαicψ i + cαi sγ i sψ i sαi sψ i + cαi sγ icψ i
sαicγ i cαicψ i + sαi sγ i sψ i −cαi sψ i + sαi sγ icψ i
−sγ i cγ i sψ i cγ icψ i

⎤
⎦

(6)

where αi is a constant value and is illustrated in Fig. 2a.
Using Eq. (6), we have

q̂ac
i = B

F iR
F i q̂ac

i =
⎧⎨
⎩

sαi sψ i + cαi sγ icψ i
−cαi sψ i + sαi sγ icψ i

cγ icψ i

⎫⎬
⎭

=

⎧⎪⎨
⎪⎩

q̂aci x
q̂aciy
q̂aci z

⎫⎪⎬
⎪⎭

for i = 1, . . . , 6 (7)

where F i q̂ac
i = {

0 0 1
}T
. By comparing Eqs. (4) and

(7) and solving the inverse kinematics problem as well
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2398 H. Kalani et al.

as solving Eq. (4), the rotation angles for ith passive
U-joint, i.e., γi and ψi , can be obtained as

sψi = sαi q̂
ac
i x − cαi q̂

ac
iy (8)

and

sγicψi = cαi q̂
ac
i x + sαi q̂

ac
iy and cγicψi = q̂aci z

→ tan γi =
(
cαi q̂aci x + sαi q̂aciy

)

q̂aci z
(9)

3 Inverse and direct velocity analysis
of the moving platform

The velocity vector equations are found by time differ-
entiating both sides of Eq. (3) as

q̇aci q̂ac
i + qaci ωLeg,i × q̂ac

i = vP + ωMP × bi

for i = 1, . . . , 6 (10)

where vP = {
ẋP ẏP żP

}T
and ωMP = {

ωx ωy ωz
}T

denote Cartesian velocity vector of the tip, point P, and
angular velocity vector of the MP, respectively. The
velocity of ith S-joint, point Si , can be written in terms
of translational and rotational velocities of the MP as
follows

vSi = vP + ωMP × bi for i = 1, . . . , 6 (11)

where bi = {
bix biy biz

}T
. For two arbitrary vectors

a and c, we can write

a × c = εi jka j ck (12)

where j and k are dummy indices and εi jk is the per-
mutation symbol. Therefore, to obtain inverse velocity
relation in matrix form, Eq. (11) can be rewritten as

vSi = JMPi tMP for i = 1, . . . , 6 (13)

where tMP = {
vTP ωT

MP

}T
represent the twist vector

of the MP and vSi = {
ẋSi ẏSi żSi

}T
is velocity vector

of the ith S-joint as well as JMPi is the 3 × 6 matrix
which maps the twist vector of theMP to the ith S-joint
velocity. The matrix JMPi can be found in “Appendix
1.” Furthermore, we know that

q̇aci = F ivSi · F i q̂ac
i = F i żSi for i = 1, . . . , 6 (14)

whereF i żSi is the velocity of ithS-joint along the z-axis
of local moving frame {F i} which can be represented

as the ith actuator velocity. Note that,
(
B
F iR

)−1 =(
B
F iR

)T = F i
B R. Therefore, multiplying the both sides

of Eq. (13) by F i
B R yield

F ivSi = F i
B R vSi = F i

B R JMPi tMP = F iJMPi tMP

for i = 1, . . . , 6 (15)

By comparing Eqs. (14) and (15) as well as selecting
the z component of velocity vector F ivSi , the inverse
velocity relation for ith leg of the 6-UPS parallel robot
can be obtained as

q̇aci = F i żSi = F iJMPi(3×1−6)tMP for i = 1, . . . , 6

(16)

where F iJMPi(k×1−6) is the kth row of matrix F iJMPi .
The overall inverse velocity relation for the robot can
be obtained in familiar matrix form as

q̇ac = JMP tMP (17)

where q̇ac = {q̇ac1 , . . . , q̇ac6 } represents the linear actu-
ated joint velocities. Furthermore, JMP is a 6×6 square
matrix called inverse Jacobian matrix of the robot.
Using Eq. (16), Jacobian matrix JMP can be obtained.
This matrix can be found in “Appendix 1.” Note that
the angular velocity of MP, ωMP can be specified as
function of three Euler angular velocities, θ̇, ϕ̇, and λ̇

(see “Appendix 4”).
Clearly, to obtain the overall direct velocity relation

which maps the ith actuated joint velocities, q̇aci , to the
twist vector of the MP, tMP, Eq. (17) can be rewritten
as follows

tMP = J−1
MP q̇ac (18)

where J−1
MP is a 6× 6 square matrix called direct Jaco-

bian matrix of the 6-UPS parallel robot.

4 Inverse and direct link Jacobian matrices

The velocity vector of ith S-joint in {F i} can be written
in terms of the ith actuator velocity and angular velocity
of the ith limb of the robot using Eq. (10) as follows

F ivSi = F i
B R vSi = q̇aci

F i q̂ac
i + qaci

F iωLeg,i

×F i q̂ac
i for i = 1, . . . , 6 (19)
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Furthermore, as illustrated in Fig. 2a, the ith leg of
robot can rotate around the y-axis of fixed frame {Bi }
by γi . Then it rotates around the x-axis ofmoving frame
{Ti } byψi . Since these two rotation axes are not always
perpendicular to the leg, it means that we cannot state
that the ith leg of 6-UPS robot does not have spin about
z-axis of frame {F i}. Therefore, we can claim that the
statement of F iωLeg,i = (F i q̂ac

i × F ivSi
)
/qaci com-

monly used in previous literature [15] is not always
right. This formulation is only a good approxima-
tion and does not produce the accurate results. This is
because, the angular velocity of ith leg in its local frame
{Fi }, F iωLeg,i , cannot always be obtained by using
cross product of both sides of Eq. (19) with the unit
vector F i q̂ac

i . In the present paper, the angular velocity
of ith leg is obtained using the angular velocities of the
two consecutive R-joints of the ith U-joint. Therefore,
considering Fig. 2a, we obtain the angular velocity of
ith leg in {Fi } using the ith U-joint angular velocities
as follows

F iωLeg,i = γ̇i
F i êγ i + ψ̇ F i êψi for i = 1, . . . , 6

(20)

where

F i êγ i = RT (x, ψi ) RT (y, γi )

⎧⎨
⎩
0
1
0

⎫⎬
⎭ ,

F i êψi = RT (x, ψi )

⎧⎨
⎩
1
0
0

⎫⎬
⎭ for i = 1, . . . , 6 (21)

where γ̇i and ψ̇i are the angular velocities and F i êγ i

andF i êψi represent the unit vectors along rotation axes
of the two R-joints of ith passive U-joint (see Fig. 2a).
Equation (21) canbe rewritten inmatrix formas follows

F iωLeg,i = F ikUi

{
γ̇i
ψ̇i

}

=
⎧⎨
⎩

ψ̇i

γ̇i cos(ψi )

−γ̇i sin(ψi )

⎫⎬
⎭ for i = 1, . . . , 6 (22)

where F ikUi is Jacobian matrix which maps the joint
angular velocities of ith passive U-joint to the angular
velocity of ith leg, and it can be expressed as follows

F ikUi = [F i êγ i
F i êψi

]
3×2

for i = 1, . . . , 6 (23)

To obtain values of γ̇i and ψ̇i , we can cross product both
sides of Eq. (19) with unit vector F i q̂ac

i . This yield

F i q̂ac
i ×

(F iωLeg,i × F i q̂ac
i

)

=
(F i q̂ac

i × F ivSi
)

/qaci for i = 1, . . . , 6 (24)

Consider

a × (b × c) = (a · c) b − (a · b) c and

a × b = −b × a (25)

Therefore, Eq. (24) can be simplified using Eq. (22) as
⎧⎨
⎩

F iωLeg,i x
F iωLeg,iy

0

⎫⎬
⎭ =

⎧⎨
⎩

ψ̇i

γ̇i cos(ψi )

0

⎫⎬
⎭

=
(F i q̂ac

i × F ivSi
)

/qaci for i = 1, . . . , 6 (26)

