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Abstract
Product lines are often employed for the facilita-
tion of software re-use, rapid application develop-
ment and increase in productivity. Despite the nu-
merous advantages of software product lines, the
task of testing them is a cumbersome process due
to the fact that the number of applications that need
to be tested is exponential to the number of fea-
tures represented in the product line. In this pa-
per, we attempt to reduce the number of required
tests for testing a software product line while at
the same time preserving an acceptable fault cov-
erage. For this purpose, we introduce eight cover-
age criteria based on the transformation of software
product line feature models into formal context-
free grammars. The theoretical foundation for the
proposed coverage criteria is based on the devel-
opment of equivalence partitions on the software
product line configuration space and the use of
boundary value analysis for test suite generation.
We have performed experiments on several SPLOT
feature models, the results of which show that the
test suite generation strategies based on the pro-
posed coverage criteria are effective in significantly
reducing the number of required tests and at the
same time maintaining a high fault coverage ratio.

1 Introduction
Large and complex domains are a potential venue
for the development of many different software
applications. These applications can share a lot
of similarities due to the fact that they have been
developed for the same target domain and also
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have differences based on the nature of the spe-
cific problem that they are trying to solve within
the target domain. The concept of software product
lines is amongst the widely used means for cap-
turing and handling these inherent commonalities
and variabilities of the applications of a target do-
main [9, 26]. Within the realm of software product
lines, these similarities and differences are viewed
in terms of the core competencies and functionali-
ties, referred to as features, provided by each of the
applications [21, 18]. Therefore, a software prod-
uct line is a model of a domain formalizing the ex-
istence of and the interactions between the features.

The problem space of a software product line
is often represented through feature models, which
are tree-like structures whose nodes are the domain
features and the edges are the interactions between
the features [17]. Each feature model is an abstract
representation of the possible applications of a tar-
get domain; therefore, it is possible to develop new
applications from a feature model by simply select-
ing a set of most desirable features from the feature
model. Since a feature model is a generic repre-
sentation of all possible applications of a domain,
the selection of a set of features from the feature
model yields a specific application. This process is
referred to as feature model configuration [12]. It
is clear that the selection of different features from
the feature model results in different feature model
configurations and hence different software appli-
cations. For this reason, it is reasonable to say that
a single feature model can be configured in differ-
ent ways to form numerous applications. As a mat-
ter of fact, the number of possible configurations
of a feature model increases exponentially with the
size of the feature model [20].

This observation leads to the main concern with
regards to testing software product lines and their
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products namely the time and effort required for
testing all of the possible applications of a software
product line. Outside the context of software prod-
uct lines, testing often involves a single application
that needs to be fully analyzed; however, the pro-
cess of testing a software product line and ensur-
ing that it is fault-free requires the comprehensive
analysis of all of its potential products. Assum-
ing that a feature model contains n features and
that each application configured from that feature
model takes O(m) to be tested, a complete test of
the applications derivable from that feature model
would in the worst case take O(2n ×m), which is
impractical both in terms of the required resources
to generate all of the tests and also the time needed
for performing the tests. This necessitates the need
for developing test generation strategies that would
create small but efficient test suites for testing large
software product lines. As will be discussed in
Section 6, these problems have already been rec-
ognized as important in the SPL community, but
are yet to be fully explored.

In short, feature models are representatives of a
magnitude of applications (aka products) that can
be derived from the feature model through the con-
figuration process [5]. Therefore, one can only be
certain that a feature model is safe (fault-free) iff all
of the possible applications of the feature model are
comprehensively tested. Given that this requires
significant resources (time and effort), in this pa-
per we propose a set of coverage criteria in order
to select a smaller set of applications from among
all possible applications of a feature model. These
selected applications will be then comprehensively
tested instead. Throughout this paper, a test suite is
a restricted collection of applications derived from
a feature model based on certain coverage criteria;
hence a test suite consists of several applications to
be tested independently. We refer to each member
of the test suite as a test. The members of a test
suite, i.e. the tests, are the selected applications
that are to be tested comprehensively instead of the
whole feature model application space. Our goal
is to create new coverage criteria that will allow us
to generate small test suites, i.e., to select a small
subset of the product line application space. The
hypothesis is that the set of applications identified
based on the coverage criteria are able to reduce the
test space while maintaining a high fault coverage.

