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Abstract-Power quality (PQ) is one of the most significant 

issues in power monitoring systems and smart grids in recent 

years. Identifying disturbances has an important role in 

improving PQ. The intention of this paper is to improve the 

accuracy of the detection step in PQ disturbances. To do so an 

adaptive method called CEEMD (complete ensemble 

empirical mode decomposition) is used here for the first time. 

Here a new modified version of Hilbert Huang Transform 

(HHT) has been proposed for feature extraction. This version 

is combination of CEEMD and Hilbert Transform. The 

performance of the proposed method is compared with 

classical algorithms like HHT and MHHT (Modified HHT). 

Experimental results demonstrate the efficiency of the 

proposed method. 

Keywords-component; power quality; mode decomposition; 

Intrinsic mode/unctions (IMFs); disturbance. 

I. INTRODUCTION 

Electric power industry, includes electricity generation, 
transmission and distribution to the final consumer. 
Transmission from production to consumption depends on 
parameters such as production, demand and so on, which 
can leads to power quality loss. Some issues to decrease 
quality are switching large loads, welding equipment, 
capacitor switching and lightning. Lack of an appropriate 
control on these challenges can cause heavy damages to 
sensitive loads connected to the power grid, and can yields 
to customer dissatisfaction. In addition these disturbances 
occur in a fraction of a second. Therefore, recorded events 
in monitoring systems will generate huge volumes of data. 
Keeping all the generated signals in the personal computers 
is not possible. So the need of data compression is essential 
[1 ]. 

Power quality disturbances must be identified in order 
to compressing data, reduction of costs and diminution of 
adverse effects in monitoring and control system. Also 
continuous monitoring on these disturbances is a very 
important challenge [1]. Presence of disturbances can yield 
to non-stationary current and voltage signals. In non­
stationary state, the main goal is to extract information such 
as amplitude, phase angle and frequency components of the 
signals. Block diagram of PQ disturbances identification 
and detection system is shown in Fig. I. As seen in Fig.l, in 
the first step, after receiving the input signal some 
preprocessing operations such as noise removal and 
normalization is done. Then in the second step, to analyze 
the enhanced signal some signal processing techniques will 
be used. These techniques are usually categorized into two 
main classes: non-model and model-based methods [1]. 
Non-model-based methods utilize one or more 
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mathematical transforms like Wavelet Transform (WT), 
Stockwell Transform (ST) and etc .. While Model-based 
methods are applied directly to the signal. In the feature 
extraction step, some features like statistical features, PQ 
indices and etc. are extracted. Finally extracted features are 
used in order to train a classifier for classifying the 
disturbances [1]. 

This paper is organized as follows: Section II presents 
the existing methods for PQ disturbances analyzing and 
feature extraction. Section III covers proposed approach, 
feature extraction technique, classification method and 
results. Section IV concludes the paper. 

Figure 1- A block diagram of power quality recognition and 

classification system. 

II. REALATED WORK 

As mentioned before signal analysis methods for PQ 
disturbances are categorized into non-model-based methods 
and model-based methods. In the following these methods 
are described separately. 

A. Non-model-based methods 

In the non-model-based methods, the signal in time 
domain transfers into time-frequency or time-scale domain. 
According to the Hzynbrg's uncertainty principle, for a non­
stationary signal, it's not possible to have a precise and 
simultaneous presentation of time and frequency. Thus, 
obtaining infonnation about location and the time interval 
of power quality disturbances needs analytical methods that 
use information of both time and frequency or time and 
scale domains. Some of these methods are Short Time 
Fourier Transfonn (STFT), WT, ST, Gabor-Wigner 
Transform (GWT) and Hilbert-Huang Transform (HHT). 