Substituting F ivSi from Eqs. (15) in (26), yields

ψ̇i = −1

qaci

(F iJMPi(2×1−6)tMP

)

γ̇i = 1

qaci cos (ψi )

(F iJMPi (1×1−6)tMP

)

for i = 1, . . . , 6 (27)

Finally, substituting values of γ̇i and ψ̇i from Eq. (27)
in Eq. (22) yield

F iωLeg,i = Jωi tMP for i = 1, . . . , 6 (28)

where Jωi is a 3×6matrix and can be found in “Appen-
dix 1.” The mass centers’ velocities of the actuators’
cylinder and piston can be derived by time differenti-
ating from Eq. (5). This yields

F ivC.G.1i = F i
B RUivC.G.1i

= e1
F iωLeg,i × F i q̂ac

i
F ivC.G.2i = F i

B RUivC.G.2i = q̇acF i q̂ac
i

+ (qaci − e2
)F iωLeg,i × F i q̂ac

i

for i = 1, . . . , 6 (29)

UsingEq. (28), termF iωLeg,i×F i q̂ac
i can be simplified

as follows

F iωLeg,i × F i q̂ac
i

= 1

qaci

[F iJMPi(1−2×1−6)

01×6

]

3×6
tMP for i=1, . . . , 6

(30)

Substituting Eqs. (30) into (29) will yield

F ivC.G.1i = Jv1,i tMP
F ivC.G.2i = Jv2,i tMP for i = 1, . . . , 6 (31)
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whereJv1,i andJv2,i are 3×6matrices and can be found
in “Appendix 1.” Equations (28) and (31) are called
the inverse link velocity relations. By combining these
equations, the overall inverse link velocity relations are
obtained as follows

F i tcyl,i = Jinv,cyl,i tMP for i = 1, . . . , 6
F i tpis,i = Jinv,pis,i tMP for i = 1, . . . , 6 (32)

where F i tcyl,i =
{
F ivTC.G.1i

F iωT
Leg,i

}T
and F i tpis,i

=
{
F ivT

C.G.2i
F iωT

Leg,i

}T
represent the twist vec-

tors for cylinder and piston of the ith robot’s leg,

respectively. Furthermore, Jinv,cyl,i = [
JT
v1,i JTωi

]T
and Jinv,pis,i = [

JT
v2,i JTωi

]T
denote the overall inverse

link Jacobian matrices which map the MP’s twist vec-
tor to the twist vectors of cylinder and piston of the
ith robot’s leg, respectively. Additionally, Eq. (18) is
used to derive the link velocity relations in terms of the
actuated joint velocities, q̇ac. Substituting Eq. (18) into
Eqs. (28) and (31) yields

F iωLeg,i = JωiJ
−1
MPq̇ac

F ivC.G.1i = Jv1,iJ
−1
MPq̇ac

F ivC.G.2i = Jv2,iJ
−1
MPq̇ac for i = 1, . . . , 6 (33)

Additionally, obtaining the twist vectors of each link
of the robot in terms of the actuated joint velocities
is necessary to derive the direct dynamics relations.
Therefore, the overall direct link velocity relations are
derived by combining Eq. (33) as follows

F i tcyl,i = Jdir,cyl,i q̇ac

F i tpis,i = Jdir,pis,i q̇ac for i = 1, . . . , 6 (34)

where, Jdir,cyl,i = Jinv,cyl,iJ
−1
MP and Jdir,pis,i = Jinv,pis,i

J−1
MP denote the overall direct link Jacobian matrices
which map the actuators’ velocity vector to the twist
vectors of cylinder and piston of the ith robot’s leg,
respectively.

5 The moving platform acceleration analysis

By taking the time derivative of both sides of Eq. (10),
the acceleration relation of the ith robot’s leg can be
derived as follows

q̈aci q̂ac
i + 2q̇aci ωLeg,i × q̂ac

i + qaci ω̇Leg,i × q̂ac
i

+ qaci ωLeg,i × (
ωLeg,i × q̂ac

i

)

= v̇P + ω̇MP × bi + ωMP × (ωMP × bi )

for i = 1, . . . , 6 (35)

where v̇P = {ẍP ÿP z̈P}T and ω̇MP = {ω̇x ω̇y ω̇z}T
denote Cartesian acceleration vector of the tip, point
P, and angular acceleration vector of the MP, respec-
tively. The acceleration of ith S-joint, point Si , can be
written in terms of velocities and accelerations of the
MP as follows

v̇Si = v̇P + ω̇MP × bi + ωMP × (ωMP × bi )

for i = 1, . . . , 6 (36)

By considering Eq. (25), the Eq. (36) can be rewritten
as

v̇Si = v̇P + ω̇MP × bi + (ωMP · bi )ωMP

− (ωMP · ωMP)bi for i = 1, . . . , 6 (37)

Therefore, Eq. (37) can be rewritten in matrix form as

v̇Si = JMPi ṫMP + NiωMP + mi for i = 1, . . . , 6

(38)

where ṫMP = {v̇TP ω̇T
MP}T and v̇Si = {ẍSi ÿSi z̈Si }T are

the acceleration vector of the MP and acceleration vec-
tor of ith S-joint, respectively. Matrix Ni and vector
mi can be found in “Appendix 1.” Additionally, the
acceleration of ith S-joint in {F i}, F i v̇Si , can be writ-
ten in terms of the velocities and accelerations of the
actuators as follows

F i v̇Si = F i
B Rv̇Si = q̈aci

F i q̂ac
i + 2q̇aci

F iωLeg,i

×F i q̂ac
i
F i ω̇Leg,i × F i q̂ac

i

+ qaci
F iωLeg,i ×

(F iωLeg,i × F i q̂ac
i

)

for i = 1, . . . , 6 (39)

By dot multiplying two sides of Eq. (39) with F i q̂ac
i ,

the inverse acceleration relation is obtained as

q̈aci = F ivSi · F i q̂ac
i − qaci �i = F i z̈Si − qaci �i

for i = 1, . . . , 6 (40)

where F i v̇Si .F i q̂ac
i = F i z̈Si and

Ωi =
{F iωLeg,i ×

(F iωLeg,i × F i q̂ac
i

)}
.F i q̂ac

i

= −
(F iω2

Leg,i x + F iω2
Leg,iy

)

for i = 1, . . . , 6 (41)

Therefore, value of Ωi can be obtained using Eqs. (28)
or (33) as function of tMP or q̇ac, respectively. Also, to
obtain value of F i z̈Si , Eq. (38) is employed as follows
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F i v̇Si = F i
B Rv̇Si = F iJMPi ṫMP + F iNiωMP

+F imi for i = 1, . . . , 6 (42)

where F iNi = F i
B RNi and F imi = F i

B Rmi . Substitut-
ing Eqs. (41)–(42) into (40) and rewriting Eq. (40) in a
familiar matrix form, we have

q̈ac = JMP ṫMP + NωMP + m (43)

Equation (43) is called the overall inverse accelera-
tion relation of the 6-UPS parallel robot where q̈ac =
{q̈ac1 , . . . , q̈ac6 }T is vector of the linear actuated joint
accelerations and N is a 6 × 3 matrix as well as m
is a 6 × 1 vector which are shown in “Appendix 1.”
Note that, the angular acceleration of theMP, ω̇MP, can
be obtained by time differentiating from Eqs. (107) or
(108). For more explanations, see “Appendix 4.” Fur-
thermore, the overall direct acceleration relation of the
robot can be obtained using Eq. (43) as follows

ṫMP = J−1
MPq̈ac − J−1

MP(NωMP + m) (44)

To obtain the overall direct acceleration relation as a
function of q̈ac and q̇ac, vectors ωMP and m must be
obtained as functions of q̇ac. Therefore, Eq. (44) can
be rewritten as

ṫMP = J−1
MPq̈ac + JCor,MPq̇ac (45)

“Appendix 2” provides the derivation of matrix
JCor,MP.