In this paper, we propose to view software
product line feature models expressed in terms

of context-free grammars represented in Extended
Backus-Naur Form (EBNF) [11] and to extend the
existing coverage criteria for EBNF by propos-
ing eight new coverage criteria for feature mod-
els. These coverage criteria form the basis for the
generation of smaller test suites, which are at the
same time quite efficient in identifying faults in fea-
ture models. Our work is based on the concepts of
boundary value analysis and equivalence partition-
ing [24] alongside the coverage criteria for gener-
ating efficient test suites for software product lines.
More specifically, our work provides the following
three main contributions:

1. We provide the means for viewing soft-
ware product line feature models in terms of
context-free (EBNF) production rules. This
allows us to define eight main test coverage
criteria for testing feature models – which is
one of the first in the area of product lines;

2. Given the context-free grammar representa-
tion of feature models and the formal defi-
nition of the coverage criteria, different test
suite generation strategies are proposed that
would allow for the automatic development of
test suites. These are fundamentally based on
equivalence partitioning and boundary condi-
tions;

3. Each of the proposed strategies are employed
for generating test suites for nine SPLOT fea-
ture models. The purpose is to evaluate the
fault coverage performance of the proposed
test generation strategies.

The main distinguishing aspects of our work
from the other related work are: 1) the main
techniques in the area of product line testing fo-
cus on t-wise and combinatorial testing strategies
[25, 30, 31]. However, our work centers around the
definition of a set of semantically well defined cov-
erage criteria, which are the basis for our test gen-
eration strategies. In our view, this is significant
because the outcomes of the testing process based
on each coverage criterion provides insight into the
possible issues with the product line in light of the
semantics of the coverage criterion used. There-
fore, the tester would know how to trace the results
back to their origin based on the purpose of the cov-
erage criterion that was employed in that case. It
should be noted here that traceability is from the
test that revealed a fault to the coverage criteria that
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was the origin of that test (and not between the spe-
cific test and the feature causing the fault); 2) the
introduction of the eight coverage criteria allows
the product line tester to customize the test suites
and test cases based on the specific circumstances
that are present. This is different from the related
work where the generated test suites for the product
line cannot be controlled by the product line tester.
Furthermore, the tester will not completely know
what implications his changes (addition or removal
of tests) would have on the coverage of the testing
process in those approaches. However in our work,
the tester is able to control the generated test suites
based on the coverage criterion that he/she se-
lects to use and would have knowledge about why
each test was included; 3) we provide and share
the implementation of all our test suite genera-
tion strategies available at http://ebagheri.
athabascau.ca/splt/splt.zip. Further-
more, we point to the publicly available feature
models that were used in our experiments for fu-
ture replication and comparative studies.

The rest of the paper is organized as follows:
the next section covers the preliminaries regarding
the structure of feature models and how they are
expressed using context-free grammars. Section 3
provides the theoretical basis of our approach. The
coverage criteria for feature models and their corre-
sponding test generation strategies are presented in
Section 4. Section 5 provides the details of the eval-
uation of the test generation strategies; followed by
related work in Section 6. The paper is then con-
cluded in Section 7.

2 Preliminaries

2.1 Feature Models

Features are important distinguishing aspects, qual-
ities, or characteristics of a family of systems
[21, 17]. They are widely used for depicting the
shared structure and behavior of a set of similar
systems. To form a product family, all the vari-
ous features of a set of similar/related systems are
composed into a feature model. Feature models can
be represented both formally and graphically; how-
ever, the graphical notation depicted through a tree
structure is more favored due to its visual appeal
and easier understanding. More specifically, graph-
ical feature models are in the form of a tree whose

Figure 1: The GPL feature model.

root node represents a domain, and the other nodes
and leafs illustrate the features.

In a feature model, features are hierarchically or-
ganized and can typically be classified as: Manda-
tory, Optional, Alternative feature group, and Or
feature group. Figure 1 depicts the graphical no-
tation of the feature relationships. The tree struc-
ture of feature models falls short at fully represent-
ing the complete set of mutual interdependencies of
features; therefore, additional constraints are often
added to feature models and are referred to as In-
tegrity Constraints (IC). The two most widely used
integrity constraints are: 1) Includes, the presence
of a given feature (set of features) requires the ex-
istence of another feature (set of features); and 2)
Excludes, the presence of a given feature (set of
features) requires the elimination of another feature
(set of features).