The Fourier Transfonn (FT) is the best technique to 
analyze signals in frequancy domain. Zhang et al. [2] 
extracted five distinct time-frequency statistical features of 



PQ disturbances using RMS1 method and Discrete Fourier 
transform (DFT). Some of these features are: the per unit 
RMS value of the fundamental component, variation rate 
of the power signal's RMS values, oscillation number of 
the power signal's RMS values, THD2 factor and LHD3 
factor. Gu and Bollen [3] analyzed PQ disturbances with 
STFT and WT. Results show that performance of WT is 
better than STFT. Also Tarasiuk in [4] proposed a 
combined method based on WT and Fourier spectrum 
analysis to obtained harmonics of the input signal and 
tracks it's position. For this purpose, fIrst WT is applied on 
the input signal, then for reducing coeffIcients in each level 
of decomposition DFT is used. The fIxed window size is an 
important issue in STFT that can cause problems in 
analyzing non-stationary signals. 

The Wavelet Transform decomposes a signal into 
adequate frequency and time resolutions. In [5], Dehghani 
et al. used WT for identifIcation and classifIcation of 
disturbances. With the detail coeffIcients of fIrst level, 
locations of disturbance occurrence are obtained. Then 
normalized energy of detail coeffIcients CD2 to CD6 of 
DWT and the RMS of input signal in three phases are used 
as parameters of feature vector. Oleskovics et al. in [6] 
presented a method for PQ detection with combining detail 
coeffIcients energy of 7 level WT decomposition. 

The Stockwell Transform is a time-frequency tool 
which is the extension of WT and STFT. In [7], Huang et 
al. analyzed PQ signals by S-transform. Eighteen types of 
time-frequency features are extracted from the S-matrix. 
Then, after evaluating accuracy of classification with 
different features combinations, a selected subset with 2 
features is taken as the input of the probabilistic neural 
network. Hajian et al. in [8] presented integrated approach 
using combination of DWT and hyperbolic ST for 
extracting spectral and statistical features. Hyperbolic S­
Transform uses asymmetric Gaussian window instead of 
symmetric Gaussian window. In [9] Biswal et al. proposed 
a new method called Discrete Orthogonal S-transform 
(DOST). DOST increases computational speed of S­
transform with changing sampling rate at different 
frequencies. 

The Hilbert Huang Transform is a new data analysis 
tool which consists of two distinct processes: Empirical 
Mode Decomposition (EMD) and Hilbert Transform (HT). 
EMD decomposes input signal to Intrinsic Mode Functions 
(lMF). Each IMF represents mono-component signal inside 
the input signal. HT obtaines instantaneous amplitude and 
frequency curves for the IMFs. Shukla et al. [lO] analyzed 
PQ disturbances by HHT. In this work feature vectors are 
obtained with IMF's energy and standard deviation of 
instantaneous amplitude (IA) and frequency (IF) curves. In 
[11] a method based on mathematical morphology and 
HHT is used to detect PQ disturbances. In [12] a EMD­
based denoising is proposed for PQ evaluation. First a 
noisy signal is decomposed into N IMFs. Each IMF is 
denoised with a distinguished thereshold parameters. 
Finally HT employes to denoised IMFs for feature 
extraction. Because of EMD problems like mode mixing 
and spline fItting, [13] investigated ModifIed HTT 

I root-mean-square 
2 Total Harmonic Distortion (THD) 

182 

(MHHT) for PQ analysis. MHHT presents a new version 
of classical EMD named Ensemble Empirical Mode 
Decomposition (EEMD). EEMD adds a white noise series 
to the targeted signal and decomposes the signal with added 
white noise into IMFs. Then it obtains the (ensemble) 
means of corresponding IMFs of the decompositions as the 
fInal result. 

B. Model-based methods 

In model based methods, input signal is modeled as a 
set of sinusoidal functions with distinct amplitudes and 
frequencies. These methods are applied directly on the 
input signal. The samples of these techniques are Kalman 
fIlter and Prony method [1]. In [14] Kalman fIlter beside 
DWT are used to extract signal parameters like amplitude 
and slope. In [15] Lobos et al. presented hybrid approach 
based on DWT and Prony method for detection of PQ 
disturbances in wind turbines power plants. 