6 Link acceleration analysis

As stated earlier, since two rotation axes of the ith
robot’s leg, êγ i and êψi , are not always perpendicu-
lar to the leg, we cannot state that the ith leg of 6-UPS
robot does not have spin about z-axis of frame {Fi }
(see Fig. 2a). In other words, ω̇Leg,i · q̂ac

i is not always
equal to zero. Therefore, the angular acceleration of ith
leg in its local frame {Fi }, F i ω̇Leg,i cannot be always
obtained using cross product of both sides of Eq. (39)
with unit vector F i q̂ac

i . Similar to the previous deriva-
tion to obtain the link velocity relations, the angular
acceleration of ith leg can be obtained using the direct
time differentiation of Eqs. (20) or (22). This yield

F i ω̇Leg,i = γ̈i
F i êγ i + ψ̈i

F i êψi

+ψ̇i

(
γ̇i

F i êγ i × F i êψi

)
for i = 1, . . . , 6 (46)

Note that the direction of F i êγ i remains unchanged.
Therefore, we can write

F i ω̇Leg,i = F i k̇Ui

{
γ̇i
ψ̇i

}
+ F ikUi

{
γ̈i
ψ̈i

}

=
⎧⎨
⎩

ψ̈i

γ̈i cos(ψi ) − ψ̇i γ̇i sin(ψi )

−γ̈i sin(ψi ) − ψ̇i γ̇i cos(ψi )

⎫⎬
⎭

for i = 1, . . . , 6 (47)

where F i k̇Ui = d(F ikUi )/dt . The values of γ̇i and ψ̇i

are obtained in Eq. (27). The cross product of both sides
of Eq. (39) with unit vectorF i q̂ac

i leads to obtain values
of γ̈i and ψ̈i . “Appendix 3” represents the derivation of
γ̈i and ψ̈i . Therefore, the angular acceleration of ith leg,
F i ω̇Leg,i will be rewritten in terms of the end-effector
acceleration vector in compact form as follows

F i ω̇Leg,i = Jωi ṫMP + �ωi tMP + NωiωMP

+ mωi for i = 1, . . . , 6 (48)

The 3× 6 Matrix �ωi and 3× 3 matrix Nωi as well as
vector mωi are found in “Appendix 1.” The mass cen-
ters’ accelerations of the actuators’ cylinder and piston
can be derived by time differentiating from Eq. (29).
These yields

F i v̇C.G.1 i = e1
F i ω̇Leg,i × F i q̂ac

i + e1
F iωLeg,i

×
(F iωLeg,i × F i q̂ac

i

)

F i v̇C.G.2 i = q̈aci
F i q̂ac

i + 2q̇aci
F iωLeg,i

×F i q̂ac
i + (

qaci − e2
)F i ω̇Leg,i

×F i q̂ac
i + (

qaci − e2
)F iωLeg,i

×
(F iωLeg,i × F i q̂ac

i

)

for i = 1, . . . , 6 (49)

Therefore, Eq. (49) can be rewritten in terms of the
end-effector acceleration vector in compact form using
Eqs. (17), (28), (43) and (48) as follows

Fi v̇C.G.1 i = Jv1,i ṫMP + �v1,i tMP

+ Nv1,iωMP + mv1,i
Fi v̇C.G.2 i = Jv2,i ṫMP + �v2,i tMP

+ Nv2,iωMP + mv2,i

for i = 1, . . . , 6 (50)

The matrices �v1,i , �v2,i , Nv1,i and Nv2,i as well
as vectors mv1,i and mv2,i are presented in “Appen-
dix 1.” Equations (48) and (50) are called the inverse
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link acceleration relations. By combining these equa-
tions, the overall inverse link acceleration relations are
obtained as

F i ṫcyl,i = Jinv,cyl,i ṫMP + �inv,cyl,i tMP

+ Ninv,cyl,iωMP + minv,cyl,i

F i ṫpis,i = Jinv,pis,i ṫMP + �inv,pis,i tMP

+ Ninv,pis,iωMP + minv,pis,i

for i = 1, . . . , 6 (51)

where

Jinv,cyl,i =
[

Jv1,i

Jωi

]
, �inv,cyl,i =

[
�v1,i

�ωi

]
,

Ninv,cyl,i =
[

Nv1,i

Nωi

]
, minv,cyl,i =

[
mv1,i

mωi

]

Jinv,pis,i =
[

Jv2,i

Jωi

]
, �inv,pis,i =

[
�v2,i

�ωi

]
,

Ninv,pis,i =
[

Nv2,i

Nωi

]
, minv,pis,i =

[
mv2,i

mωi

]

for i = 1, . . . , 6 (52)

Note that, F i ṫcyl,i = {F i v̇TC.G.1 i
F i ω̇T

Leg,i }T and
F i ṫpis,i = {F i v̇TC.G.2 i

F i ω̇T
Leg,i }T represent the acceler-

ationvectors of cylinder andpistonof the ith robot’s leg,
respectively. Furthermore, obtaining the overall accel-
eration vectors of each leg in terms of q̈ac and q̈ac is
necessary to derive the direct dynamics relations. To do
this, first, substitute vectorsωMP and tMP fromEq. (18)
and vector ṫMP from Eqs. (45) into (51). Then vectors
mωi , mv1,i and mv2,i should be obtained as function
of q̇ac. This procedure is presented in “Appendix 3.”
Therefore, the overall direct link acceleration relations
can be derived as follows

F i ṫcyl,i = Jdir,cyl,i q̈ac + JCol,cyl,i q̇ac

F i ṫcyl,i = Jdir,cyl,i q̈ac + JCol,cyl,i q̇ac

for i = 1, . . . , 6 (53)

where Jdir,cyl,i and Jdir,pis,i are obtained in Eq. (34).
Also, “Appendix3” represents the derivationofJCor,cyl,i
and JCor,pis,i .

7 Rigid body dynamics

The direct dynamics problem aims to find the response
of a robot arm corresponding to given applied actua-
tors’ moments or forces. That is, given the vector of

actuated joint moments/forces, it computes the result-
ing motion of the manipulator as a function of time.
In the present paper, the principle of virtual work is
utilized to compute the actuated forces.

To obtain the equations of motion, the resultant
force/torque due to all rigid bodies can be considered.
In this subsection,we obtain the resultantwrench due to
applied external wrench for the MP and limbs as func-
tion of position,qac, velocity, q̇ac, and acceleration, q̈ac,
of the prismatic actuators. In the direct dynamics prob-
lem, the vector of initial actuated joint positions, vector
of initial actuated joint velocities and applied actuator
forces are given and the resultant position, velocity and
acceleration of the MP are obtained.

7.1 Resultant wrench due to applied external wrench
and inertia of the MP

The resultant wrench due to applied external wrench
and inertia of the MP in the base frame {B}, wMP can
be written as

wMP =
{

fMP

nMP

}
=
{

fext
next

}
+
{
mMPg
03×1

}

+
{ −mMPv̇p

−BIMP ω̇MP − ωMP × (
BIMP ωMP

)
}

(54)

where mMP and BIMP are themass and inertia matrix of
the MP, respectively. Vectors fext and next are applied
external force and moment exerted to end-effector
which are all defined in frame {B} as

fext = {
fx fy fz

}T
, next = {

nx ny nz
}T

,

BIMP = B
TR TIMP

T
BR (55)

Also, vector g is the gravitational acceleration vector
which is defined in frame {B} as

g = {
gx = 0 gy = 0 gz = 9.81

}T
(56)

We can state that

ωMP ×
(
BIMP ωMP

)
= (ωMP × I3×3)

B IMP ωMP

= (ωMP × I3×3)
BIMP J−1

MP(4−6)×6q̇ac (57)

By substituting ωMP, v̇p and ω̇MP from Eqs. (18) and
(45) into Eq. (54), vector wMP can be obtained in terms
of q̇ac and q̈ac as follows
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wMP = MMP(q)q̈ac + CMP(q, q̇)q̇ac + wgMP + wext

(58)

where matrices MMP and CMP as well as vectors wgMP

and wext are shown in “Appendix 1.”