The Graph Product Line (GPL) [22] depicted in
Figure 1 is the classical sample feature model in
the software product line community that covers
the classical set of applications of graphs in the
domain of Computer Science. As it can be seen,
GPL consists of three main features: 1) Graph
Type: features for defining the structural represen-
tation of a graph; 2) Search: traversal algorithms
in the form of features that allow for the navigation
of a graph; 3) Algorithms: other useful algo-
rithms that manipulate or analyze a given graph.
Clearly, not all possible configurations of the fea-
tures of GPL produce valid graph programs. For
instance, a configuration of GPL that checks if a
graph is strongly connected cannot be implemented
on an undirected graph structure. Such restrictions
are expressed as integrity constraints. Some exam-
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ples of such constraints are: Cycle Detection
EXCLUDES BFS1 and Cycle Detection IN-
CLUDES DFS.

The integrity constraints and the structure of the
feature model ensure that correct product configu-
rations are derived from a feature model. For in-
stance, the feature model in Figure 1 can be config-
ured in 308 different ways; hence, having the po-
tential to produce 308 domain-dependent applica-
tions. As mentioned earlier, a comprehensive strat-
egy for testing feature models is to test all of the
possible configurations. In other words, each possi-
ble configuration is a test for evaluating the feature
model. Taking this approach for testing the graph
product line feature model would require 308 dif-
ferent applications to be tested which is not practi-
cal given such a small feature model.

2.2 Feature Models in EBNF
Czarnecki and Eisenecker have argued that the
grammar of feature models can be represented in
EBNF [11]. In this paper, we employ the EBNF
notation in order to represent a feature model in the
form of a set of production rules. EBNF is a family
of syntactical notations that are used for describ-
ing context-free grammars and are as such in the
form of V → w, where V is a single nonterminal
symbol, and w is a string of terminals and/or non-
terminals or empty productions.

It is easy to see that the hierarchical structure of
feature models can be represented using context-
free grammars denoted using the EBNF notation.
Each parent feature can be the left-hand side of a
production rule while its right-hand side will be
its child features. For instance, the search feature
in GPL can be represented in EBNF as Search
→ t DFS | t BFS;2 or GPL root can be de-
picted as GPL → GraphType, Algorithms
| GraphType,
Algorithms, Search;

To be able to represent integrity constraints, ad-
ditional production rules need to be inserted. For
instance, to show that Cycle Detection ex-
cludes BFS and includes DFS, the related produc-
tion rules would be rewritten as follows:

1. GPL → GraphType, Algorithms1,
Search1 |

1breadth-first and depth-first search
2We denote non-terminals with capitalization and terminals

with t .

GraphType, Algorithms2,
Search2;

2. Search1 → t DFS;

3. Search2 → t DFS | t BFS;

4. Algorithms1 →
t CycleDetection, Algorithms2;

5. Algorithms2 → Coloring, Temp1

| Temp1;

6. Temp1 → t MST, Temp2 | Temp2;

7. Temp2 → t StronglyConnected,
Temp3 | Temp3;

8. Temp3 → t ShortestPath | λ;

9. Coloring → t Approximation |
t BruteForce;

where λ is an empty production.
As depicted above, additional production rules

have been created, shown with subscript, to make
sure that the EBNF products respect the two in-
tegrity constraints. In this example, the additional
productions will ensure that Cycle Detection
and BFS can never be seen together and also when-
ever Cycle Detection is produced that DFS is
also generated as a requirement for it. We have de-
veloped the required software program that would
automatically convert a feature model represented
in the standard SXFM feature model format into
EBNF production rules. The source code of all
our work is available at http://ebagheri.
athabascau.ca/splt/splt.zip.

It is noteworthy that the use of a context-free
grammar-based representation is quite useful for
our purpose because our focus is on test generation
and these tests need to be valid applications deriv-
able from the feature model; therefore, an EBNF-
based representation will make sure that only valid
tests are generated based on the available produc-
tion rules. Furthermore, although as we will show
later in the paper that the only operation required
by our work is the words (strings) generation oper-
ation, still more complex operations such as finite-
ness of the grammar or word-grammar member-
ship are decidable in context-free grammars (type-
2 grammars). For this reason, such rewriting of
feature models into context-free grammars is suit-
able for future extensions of our work, e.g., such a
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grammar could allow one to check if some product
is a valid configuration based on the feature model
grammar representation.