Some limitations of mentioned algorithms are as 
follows: (1) noise sensitivity of DWT and Prony, (2) time 
consuming of some curve fItting and optimization methods 
like Prony and Kalman fIlter, (3) the fIxed window width 
in STFT and Gabor Transform (yielding lack of accurate 
and simultaneous representation of time and frequency), 
(4) limitation in handling effects of zero frequency or DC 
part and slow moving of window in high frequency in S­
transform [1]. In contrast with aforementioned PQ analysis 
techniques, EMD is a self-adaptive and data driven method 
unfortunately EMD and modifIed EMD face with problems 
such as mode mixing which couldn't overcome this 
limitations perfectly. In this paper, we propose a new 
method based on EMD which can solve mode mixing 
problem. 

III. PROPOSED ApPROACH 

In this section we introuduce a proposed method based 
on CEEMD. A new ModifIed Hilbert Huang Transform 
consists of two steps: CEEMD and HT. CEEMD like 
EEMD is a noise-assisted method. Similarly the method 
decomposes the signal with N different noise realizations 
but here the results are averaged after each component is 
found. After fInding IMFs, HT obtains instantaneous 
amplitude and frequency of each IMF. CEEMD algorithm 
is explained in the next section. 

A. CEEMD 

CEEMD is an adaptive and non-linear signal processing 
method that is a modifIed version of EMD and EEMD [16]. 
Issues such as the existence of oscillations with very 
disparate amplitude in a mode, or the presence of very 
similar oscillations in different modes, called as "mode 
mixing", led to changes in EMD. Therefore to overcome 
these problems, In [17] Wu et al. presented EEMD method. 
It performs EMD over an ensemble of the signal plus 
Gaussian white noise. Idea of EEMD is based on the dyadic 
filter bank behavior of white Gaussian noise in EMD [17]. 
Independent decomposition of different version of noisy 
signals yields residual signals that have no dependency to 
each other. Therefore different realizations of noisy signal 
may produce different number of modes. To solving these 

3Lower Harmonic Distortion(LHD) 



issues, another approach of EMD called CEMMD 
proposed by Patrick Flandrin and et al. [16]. Their approach 
solves mode mixing problem in EMD and different number 
of modes in EEMD. CEEMD algorithm is summarized as 
follow [16]: 
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Therefore, the Hilbert Transformation computes 
corresponding frequency and amplitude for each extracted 
modes [18]. 

C. Feature Extraction 

Typically PQ disturbances include two categories: 
amplitude-based disturbances and frequency-based 
disturbances. Amplitude-based disturbances consist of sag, 
swell, interruption and voltage flicker and Frequency-based 
disturbances include transient and harmonic. Feature vector 
could be obtained by statistical information such as 
minimum, maximum, average, norm, standard deviation, 
skewness, kurtosis, crest factor and form factor from 
instantaneous amplitude and frequency curves of each 
mode. In Table 1, we explain mathematical equations of 
extracted features for an arbitrary vector X whose 
dimension belongs to X E RIXN. 

Table 1- Extracted features in proposed method. 
Extracted Feature 

Minimum 
Maximum 

Average 

Norm 

Standard Deviation 

Mathematical Formula 

min(X) 
max(X) 

2 1 � 2 (J"c = - L.(Xj -fJ.c) 
N j�l 

Skewness 
H;N X-II 

skewness = -2:( J c ) 3 
6N j�l (J"c 

Kurtosis k . H:{ 1 � clj -Jlc 4 } urtoslS = - -L)--) -3 
24 N j�l (J"c 

Crest Factor 

Fonn Factor 

Xpeak crest Jactor = -­
rmsc 

Jorm Jactor = � 
rmsc 

D. Least Squares Support Vector Machine (LSS VM) 

The least squares version of the SVM classifier is 
obtained by reformulating the minimization problem. 
LSSVM simplifies the problem via equality constraint and 
least squares. Therefore, unlike solving quadratic system in 
classical SVM, LSSVM solves linear equations. Hence 
LSSVM reduces computation difficulty. LSSVM 
formulation can be implicitly corresponds to a regression 
interpretation as Eq. (11) [19]: 

l IN 
min J(eo,b,e) = - II eo 112 +r-I¢} 2 2 ;�l 
s1. yJeoT lP(x;)+b]=l-e; ,Vi 

(11) 