7.2 Resultant wrench due to inertia of the cylinder
and piston of actuators

The resultant wrench due to inertia of the cylinder and
piston of ith actuators in its local frame {Fi }, F iwLeg,i ,
can be written as follows

F iwcyl,i =
{

fcyl,i
ncyl,i

}
=
{
mcyl,i

F i
B Rg

03×1

}

+
{ −mcyl,i

F i v̇C.G.1i

−F i Icyl,iF i ω̇Leg,i − F i ω̇Leg,i × (F i Icyl,i F i ω̇Leg,i
)
}

F iwpis,i =
{

fpis,i
npis,i

}
=
{
mpis,i

F i
B Rg

03×1

}

+
{ −mpis,i

F i v̇C.G.1i

−F i Ipis,iF i ω̇Leg,i − F i ω̇Leg,i × (F i Ipis,i F i ω̇Leg,i
)
}

for i = 1, . . . , 6 (59)

wheremcyl,i andmpis,i are the mass of the cylinder and
piston of the ith leg. We can state

F iωLeg,i ×
(F i Icyl,iF iωLeg,i

)

=
(F iωLeg,i × I3×3

)F i Icyl,i Jωi J−1
MP q̇ac

F iωLeg,i ×
(F i Ipis,iF iωLeg,i

)

=
(F iωLeg,i × I3×3

)F i Ipis,i Jωi J−1
MP q̇ac

for i = 1, . . . , 6 (60)

By substituting F iωLeg,i , F i ω̇Leg,i , F i v̇C.G.1,i and
F i v̇C.G.2,i from Eqs. (34) and (51) into Eq. (59), vec-
tors F iwcyl,i and F iwpis,i can be obtained in terms of
q̇ac and q̈ac as follows
F iwcyl,i = Mcyl,i (q) q̈ac + Ccyl,i (q, q̇)q̇ac + wgcyl,i

F iwpis,i = Mpis,i (q) q̈ac + Cpis,i (q, q̇)q̇ac + wgpis,i

for i = 1, . . . , 6 (61)

where matrices Mcyl,i , Mpis,i , Ccyl,i and Cpis,i as well
as vectors wgcyl,i and wgpis,i are shown in “Appendix 1.”

7.3 Equations of motion

Using principle of virtualwork, the equations ofmotion
of the robot can be expressed as

(
δqac)T fac + (δtMP)

T wMP

+
6∑

i=1

((
δ
F i tcyl,i

)T F iwcyl,i

+
(
δ
F i tpis,i

)T F iwpis,i

)
= 0 (62)

where δqac is the virtual translational vector of the actu-
ated joints and δtMP is the virtual twist vector of the
MP. Vector fac is the actuated joints forces. Further-
more, δF i tcyl,i and δ

F i tpis,i are the virtual twist vector
for cylinder and piston of the ith leg, respectively. The
virtual twist vectors inEq. (62) can be rewritten as func-
tions of δqac. Consequently, using Eqs. (18) and (34),
we have

δtMP = J−1
MPδqac,

δF i tcyl,i = Jdir,cyl,iδqac,

δF i tpis,i = Jdir,pis,iδqac for i = 1, . . . , 6 (63)

Substituting above equations as well as wMP, F iwcyl,i

and F iwpis,i from Eqs. (58) and (61) into Eq. (62) yield

(
δqac)T

(
fac +

(
J−T
MPMMP +

6∑
i=1

(
JTdir,cyl,iMcyl,i

+ JTdir,pis,iMpis,i

))
q̈ac +

(
J−T
MPCMP

+
6∑

i=1

(
JTdir,cyl,iCcyl,i + JTdir,pis,iCpis,i

))
q̇ac

+
(

J−T
MPwgMP +

6∑
i=1

(
JTdir,cyl,iwgcyl,i

+ JTdir,pis,iwgpis,i

))
+
(

J−T
MPwext

))
= 0 (64)

Since Eq. (64) is valid for any δ qac, it follows that

fac+M (q) q̈ac
3×1+C(q, q̇)q̇ac+G(q)+w = 06×1 (65)

where

M (q) = J−T
MPMMP

+
6∑

i=1

(
JTdir,cyl,iMcyl,i + JTdir,pis,iMpis,i

)

C (q, q̇) = J−T
MPCMP

+
6∑

i=1

(
JTdir,cyl,iCcyl,i + JTdir,pis,iCpis,i

)
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Fig. 3 The modified hybrid
solution

G (q) = J−T
MPwgMP

+
6∑

i=1

(
JTdir,cyl,iwgcyl,i + JTdir,pis,iwgpis,i

)

w =
(

J−T
MPwext

)
(66)

Most familiar Eq. (65) is the dynamics equation in
terms of the actuators’ velocity and acceleration vec-
tors.

8 Results and discussion

In this section, the paper’s contributions are outlined
and a discussion on improvements is presented. In
direct kinematics, we are interested to determine the
position and orientation of the mobile platform based
on giving legs length. It should be mentioned that the
direct kinematics of parallel robot, like Gough–Stewart
platform, is very complicated than inverse kinematics.
Therefore, we proposed a numerical method, like [30],
to obtain a near-exact solution. In this paper, com-
bination of neural network and third-order Newton–
Raphson method is utilized to obtain modified hybrid
strategies. This strategy is presented in Fig. 3. In
this study, we used neural network, like [30], for ini-
tial guess and proposed using higher-order Newton–
Raphson [31] to decrease the time of simulation.

For the modeling of DKP, the leg length of the 6-
UPS robot as inputs and position and orientation of the
MP as outputs of MLPANN are considered. Thus, here
qaci (i = 1, . . . , 6) as inputs and {xP, yP, zP, θ, ϕ, λ} as
output of MLPANN is investigated.

To train the network, we need to suitable data that
describe behavior of our models comprehensively. So,
in this study the inverse kinematics is utilized to obtain
these data. For this purpose, first the workspace of
Gough–Stewart robot movement is specified. Then, by
using inverse kinematics, the corresponding leg length
of number of position and orientation in this workspace
are obtained. Finally, the leg length and robot’s Carte-

Fig. 4 MLPANN architecture for direct kinematics

sian space parameters are used to input and outputs
of MLPANN, respectively. This MLPANN is shown
Fig. 4. Obviously, in this paper, two hidden layer were
chosen for MLPANN. Also, we have chosen 15 nodes
in the first layer and 20 nodes in the second layer.

As it mentioned before, we use MLPANN to fine
the appropriate initial guess. If the initial guess is cho-
sen near the acceptable solution, the Newton–Raphson
method yields very accurate results, given a sufficient
number of algorithm iterations [30,31]. For multiple
equations and variables, Newton–Raphson’s method is

Xm+1 = Xm −
(

∂F (Xm)

∂Xm

)−1

F (Xm) (67)

whereX is a vector of the variables that wewant to esti-
mate, F is a vector function which approaches zero as
the estimation of X and “m” represents iteration num-
ber.

For the robot considered in this study, we select

XT = {xP, yP, zP, θ, ϕ, λ} (68)

and

F(X) =
⎡
⎢⎣

∥∥B
TRTb1 + p − a1

∥∥− l1
...∥∥B

TRTb2 + p − a2
∥∥− l6

⎤
⎥⎦ =

⎡
⎢⎣
qac1 − l1

...

qac6 − l6

⎤
⎥⎦

(69)
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Fig. 5 a Desired trajectory
and b error output of
modified hybrid strategy
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where qaci and li are the actual and estimated length of
the ith leg, respectively. As we know, it is well known
the convergence of the Newton–Raphson technique
almost entirely depends on the selection of the initial
guess and the order of it. We can improve this method
by increasing the order of Newton–Raphson. Darvishi
and Barati [31] presented a third-order Newton-type
method to solve systems of nonlinear equations. In this
method, it is not required to calculate second deriva-
tives. Consider the nonlinear equation

F (X) = 0n×1 (70)

whereFn×1 is nonlinear function system andX is a vec-
tor of the variables we wish to estimate. They proposed
to solve the nonlinear system Eq. (70), the following
iteration scheme. Also, they showed that this method
has an order of convergence three

Xm+1 = Xm − F′(Xm)−1 (F(Xm) + F(X∗
m+1)

)
(71)

X∗
m+1 = Xm − F′(Xm)−1F(Xm) (72)

where F′ is Jacobian matrix and defined by

F′(Xm) = ∂F(Xm)

∂(Xm)
(73)

It should be mentioned that in this study, the stop cri-
teria is ‖Xm+1 − Xm‖∞ < Emax. Figure 5 shows the
desired trajectory and error between this and modified
strategy.