In the following, we will show how the repre-
sentation of feature models in EBNF can be used
to develop several coverage criteria and test gener-
ation strategies.

3 Theoretical Basis
We base the development of our coverage criteria
on the work of Ammann and Offutt on BNF cover-
age criteria [1]. These authors provide three funda-
mental test coverage criteria for BNF grammars as
follows:

Definition 1 Derivation Coverage [1] – The test
suite must contain every possible string derivable
from grammar G.

In this definition and throughout this paper, a test
suite is a collection of tests. Also, a coverage crite-
rion is a rule or collection thereof that imposes the
presence or absence of a specific aspect of the soft-
ware artifact in a test suite. Therefore, Derivation
Coverage is a coverage criterion which would re-
quire all of the possible strings produced by a BNF
grammar to be tested. This is an exhaustive testing
strategy which may not always be practical. The
Derivation Coverage criterion is equivalent to the
comprehensive testing of all feature model config-
urations where all of the strings derivable from a
BNF grammar is equivalent to the set of all prod-
ucts of the feature model. To address the practical-
ity aspect of this coverage criterion, the Terminal
Symbol and Production coverage criteria were de-
fined.

Definition 2 Terminal Symbol Coverage [1] –
The test suite must contain every terminal symbol
of grammar G.

Definition 3 Production Coverage [1] – The test
suite must contain every production rule of gram-
mar G.

It is clear that both of these coverage criteria
simplify the test suite requirements and are hence
more practical than Derivation Coverage. How-
ever, from the perspective of testing, these two
coverage criteria may be too restrictive; because
it is possible to create several very large string

productions of the BNF grammar and hence cover
all of the terminal symbols using only a very
few string products. For instance, for GPL it is
possible to create the following two configura-
tions from the feature model EBNF grammar:
{t Directed, t Weighted, t DFS,
t ShortestPath, t CycleDetection,
t MST, t StronglyConnected,
t Approximation, t BruteForce} and
{t Undirected, t unweighted, t BFS,
t MST}3. These two configurations together are
able to cover all of the terminals of the grammar
and hence satisfy Terminal Symbol Coverage
criterion. Another example is the following
configuration: {t Undirected,
t Unweighted, t DFS,
t Approximation}, which satisfies the
Production Coverage criterion since it is created by
invoking all of the production rules of the feature
model EBNF grammar.

The above examples show that these two cover-
age criteria are too restrictive for the development
of a sufficient number of tests due to the fact that a
small number of words (strings) could potentially
satisfy their requirements. For this reason, there
is a high probability that tests developed based on
these criteria would not cover all of the interactions
between the features of a feature model. In the fol-
lowing, we develop other coverage criteria to make
sure that the developed tests analyze the impact of
each individual feature on all other features.

4 Our Approach
The coverage criteria that we propose are devised
based on two fundamental postulates:

1. The available features of a feature model
can have mutual interactions with each other,
which could possibly result in unforseen faults
in the final product;

2. The boundary conditions and their corre-
sponding values within equivalence partitions
can be considered as hotspot locations for
faults.

The implication of the first postulate is that the
developed tests should not only analyze each fea-

3Order of the terminals is irrelevant in a feature model con-
figuration.
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ture individually for fault4 but they should also
consider the interactions between features. For in-
stance, it is possible that feature f1 does not func-
tion only when it is configured alongside feature
f2. Another case would be when feature f3 fails to
perform properly when it is not accompanied in the
configuration with feature f4. Therefore, it is im-
portant to develop test suites that are based on pro-
ductions developed by the enforcement of the in-
clusion or exclusion of a certain feature. This gives
rise to the following two coverage criteria:

Definition 4 Feature Inclusion Coverage Let F be
the set of features in a feature model and Cf be the
set of all configurations of the feature model that
can be derived from the EBNF grammar G that in-
clude f ∈ F. The test suite must contain ∀f ∈ F at
least one of the members of Cf .