In Eq. (11) ¢I is slack variable, r � 0 is a tuning 

parameter that regulizes the sum squared error. When r 
value is increased, it prevents increasing model complicity 
and when r value is decreased, it allows increasing 

training errors of model [19]. 

Lagrangian of Eq. (11) is defmed as Eq. (12) [19]: 

1. Generate I  different noisy realizations of original 

signal ][][][ 0 nnxnx ii  where 

),...,1(],[ Iini  are different realizations if 

white Gaussian noise and 00   

2. Decompose ),...,1(][ Iinx i  by EMD to 

obtain the first EMD mode and residue as Eq (4): 

(4) 
𝐼𝑀𝐹1 ̃ =

1

𝐼
∑ 𝐼𝑀𝐹1

𝑖[𝑛]
𝐼

𝑖=1
= 𝐼𝑀𝐹̅̅ ̅̅ ̅̅

1[𝑛] 

r1[n] = x[n] − IMF̃1[n] 
 

3. Decompose realizations of  𝑟k[𝑛] + 𝜀𝑘𝐸𝑘(𝜔𝑖[𝑛]) 

for ),...,1( Ii  until their first mode, so define

IMF )1( k as (5): 

(5) 𝐼𝑀𝐹̃𝑘+1[𝑛] =
1

𝐼
∑ (𝑟𝑘[𝑛] + 𝜀𝑘𝐸𝑘(𝜔𝑖[𝑛]))

𝐼

𝑖=1
 

4. Calculate the resiude signal for 𝑘 = 1,2, … , 𝐾 Eq 

(6): 

(6) 𝑟𝑘+1[𝑛] = 𝑟𝑘[𝑛] − 𝐼𝑀𝐹̃𝑘+1  
If residual signal can be decomposed (the residue has at 

least two exterma point), perform step 3 and 4, 𝑘 = 𝑘 + 1.

5. Calculate the final residue as Eq. (7): 

(7) 𝑅[𝑛] = 𝑥[𝑛] − ∑ 𝐼𝑀𝐹̃𝑘[𝑛]
𝐾

𝑘=1
 

B. Hilbert Transform  

One of the most important signal processing purposes 
is finding the relation between real and imaginary parts of 
a signal is. This issue can be solved by using HT. HT is one 
of the mathematical transformations that shifts signal phase 
by 90 degree without changing in amplitude. Indeed
positive frequencies shift -90 degree and negative 
frequencies shift +90 degree. The Hilbert Transform of 

)(tX is calculated as Eq. (8) [18]: 

(8) 


 
 


d

t

tX
tXthtY

)(1
)(*)()( 

)(tX  and )(tY are real and imaginary parts of an analytic 

signal )(tZ in Eq. (9) [18]: 

(9) 
)

)(

)(
arctan()(,)()()(

)()()()(

22

)(

tX

tY
ttYtXta

etatjYtXtZ tj









 

In Eq. (9) )(ta and )(t  are respectively amplitude 

and phase of analytic signal. So instantaneous frequency is 
given by Eq. (10) [18]: 

(10) 
dt

td
tf

)(
.

2

1
)(




 



N 
L(OJ,b,e;a) = J(OJ,b,e) -Lai{Yi[OJTqI(XJ +b]-I + eJ (12) 

i=1 
Where ai (i = 1, ... , N) are Lagrange multipliers. 