To investigate the performance of the modified
method, the trajectory shown in Fig. 5 is used and
divided into 201 data points. Table 1 shows the total
execution time and the average iteration number for

the conventional Newton–Raphson, and our modified
method. In this table, for the entire trajectory, the
Newton–Raphson is repeated three times using differ-
ent initial guesses.As can be seen in this table, results of
the Newton–Raphson method are significantly depen-
dent on the initial guess. Additionally, using the modi-
fied method the total execution time and average itera-
tion number are significantly improved.

In this table, “N” and “t” are the average num-
ber of iterations and execution time of the corre-
sponding method, respectively. Next, in another case
study, to cover the entire workspace, 201 random data
points in the workspace are selected. Figure 6 com-
pares the performance of the modified hybrid method
(neural networks and third-order Newton–Raphson),
the hybrid method [30] (neural networks and second-
order Newton–Raphson) and the Newton–Raphson for
four accuracy levels Emax = 10−3, 10−4, 10−5 and
10−6. Six random values for the actuator length, qaci ,
resulting in a position and orientation for the MP are
selected. This process is repeated 201 times and there-
fore covers much of the robot workspace. The dis-
tributions of the iteration numbers for the mentioned
accuracy levels are calculated. A better performance
(in terms of execution time) of the employed method
results in a distribution closer to the vertical axis.
As illustrated for all levels of accuracy, the proposed
methodology, modified hybrid method, performs faster
compared with the other two aforementioned methods.
Therefore, we can claim to have found a near-exact
solution to the DKP in a relative small number of iter-
ations. Moreover, Fig. 6 shows that for higher levels of
accuracy, the modified hybrid method has better time
performance and fewer iterations compared to the two

123

Author's personal copy



2406 H. Kalani et al.

Table 1 Performance
comparison of the modified
Hybrid and conventional
Newton–Raphson Methods

Precision
level

Stop criterion
(Emax)

The modified
hybrid method

Conventional
Newton–Raphson

1 10−12 Initial guess:
automatically
calculated by the
MLPANN

Initial
guess= [0.06,
0.12, 1.12,
0.15, 0.15,
0.11, 0.15]

N = 5.6 (average of 201 iterations)

t = 0.57s (elapsed time for the
entire trajectory)

N = 3.82 Initial guess= [0,
0, 1, 0, 0.15, 0]

N = 5.74

t = 0.61s

t = 0.26 (s) Initial guess= [0.09, 0.2, 1.2, 0.24,
0.034, 0.24]

N = 871.7

t = 32.7s

Fig. 6 Distribution of
iteration number for four
accuracy levels.
a Emax = 10−3,
b Emax = 10−4,
c Emax = 10−5,
d Emax = 10−6
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others methods. For example, in Fig. 6d, for the mod-
ified hybrid method, 93 and 7% of 201 random points
satisfy the fourth accuracy level, Emax = 10−6, in 3rd
and 4th iteration numbers, respectively. However, for
the Newton–Raphson method, 66, 30, 3 and 1% of 201
randompoints satisfy this criterion in fourth, fifth, sixth
and seventh iteration numbers, respectively.

By applying the proposed method, it was demon-
strated that replacing the conventionalNewton–Raphson
algorithm by the third-order counterpart leads to a
reduction in the number of iterations required to reach
the desired accuracy level and thus a reduction of the
DKP analysis time. By reducing the processing time
related to solving the DKP,more time can be devoted to
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Fig. 7 Computational algorithm for solving the inverse dynamics of the robot

the control calculations. Therefore, more complicated
control algorithms with better performances could be
implemented. It can be concluded that the proposed
method can decrease the iteration number and execu-
tion time in comparison with the hybrid method [30]
as well as the conventional Newton–Raphson method.
Therefore, both goals of finding the nearest exact solu-
tion and fast algorithm for the DKP are satisfied.

As stated earlier, the solution outlined in this paper
applies to a Gough–Stewart manipulator. Based on the
previous sections, a computer program is developed
using MATLAB software. Two examples with differ-
ent initial conditions and applied torques for actuators
are simulated and trajectory of this robot is calculated.
The results are verified in twoways. First, using inverse
dynamics problem, a trajectory for the Gough–Stewart
platform is supplied and requiredmotor torques as well
as the angular position of actuators as a function of time
are calculated. Therefore, the initial conditions of actu-
ator angular positions and velocities can be calculated.
If these initial conditions along with torque trajectory,
the output of the inverse dynamics problem, are sup-
plied to the direct dynamics problem, then the same
trajectory for Gough–Stewart robot must be obtained.
Secondly, the results are also verified using a commer-
cial dynamics modeling software. Figures 7 and 8 rep-
resent computational algorithm for solving the inverse
and direct dynamics of the robot, respectively.

8.1 Specification of the Gough–Stewart platform

The kinematic and dynamic parameters of manipulator
are summarized in Table 2.

8.2 Case study 1

In this section, results are verified using a commer-
cial dynamics modeling package. In this simulation,
the moving does not rotate, while the center of mass
follows a helix curve. Therefore, the trajectory is spec-
ified as

θ = ϕ = λ = 0 and p =
⎡
⎣
0.1 cos (ωt)
1 + 0.01t
0.1 sin (ωt)

⎤
⎦

where ω = 2.0 rad/s. As shown in Fig. 9, the results of
the analytical and commercial software are very close.
These results verify the correctness of our mathemati-
cal model.

8.3 Case study 2

For the second simulation, the orientation of the MP is
rotated about x, while the center of mass moves with
a sinusoidal motion. Specifically, the trajectory of the
MP is given by
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Fig. 8 Computational algorithm for solving the direct dynamics of the robot

Table 2 Physical
parameters of the 6-UPS
robot

Position vectors of U-joints and S-joints

a1 = [0.7071,−7071, 0]Tm Tb1 = [0.4830,−0.1294, 0]Tm

a2 = [0.7071, 0.7071, 0]Tm Tb2 = [0.4830, 0.1294, 0]Tm

a3 = [0.2588, 0.9659, 0]Tm Tb3 = [−0.1294, 0.4830, 0]Tm

a4 = [−0.9659, 0.2588, 0]Tm Tb4 = [−0.3536, 0.3536, 0]Tm

a5 = [−0.9659,−0.2588, 0]Tm Tb5 = [−0.3536,−0.3536, 0]Tm

a6 = [0.2588,−0.9659, 0]Tm Tb6 = [−0.1294,−4830, 0]Tm

Gravity centers of cylinder and piston for all legs

e1 = e2 = 0.5 m

Mass of the MP, cylinder and piston of all legs:

mMP = 1.5 kg mcyl = mpis = 0.1 kg

Moments of inertia of cylinder and piston of all legs
as well as the MP (in local frames)

TIMP =
⎡
⎣
0.08 0 0
0 0.08 0
0 0 0.08

⎤
⎦ (kgm2)

F i Icyl,i =
⎡
⎣
6.25 0 0
0 6.25 0
0 0 0

⎤
⎦× 10−3 (kgm2)

F i Ipis,i =
⎡
⎣
6.25 0 0
0 6.25 0
0 0 0

⎤
⎦× 10−3 (kgm2)

θ = 0.15 sin (ωt) , ϕ = λ = 0 and

p =
⎡
⎣

0.15 sin (ωt)
0.15 sin (ωt)

1.0 + 0.15 sin (ωt)

⎤
⎦

where ω = 0.5 rad/s. Figure 10 shows the link length
in inverse and direct dynamics.