The main purpose of this coverage criterion is
to address individual features and also feature in-
teractions. Feature Inclusion Coverage criterion
makes sure that all of the features of the feature
model are considered one by one and used for con-
figuring the feature model using the feature model
EBNF grammar. From the set of possible produc-
tions developed by the grammar for each feature,
the Feature Inclusion Criterion requires at least one
of these productions to be included in the test suite.
This criterion is developed to make sure that the ef-
fect of the inclusion of each individual feature on
the feature model configuration and the other fea-
tures is covered by the developed tests. The fact
that a minimum of one configuration from the set
of possible configurations for each feature is se-
lected restricts the coverage of the test suite under
this coverage criterion. We will later address this
issue using the second postulate based on bound-
ary value analysis (Definitions 6 and 7).

Definition 5 Feature Exclusion Coverage Let F
be the set of features in a feature model and Ef
be the set of all configurations of the feature model
that can be derived from the EBNF grammar G that
do not include f ∈ F. The test suite must contain
∀f ∈ F at least one of the members of Ef .

Feature Exclusion Coverage aims at addressing
feature masking [2]. Essentially, feature masking
can happen when the presence of a feature prevents

4An fault is a bug, error or alike in the implementation of a
feature that is provided in the domain engineering phase.

a certain circumstance to happen in another feature.
The above criterion attempts to support the devel-
opment of tests that are able to reveal such situa-
tions. For this purpose, for any given feature in the
feature model at least one test in the test suite is
guaranteed to exist that does not include that fea-
ture. This way situations with feature masking are
covered. So in summary, the intention of these two
coverage definitions are as follows:

• Feature inclusion coverage addresses cases of
unintended and undesirable feature interaction
and dependencies;

• Feature exclusion coverage supports the iden-
tification of feature masking.

Both feature inclusion coverage and exclusion
coverage can suffer from the fact that they only
require a minimum of one configuration for each
feature. We address this issue through the employ-
ment of the concepts of equivalence partitioning
and boundary value analysis [28, 27].

The main idea behind equivalence partitioning
is to divide the possible test space into segments
with similar characteristics from which tests can
be derived. Tests are often developed such that at
least one test addresses each of the partitions. Fur-
thermore, software testers have come to understand
that faults tend to occur more frequently at the
boundaries of the test space [1]; therefore, rather
than testing random values from anywhere in the
test space, it is preferred that tests are designed to
cover the boundaries. This is referred to as bound-
ary value analysis. Given the fact that equiva-
lence partitioning creates boundaries between the
partitions that it develops, boundary value analy-
sis techniques have been traditionally used along
with equivalence partitioning to develop suitable
tests based on the boundaries of the developed par-
titions.

We employ the same strategy to overcome the
limitation of both of the Feature Inclusion and Fea-
ture Exclusion Coverage criteria. In our approach,
we consider the set Cf (Ef ) to be the relevant parti-
tion pertaining to feature f in the feature model.
Now, we would have |F| number of partitions,
which is equivalent to the number of features avail-
able in the feature model. We will assume that all
of the configurations in each Cf (Ef ) form an equiv-
alence partition with regards to the requirements of
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Definitions 4 and 5. Given that the equivalence par-
titions are created, the boundaries of each partition
need to be defined.

In order to define the boundaries of the equiva-
lence partitions, it is important to consider the na-
ture of the values in each partition. In our case,
the content of each partition (Cf or Ef ) is a set
of feature model configurations developed by the
enforcement of the inclusion or exclusion of f .
Each c ∈ Cf shares the same characteristic of be-
ing developed based on the presence or absence
of f ; therefore, it is reasonable to assume that the
boundaries of this partition are the smallest and the
largest developed configurations in Cf (Ef ), i.e.,
cu, cl ∈ Cf that have the most number of fea-
tures and the least number of features form the up-
per and lower boundaries of each partition, respec-
tively. This is meaningful in light of the fact that
Batory et al. define each feature as an incremental
piece of functionality [6]. It is now possible to for-
mulate appropriate coverage criteria based on the
boundaries of the equivalence partitions.

Definition 6 Max Feature Inclusion (Exclusion)
Coverage Let F be the set of features in a feature
model and Cf (Ef ) be the set of all configurations
of the feature model that can be derived from the
EBNF grammar G that do (not) include f . Then
cu ∈ Cf (eu ∈ Ef ) is the upper bound of Cf (Ef )
iff 6 ∃c′u ∈ Cf (6 ∃e′u ∈ Ef ) s.t. |cu| < |c

′

u| (|eu| <
|e′u|). The test suite must contain all upper bounds
in Cf ; ∀f ∈ F (Ef ; ∀f ∈ F).