Conditions for optimality are attained as Eq. (13) [19]: 

N 
L(OJ,b,e;a) = J(OJ,b,e) -La, {y,[OJT V'(X,) t b]-I t e,} 

i=l 
OC N OC N 
-=O--+OJ= LaiYiV'(x,) -=0--+ LaiYi =0 
80J '�1 8b '�1 
OC OC T . -= 0 --+ ai = rei -=0--+ y,[OJ V'(X,) tb]-I t ei =0,1 = I, .,N 
8e, 8a, 

(13) 

Eq. (11) to (13) reform optimization problem as Eq. 
(14) [19]: 

Qij = Y,YjqJ (x,/ qJ (x) = y,yjK (x"x) i,j = I, ... , N 

y=[ Y1; ... ; YN]' I,. =[ I; ... ; I ] 

(14) 

Thus, the final form of LSSVM prediction function will 
be obtained as Eq. (15) [19]: 

N 
f(x) = LaiK(x,xi)+b (12) 

1=1 

E. Simulation And Result 

In order to generate PQ disturbances, their parametric 
equations are simulated in Matlab software version 8.3. 
The generated database contains normal voltage signals, 
sag, swell, interruption, voltage flicker, oscillatory 
transient and harmonic disturbances. Each type of the 
disturbances consists of 40 samples with fundamental 
frequency 50Hz and 12 periods. 

Fig.2 up to Fig.13 show the extracted IMFs by CEEMD 
and EMD for various types of disturbances. As the results 
show, it is understandable that CEEMD separates 
components of signals much better than EMD. 

After features are extracted from IA and IF curves of 
decomposed signals, the results will be considered as input 
arguments of LSSVM classifier. If the size of feature 
vectors are not equal, empty features are filled with zeros. 
In Table.2 accuracy of proposed method is compared with 
some of the other methods. As you can see, accuracy of 
proposed method is more appropriate than others. 

Classifier Method Accurac� 
LSSVM CEEMD 99.1% 

Adaboost+Navie Bayes[13] EEMD 96% 

Fuzzy Expert System[14] Kalman 92.3 

Dempster-shafer[ 5] wavelet 95.6% 
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Figure 2- Sag intrinsic mode functions with CEEMD. 
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Figure 3- Sag intrinsic mode functions with EMD. 

Figure 4- Swell intrinsic mode functions with CEEMD. 
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Figure 5- Swell intrinsic mode functions with EMD. 
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Figure 6- Interruption intrinsic mode functions with CEEMD. 
" 

:f\/\/l :�/\Z\/\Z\/\Z\l 
� � I� I� " 

.�� =-=v::z\l \ 7 \Z V \2 \J 

�Ff : " 

·�F : 
: : " " 

·�l : : " " 

: : " " 

Em m 1m I� 
Y2 

� : : " " '" '" " 
t : : : " '" 
: : : : " " '" '" " 
: : : : " " " 
: : : : " " '" '" 

I 
I 
I 
I 
I 

Figure 7-lnterruption intrinsic mode functions with EMD. 
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Figure 8- Voltage flicker intrinsic mode functions with CEEMD. 
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Figure 9- Voltage flicker intrinsic mode functions with EMD. 
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CEEMD. 
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Figure 11- Oscillatory transient intrinsic mode functions with EMD. 

Figure 12- Harmonic intrinsic mode functions with CEEMD. 



Figure 13- Harmonic intrinsic mode functions with EMD. 

IV. CONCLUSION 

In this paper, an algorithm based on CEEMD method 
have been proposed to detect power quality disturbances. 
CEEMD can improved the accuracy of the classical 
algorithms. This method overcomes the disadvantages of 
EMD and EEMD such as mode mixing and different 
number of IMFs. Here in contrast to other methods such as 
Wavelet Transform and S-Transform, there is no need for 
selecting basis functions or setting too many parameters to 
implement the algorithm, because CEEMD applies to input 
data adaptively. 
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