As it is obvious, by reducing execution time related
to solving the dynamics equations, more time could
be devoted to control calculations. Therefore, more
complicated control algorithms with better perfor-
mances could be implemented [32]. In the Newton–
Euler method, all unnecessary constraint forces appear
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Fig. 9 Input forces at the
six prismatic joints in case
study 1. a Prismatic joint 1,
b prismatic joint 2, c
prismatic joint 3, d
prismatic joint 4, e prismatic
joint 5, f prismatic joint 6
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in the robot’s dynamic formulations. These unneces-
sary computations are not essential for control scheme
of the robot, and they increase the execution time of
the dynamic procedure. Furthermore, the Lagrange
method is a strong method and dynamic formulation
that is obtained using this method is well structured,
but having a large symbolic computation to derive the
partial derivatives of the Lagrangian, increases the total
execution time of the dynamic procedure [2,17]. Since
one of the main goals of the present paper is to reduce
execution time, a comparison between execution time
for the virtual work and Euler–Lagrange methods is
presented.

To have a reasonable comparison, Euler–Lagrange
equations are calculated in two cases. The specifica-
tion of each case is summarized in Table 3. It should

be noted that for case 2, calculating partial derivatives
of kinetics and potential energy of the robot are very
complicated. Therefore, these operations were calcu-
lated symbolically. Table 3, compares execution time
when a 4-s-long motion trajectory is for the MP as

θ = λ = 0.25 sin (2t) , ϕ = 0.15 sin (2t) and

p =
⎡
⎣

0.1 sin (2t)
0.2 sin (2t)

1.0 + 0.2 sin (2t)

⎤
⎦ t = 4 s

As indicated in Table 3, the virtual work method
is faster than the Lagrange method. Moreover, Fig. 11
compares the required forces for the six actuators.

In this study, we calculate the dynamic equation of
this robot using Euler–Lagrange in two cases to show
the better ability of the virtual work method for both
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Fig. 10 Input forces at the
six prismatic joints in case
study 2. a Prismatic joint 1,
b prismatic joint 2, c
prismatic joint 3, d
prismatic joint 4, e prismatic
joint 5, f prismatic joint 6
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accuracy and execution time (Fig. 11; Table 3). By
investigating case 1 and case 2, we can compare the
effect of the simplifications on accuracy and execution
time. As can be seen, simplification has the direct effect
on decreasing the accuracy of the solutions. However,
by employing the virtual work methods, without any

simplifications, accuracy and execution time are rea-
sonable.

As stated earlier, many methods are employed to
obtain the robot’s dynamic equations. The compli-
cated partial derivatives, as present in the Lagrange–
Euler method, are not utilized in the process of deriv-
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Table 3 Performance
comparison of
Euler–Lagrange and virtual
work

Methods Execution time (s) Description

Euler–Lagrange

Case 1 1.15 Distributed mass for MP

Without considering mass for piston and
cylinder of legs

Obtaining partial derivatives manually

Case 2 14.83 Distributed mass for MP

Distributed mass for piston and cylinder
of each link

Obtaining partial derivatives symbolically

Virtual work 0.83 Distributed mass for MP

Distributed mass for piston and cylinder
of each link

Fig. 11 Required input
forces are obtained virtual
works and Lagrange
methods. a Prismatic joint
1, b prismatic joint 2, c
prismatic joint 3, d
prismatic joint 4, e prismatic
joint 5, f prismatic joint 6
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ing the dynamic equations. Additionally, the relatively
higher volume of the symbolic computation in the
Lagrangian formulation increases the total execution
time for the dynamic procedure. Finally, the use of
free-body diagrams in Newton–Euler method results
in internal moments and forces in the motion equa-
tion that are not necessary when simulation and con-
trol applications are used [2,3,10,14,17].More specific
differences between the present work and the existing
dynamics method are

• To obtain the direct dynamics formulation using the
virtual work method requires obtaining the veloc-
ity and acceleration transformations between the
joint space and Cartesian space. This process is
rather complex and not straightforward [17]. How-
ever, in the present study, a systematic approach is
utilized in obtaining the direct dynamic equations
using the virtual work method. To do this, the con-
cept of direct link Jacobian matrices is used to map
the twist vector of all rigid bodies to the velocity
vector of actuated joints.

• Thepresent approach includes the use of 3×3 trans-
formation matrices rather than the more common
4 × 4 homogeneous Denavit–Hartenberg transfor-
mations as well as the screw theory. This will elim-
inate the calculation of passive joint velocities and
accelerations. Consequently, there is no need to cal-
culate the Jacobian matrices which invert passive
joint velocities/accelerations to active joint veloci-
ties/accelerations [3,33,34]. Moreover, in the kine-
matic equations, the passive joints variables are not
obtained, and the constraint equations are indepen-
dent of the passive joints variables. This approach
can theoretically lower the execution time of the
dynamic solution.

• In some studies, it is assumed that the leg of the
6-UPS robot does not have a spin about its lon-
gitudinal axis [13,15,35]. This incorrect assump-
tion results in inaccurate form of the angular veloc-
ity/acceleration for the robot’s leg. In the present
paper, a more precise dynamics formulation is
obtained by including the spinning of the legs, con-
sequently the inertia effect, around their axial direc-
tion.

• The solution of the direct dynamics requires the
solution of the DKP. In the present paper, in an
effort to decrease the execution time for analy-
sis of the DKP, a modified hybrid strategy is pre-

sented. The new algorithm leads to a reduction in
the required iteration numbers to reach the desired
accuracy level and subsequently a reduction of the
DKP solution time. The reduced time in solving the
kinematic equations means more time can be dedi-
cated to more advanced control algorithms. More-
over, this numerical algorithm can be applied to
any DKP for serial or parallel robots and obtain the
near-exact solutions.

• The aim of this paper is to obtain the motion
dynamic equations of the Gough–Stewart robot in a
systematic form as well as to offer a workbench on
obtaining dynamic of the parallel robots. Although,
there exist prior studies on the inverse dynamic
solution of Gough–Stewart platform, a few of them
have verified dynamic equations using other meth-
ods. In the present paper, the dynamic equations
are verified by both commercial simulation soft-
ware and Lagrange method. The other goal of the
present study is to reduce execution time in order to
implement amodel-based controller. To do this, vir-
tual workmethodology aswell as amodified hybrid
strategy is presented. The paper also compares the
execution time of the virtual work and well-known
Lagrange algorithms.

9 Conclusion

The need to study various control strategies and per-
form simulation has motivated us to study inverse and
direct dynamics problem of the Gough–Stewart par-
allel robot. A comprehensive model that takes into
account all the system parameters such as the MP,
cylinder and moving piston of each leg is considered.
The methodology involves four basic steps. First, we
investigated kinematics solutions. To solve the DKP,
an improved hybrid method is used by combining a
third-order Newton–Raphson with a Neural Network
method. An MLPANN is used to find the initial guess
for the Newton–Raphson. The modified hybrid strat-
egy obtains the near-exact solution of the DKP and is
computationally efficient. The second step included the
calculation of the direct velocity/acceleration analy-
sis using the invariant form for both active and pas-
sive joints. We showed that the common assumption
of F iωLeg,i · F i q̂ac

i = 0 is not always correct. This
assumption does not have a significant effect on the
calculated forces by the dynamic solution. Therefore,
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it is possible to use this assumption to obtain more sim-
plified equations of motion. In the third step, the con-
cept of direct link Jacobian matrix is utilized to relate
the actuator velocities with a related twist of the cor-
responding leg. In the fourth step, dynamics formula-
tion is presented. The formulation is also implemented
in MATLAB software. To demonstrate the methodol-
ogy, two numerical examples are presented. Results
are verified using a commercial dynamics modeling
package as well as the Lagrange–Euler method for an
inverse dynamics problem. Compared with the tradi-
tional Newton–Euler method and the Lagrange for-
mulation, the proposed modeling is more straightfor-
ward and systematic resulting inmore concise dynamic
equations.

Appendix 1

A1.1 Matrices for the moving platform velocity rela-
tions

The matrix JMPi in Eq. (13) is given below

JMPi = [
I3×3 −bi × I3×3

]
for i = 1, . . . , 6 (74)

where

bi × I3×3 =
⎡
⎣bi ×

⎧⎨
⎩
1
0
0

⎫⎬
⎭ bi ×

⎧⎨
⎩
0
1
0

⎫⎬
⎭ bi ×

⎧⎨
⎩
0
0
1

⎫⎬
⎭

⎤
⎦

=
⎡
⎣

0 −biz biy
biz 0 −bix

−biy bix 0

⎤
⎦ for i = 1, . . . , 6

(75)

and matrix JMP in Eq. (17) is given as follows

JMP =
⎡
⎢⎣

F1JMP1(3×1−6)
...