Definition 6 provides the basis for the develop-
ment of two coverage criteria which require the
inclusion of the upper bound of the partitions de-
veloped based on the inclusion or exclusion of the
available features. Two other coverage criteria can
be developed based on the lower bounds of the
equivalence partitions.

Definition 7 Min Feature Inclusion (Exclusion)
Coverage Let F be the set of features in a feature
model and Cf (Ef ) be the set of all configurations
of the feature model that can be derived from the
EBNF grammar G that do (not) include f . Then
cl ∈ Cf (el ∈ Ef ) is the lower bound of Cf (Ef ) iff
6 ∃c′l ∈ Cf (6 ∃e′l ∈ Ef ) s.t. |cl| > |c

′

l| (|el| > |e
′

l|).
The test suite must contain all lower bounds in Cf ;
∀f ∈ F (Ef ; ∀f ∈ F).

Together these four coverage criteria provide the
means for covering all of the boundary value con-
ditions of the equivalence partitions. So, we can
assume that any test generation strategy that satis-
fies these four coverage criteria would be able to
identify some of the most significant faults caused
by one of the following: 1) fault in each individual
feature; 2) fault caused by the interactions between
features; and 3) fault caused by the masking of fea-
tures.

Now, since our feature models are expressed
through EBNF grammars, we need to distinguish
between terminals and non-terminals in our cover-
age criteria. In other words, there needs to be a
distinction between the leaf features and the non-
leaf features of the feature model. This is be-
cause non-terminals have much more impact on
the possible derivations of the EBNF grammar.
For instance, the inclusion or exclusion of a non-
terminal will more greatly limit the possible pro-
ductions of the grammar rather than the inclusion
or exclusion of a terminal. The discernment be-
tween terminals and non-terminals will further re-
fine the four coverage criteria defined in Defini-
tions 6 and 7 into eight coverage criteria, namely
1) Maximum Terminal Inclusion coverage (MxTI),
2) Maximum Non-Terminal Inclusion coverage
(MxNTI), 3) Maximum Terminal Exclusion cov-
erage (MxTE), 4) Maximum Non-Terminal Ex-
clusion coverage (MxNTE), 5) Minimum Termi-
nal Inclusion coverage (MinTI), 6) Minimum Non-
Terminal Inclusion coverage (MinNTI), 7) Mini-
mum Terminal Exclusion coverage (MinTE) and 8)
Minimum Non-Terminal Exclusion coverage (Min-
NTE).

The interpretation of each of these coverage cri-
teria can be done based on Definitions 6 and 7. For
instance, MxTI is a form of Max Feature Inclu-
sion Coverage that requires the test suite to include
all the upper bounds of the partitions that have
been produced by the enforcement of the inclu-
sion of each terminal of the EBNF grammar (leaf
feature of the feature model) or similarly, Min-
NTE is a case of Min Feature Exclusion Coverage,
which specifies that the test suite must include all
of the lower bounds of the partitions that have been
created by the exclusion of each individual non-
terminal in the EBNF grammar (non-leaf features).

It is important to note how equivalence partition-
ing and boundary value analysis are relevant for our
purpose given that they have only been used in the
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Figure 2: Criteria subsumption relations.

literature over the inputs of a single software and
not for test generation for a family of systems. We
note that the main idea is to find corner cases. The
reason that minimum and maximum coverage cri-
teria define such corner cases relates to variability
in software product lines. In other words, the tests
selected in the minimum criteria equate to the set
of mandatory features with the inclusion of ‘NO’
optional features; whereas, the tests selected in the
maximum criteria involves the inclusion of all pos-
sible variable parts of the product line (optional fea-
tures). Therefore, maximum and minimum cover-
age criteria provide a basis for testing boundaries
of the configuration space based on variation points
in the product line and hence represent valid parti-
tions for performing boundary value analysis con-
sidering variability in the product line.