F6JMP6(3×1−6)

⎤
⎥⎦
6×6

(76)

A1.2 Matrices for the velocity relations of the robot’s
legs

The matrix Jωi in Eq. (28) is given below

Jωi = 1

qaci

F ikUi

[
1

cos(ψi )
F iJMPi(1×1−6)

−F iJMPi(2×1−6)

]

= 1

qaci

⎡
⎣

−F iJMPi(2×1−6)
F iJMPi(1×1−6)

− tan (ψi )
F iJMPi(1×1−6)

⎤
⎦
3×6

for i = 1, . . . , 6 (77)

and matrices Jv1,i and Jv2,i in Eq. (31) are given below

Jv1,i = e1
qaci

[F iJMPi(1−2×1−6)

01×6

]

3×6
,

Jv2,i = 1

qaci

[ (
qaci − e2

)F iJMPi(1−2×1−6)

qaci
F iJMPi(3×1−6)

]

3×6

for i = 1, . . . , 6 (78)

A1.3 Matrices for the moving platform acceleration
relations

The matrices in Eqs. (38) and (43) are given as follows

Ni = (ωMP · bi ) I3×3, mi = − (ωMP · ωMP) bi

for i = 1, . . . , 6 (79)

and

N =
⎡
⎢⎣

F1N1(3×1−3)
...

F6N6(3×1−3)

⎤
⎥⎦
6×3

,

m =

⎧⎪⎨
⎪⎩

F1m1(3) − qac1 Ω1
...

F6m6(3) − qac6 Ω6

⎫⎪⎬
⎪⎭

6×1

(80)

where F imi(k) is the kth element of vector F imi and
F iNi(k×1−3) is the kth row of F iNi .
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A1.4 Matrices for the acceleration relations of the
robot’s legs

The matrices in Eqs. (48) and (50) are given as follows

�ωi = −2
q̇aci
qaci

[
Jωi (1−2 × 1−6)

− tan (ψi ) Jωi (2 × 1−6)

]

3×6
,

Nωi = 1

qaci

⎡
⎢⎣

−F iNi (2×1−3)
F iNi (1 × 1−3)

− tan (ψi )
F iNi (1 × 1−3)

⎤
⎥⎦
3×3

mωi = 1

qaci

⎧⎪⎨
⎪⎩

−F imi(2) + qaci
F iωLeg,iy

F iωLeg,i z

F imi(1) − qaci
F iωLeg,i x

F iωLeg,i z

− tan (ψi )
F imi(1) − qaci

(
1 + 2 tan2 (ψi )

)F iωLeg,i x
F iωLeg,iy

⎫⎪⎬
⎪⎭

for i = 1, . . . , 6 (81)

and

�v1,i = −2e1
q̇aci
qac

2

i

[F iJMPi(1−2 × 1−6)

01×6

]

3×6
,

�v2,i = 2e2
q̇aci
qac

2

i

[F iJMPi(1−2 × 1−6)

01×6

]

3×6

Nv1,i = e1
qaci

[F iNi(1−2×1−3)

01×3

]

3×3
,

Nv2,i = 1

qaci

[ (
qaci − e2

)F iNi(1−2×1−3)

qaci
F iNi(3×1−3)

]

3×3

mv1,i = e1
qaci

{F imi(1−2)

qaci Ωi

}
,

mv2,i = 1

qaci

{ (
qaci − e2

)F imi(1−2)

qaci
(F imi(3) − e2Ωi

)
}

for i = 1, . . . , 6 (82)

A1.5 Matrices for equations of motion

The matrices in Eq. (58) are given as follows

MMP =
[ −mMPJ−1

vMP

−BIMPJ−1
ωMP

]

6×6

,

CMP =
[ −mMPJvCor,MP

−BIMPJωCor,MP − (ωMP × I3×3)
BIMPJ−1

ωMP

]

6×6

wgMP =
{
mMPg
03×1

}
, wext =

{
fext
next

}
(83)

where

J−1
vMP

= J−1
MP(1−3)×(1−6), J−1

ωMP
= J−1

MP(4−6)×(1−6)

JvCor,MP = JCor,MP(1−3)×(1−6),

JωCor,MP = JCor,MP(4−6)×(1−6) (84)

and matrices in Eq. (61) are given as follows

Mcyl,i =
[ −mcyl,iJv1,iJ

−1
MP

−F i Icyl,iJωiJ
−1
MP

]

6×6

,

wgcyl,i =
{
mcyl,i

F i
B R g

03×1

}

Ccyl,i =
[ −mcyl,iJvCor,cyl,i

−F i Icyl,iJωCor,cyl,i −
(F iωLeg,i × I3×3

)F i Icyl,iJωiJ
−1
MP

]

6×6

for i = 1, . . . , 6 (85)

and

Mpis,i =
[ −mpis,iJv2,iJ

−1
MP

−F i Ipis,iJωiJ
−1
MP

]

6×6

,

wgpis,i =
{
mpis,i

F i
B R g

03×1

}

Cpis,i =
[ −mpis,iJvCor,pis,i

−F i Ipis,iJωCor,pis,i − (F iωLeg,i × I3×3
)F i Ipis,iJωiJ

−1
MP

]

6×6

for i = 1, . . . , 6 (86)

where

JvCor,cyl,i = JCor,cyl,i(1−3)×(1−6),

JωCor,cyl,i = JCor,cyl,i(4−6)×(1−6)

JvCor,pis,i = JCor,pis,i(1−3)×(1−6),

JωCor,pis,i = JCor,pis,i(4−6)×(1−6)

for i = 1, . . . , 6 (87)

Appendix 2

To obtain the overall direct acceleration relation,
Eq. (44), as a function of q̈ac and q̇ac, vectors ωMP
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and m must be obtained as functions of q̇ac. Using Eq.
(18), ωMP can be obtained as function of q̈ac as below

ωMP = J−1
MP(4−6)×6

q̇ac (88)

Therefore, using Eq. (88), we can write

ωMP · ωMP = ‖ωMP‖2 = ξ1×6q̇ac (89)

where

ξ1×6 =
3∑
j=1

J−1
MP(4−6)×6 (row j)

(
q̇acTJ−T

MP(4−6)×6 (row j)

)

(90)

By substituting Eqs. (89) into (79), vectors mi and
F imi can be rewritten in terms of q̇ac as follows

mi = − (ωMP · ωMP) bi = ηi3×6 q̇ac

F imi = F iηi3×6 q̇ac for i = 1, . . . , 6 (91)

where ηi3×6 = −bi3×1ξ1×6 and F iηi3×6 = F i
B Rηi3×6 .

Also, value ofΩi , Eq. (41), can be derived as a function
of q̇ac using Eq. (33) as

Ωi = −
(F iω2

Leg,i x + F iω2
Leg,iy

)
= ζi1×6 q̇ac

for i = 1, . . . , 6 (92)

where

ζi1×6 = −
2∑
j=1

[
Jωi J−1

MP

]
(row j)

(
q̇acT

[
Jωi J−1

MP

]T
(row j)

)

for i = 1, . . . , 6 (93)

Consequently, substituting Eqs. (91) and (92) into Eq.
(80), vectorm is rewritten as a function of q̇ac as follows

m = �6×6 q̇ac (94)

where vector m is shown in “Appendix 1” and matrix
�6×6 is obtained as below

�6×6 =
⎡
⎢⎣

F1η1 3×(1−6) − qac1 ζ1
...

F6η6 3×(1−6) − qac6 ζ6

⎤
⎥⎦
6×6

(95)

Therefore, using Eq. (44), we can write

JCor, MP
(
qac, q̇ac)

= −J−1
MP

(
N J−1

MP(4−6)×6 + �6×6

)
(96)

where matrix N is shown in “Appendix 1.”

Appendix 3

A3.1 Obtaining the values of γ̈i and ψ̈i

As stated earlier, the cross product of both sides of Eq.
(39) with unit vector F i q̂ac

i leads to obtain values of γ̈i
and ψ̈i . This yields

F i q̂ac
i ×

(F i ω̇Leg,i ×F i q̂ac
i

)
= 1

qaci

(F i q̂ac
i ×F i v̇Si

)

− 2
q̇aci
qaci

(F i q̂ac
i ×

(F iωLeg,i ×F i q̂ac
i

))

−F i q̂ac
i ×

(F iωLeg,i ×
(F iωLeg,i ×F i q̂ac

i

))

for i = 1, . . . , 6 (97)

where F i q̂ac
i × (F i ω̇Leg,i ×F i q̂ac

i

) ={F i ω̇Leg,i x
F i ω̇Leg,iy 0

}T
. Using Eq. (28) yield

F i q̂ac
i ×

(F iωLeg,i ×F i q̂ac
i

)

=
[

Jωi (1−2 × 1−6)

01×6

]

3×6
tMP for i = 1, . . . , 6

(98)

where Jωi(m−n×1−6) is a matrix composed of mth to
nth rows of matrix Jωi and

F i q̂ac
i ×

(F iωLeg,i ×
(F iωLeg,i ×F i q̂ac

i

))

=
⎧⎨
⎩

−F iωLeg,iy
F iωLeg,i z

F iωLeg,i x
F iωLeg,i z

0

⎫⎬
⎭ for i = 1, . . . , 6

(99)

Also, using Eq. (42) yield

F i q̂ac
i ×F i v̇Si =

⎡
⎣

−F iJMPi (2 × 1−6)
F iJMPi (1 × 1−6)

01×6

⎤
⎦ ṫMP

+
⎡
⎣

−F iNi (2 × 1−3)
F iNi (1 × 1−3)

01×3

⎤
⎦ωMP

+
⎧⎨
⎩

−F imi (2)
F imi (1)

0

⎫⎬
⎭ for i = 1, . . . , 6 (100)

Substituting Eqs. (47) and (98)–(100) into (97), as well
as substituting values of ψ̇i and γ̇i as functions of com-
ponents of vector F iωLeg,i as shown in Eq. (22), yield

{
ψ̈i

γ̈i

}
= 1

qaci

([
−F iJMPi (2 × 1−6)
1

cos(ψi )
F iJMPi (1 × 1−6)

]
ṫMP
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+
[

−F iNi (2 × 1−3)
1

cos(ψi )
F iNi (1 × 1−3)

]
ωMP +

{
−F imi (2)
1

cos(ψi )
F imi (1)

})

− 2
q̇aci
qaci

[
Jωi (1 × 1−6)
1

cos(ψi )
Jωi (2 × 1−6)

]

3×6

tMP

−
{

−F iωLeg,iy
F iωLeg,i z

2
cos(ψi )

F iωLeg,i x
F iωLeg,i z

}
for i = 1, . . . , 6

(101)

Therefore, by substituting Eqs. (101) into (47), vector
F i ω̇Leg,i , will be rewritten in terms of the end-effector
acceleration and velocity vectors in compact form as
shown in Eq. (48).

A3.2 Obtaining the matrices JCor,cyl,i and JCor,pis,i

To derive the overall acceleration vectors of each leg
in terms of q̈ac and q̇ac, the vectors of mωi , mv1,i and
mv2,i should be obtained as function of q̇ac. Similar to
Eq. (92), we can write

F iωLeg,i m
F i

ωLeg,i n = ζmn
i 1×6 q̇ac for i = 1, . . . , 6

(102)

where

ζmn
i =

[
Jωi J−1

MP

]
(row m)(

q̇acT
[
Jωi J−1

MP

]T
(row n)

)
for i = 1, . . . , 6

(103)

By utilizing Eqs. (91), (92) and (102), the vectors
mωi , mv1,i and mv2,i from Eqs. (81) and (82) can be
obtained as functions of q̇ac as follows

mωi = �ωi q̇ac, mv1,i = �v1,i q̇ac,

mv2, i = �v2,i q̇ac for i = 1, . . . , 6 (104)

where

�ωi = 1

qaci

⎡
⎢⎣

−F iηi2×(1−6) + qaci ζ
yz
i 1×6

F iηi 1×(1−6) − qaci ζxzi 1×6

− tan (ψi )
F i ηi 1×(1−6)

− qaci
(
1 + 2 tan2 (ψi )

)
ζ
xy
i 1×6

⎤
⎥⎦
3×6

�v1,i = e1
qaci

[F iηi (1−2 × 1−6)

qaci ζ i1×6

]

3×6

,

�v2,i = 1

qaci

[ (
qaci − e2

)F i ηi (1−2 × 1−6)

qaci
(F iηi (3×1−6) − e2ζi1×6

)
]

3×6

for i = 1, . . . , 6 (105)

Therefore, the overall direct link acceleration rela-
tions can be derived in terms of q̈ac and q̇ac as shown
Eq. (53) by substituting vectors ωMP and tMP from Eq.
(18) and vector ṫMP from Eq. (45) as well as vectors
mωi , mv1,i and mv2,i from Eq. (104) into Eqs. (48) and
(50). Consequently, matrices JCor,cyl,i and JCor,pis,i can
be obtained as follows

JCor,cyl,i

=
⎡
⎣ Jv1,iJCor,MP + �v1,iJ

−1
MP + Nv1,iJ

−1
MP(4−6)×6 + �v1,i

JωiJCor,MP + �ωiJ
−1
MP + NωiJ

−1
MP(4−6)×6 + �ωi

⎤
⎦

JCor,pis,i

=
⎡
⎣ Jv2,iJCor,MP + �v2,iJ

−1
MP + Nv2,iJ

−1
MP(4−6)×6 + �v2,i

JωiJCor,MP + �ωiJ
−1
MP + NωiJ

−1
MP(4−6)×6 + �ωi

⎤
⎦

for i = 1, . . . , 6 (106)

Appendix 4

The angular velocity of the MP can be derived as func-
tion of three angular velocities contain derivatives of
three Euler angles θ, ϕ and λ, as follows

ωMP = θ̇ı̂ + ϕ̇ĵ′ + λ̇k̂′′

= θ̇ı̂ + ϕ̇R (x, θ) ĵ + λ̇R (x, θ) R (y,ϕ) k̂ (107)

where ı̂, ĵ and k̂ are unit vectors along x-, y- and z-axes
of the fixed coordinate frame {B} as well as θ̇, ϕ̇ and
λ̇ are the angular velocities about x-, y′- and z′′-axes,
respectively. Also, ĵ′ and k̂′′ are the unit vectors along
rotated y′- and z′′-axes, respectively (for more details
see Fig. 12).

Therefore, Eqs. (107), (97) can be rewritten as
matrix form as follows
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θ

φ

λ

Fig. 12 Rotation from moving frame {T} to fixed coordinate
frame {B} using Euler angles θ , ϕ and λ

ωMP =
⎡
⎣
1 0 sϕ

0 cθ −sθcϕ

0 sθ cθcϕ

⎤
⎦
⎧⎨
⎩

θ̇
ϕ̇

λ̇

⎫⎬
⎭ = U

⎧⎨
⎩

θ̇
ϕ̇

λ̇

⎫⎬
⎭ (108)

Furthermore, by time differentiating of Eqs. (107)
or (108), the angular acceleration of the MP can be
obtained as below

ω̇MP = θ̈ı̂ + ϕ̈ĵ′ + ϕ̇
(
θ̇ı̂ × ĵ′

)

+ λ̈k̂′′ + λ̇

{(
θ̇ı̂ + ϕ̇ĵ′

)× k̂′′}

= U

⎧⎨
⎩

θ̈
ϕ̈

λ̈

⎫⎬
⎭+ U̇

⎧⎨
⎩

θ̇
ϕ̇

λ̇

⎫⎬
⎭ (109)

where

U̇ =
⎡
⎣
0 0 ϕ̇cϕ
0 −θ̇sθ −θ̇cθcϕ + ϕ̇sθsϕ
0 θ̇cθ −θ̇sθcϕ − ϕ̇cθsϕ

⎤
⎦ (110)
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