Figure 2 shows the subsumption relationships
between the coverage criteria and their relation to
derivation coverage proposed by Ammann and Of-
futt [1]. It is clear that Derivation Coverage sub-
sumes all other criteria since it basically consists of
all the possible productions of the grammar. Fur-
thermore, Feature Inclusion Coverage subsumes
Feature Exclusion Coverage since there may be
cases in the latter where a given feature is never
seen; but Feature Inclusion Coverage is guaranteed
to cover all of such cases. Finally, the set of ter-
minal inclusion-based coverage criteria are guaran-
teed to subsume Terminal Symbol Coverage based
on Definition 4, which will ensure that all leaf fea-
tures are included in the test suites; however, this is
not the case for the other coverage criteria.

Algorithm 1: Maximum Terminal Inclusion
(MxTI)

input : A Feature Model F
output: A Test Suite Φ

Φ← ∅;
foreach f ∈ F do

if IsLeaf(f) then
temp←generateLgtConf(f ,F);
if temp 6∈ Φ then

Φ← Φ∪ temp;

Table 1: The Objects of Study.
Feature Model NF CTCR NVC
Digital Video System 26 23% 22,680
Bicycle 27 14% 1,152
ATM Software 29 0 43,008
TV-Series Shirt 29 27% 21,984
Smart Home 35 0 1,048,576
Sienna 38 26% 2,520
Arcade Game 61 55% 3.3E+09
HIS 67 11% 6,400
Model Transformation 88 0 1.65E+13

It is now quite straightforward to generate test
suites that conform to these coverage criteria by
generating the possible minimum/maximum length
productions of the grammar that include or exclude
a given non/terminal. Algorithm 1 shows the de-
tails of test suite generation based on MxTI. The
other seven test suite generation strategies based on
the coverage criteria are quite similar.

As seen in Algorithm 1, the MxTI strategy for
test suite generation will try to develop test suites
that include the largest feature model configura-
tions that include each one of the leaf features in
the feature model. For this purpose, the algorithm
first generates the largest configuration that con-
tains a given feature (generateLgtConf). The
generation of the largest (smallest) feature model
configuration can be easily done using a weighted
context-free grammar (weighted EBNF) [14]; this
is equivalent to the generation of the longest (short-
est) string that contains a given terminal. If this
largest configuration, which is the potential test,
does not already exist in the test suite, it will be
added; otherwise, it will be discarded. This pro-
cess is repeated for all leaf features. Once all fea-
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tures are processed, Φ is the final test suite that in-
cludes the tests generated based on the Maximum
Terminal Inclusion (MxTI) strategy that need to be
tested. The other seven strategies are implemented
similarly.

5 Evaluation

5.1 Objects of Analysis
For the purpose of our experiments, we have
selected a set of feature models that are pub-
licly available through the SPLOT website [23].
SPLOT’s goal is to facilitate the transition process
from research to practice and therefore provides
the means for both researchers and practitioners to
share and contribute their software product line fea-
ture models in an open and free manner. These fea-
ture models are expressed in the SXFM format.

The feature models that were used in our ex-
periments with three of their important metrics are
shown in Table 1. The NF, CTCR, and NVC met-
rics denote the number of features in the feature
model, the ratio of the number of distinct features
in the integrity constraints to the number of feature
model features, and the number of valid configu-
rations of the feature model, respectively. Feature
models with a CTCR of zero do not consist of any
integrity constraints.

5.2 Experiment Design
In order to evaluate the effectiveness of the pro-
posed approach, we have performed our experi-
ments on the feature models introduced in Table 1
using an automated software program. The pro-
gram is able to parse feature models defined in
SXFM and automatically develop the correspond-
ing EBNF grammar for that feature model. Given
the conversion of the feature models into EBNF
grammar, a set of test suite generation programs
were developed for each one of the eight cover-
age criteria, each of which generates suitable test
suites consisting of feature model configurations,
i.e. the tests, based on the EBNF grammar produc-
tion rules. Each test in the generated test suites is
a derived software application (product) that needs
to be tested. So assuming that the size of a test suite
is S and it takes O(m) to test each individual ap-
plication, the total complexity of testing the feature
model is nowO(S×m) as opposed toO(2n×m).

Figure 3: The size of the test suites.

Therefore, as long as S ≪ 2n, we are successful
in reducing the effort needed for testing the prod-
uct line feature model to O(m) – due to a negligi-
ble S. Based on this, we explore the following two
hypotheses:

H1 Our test suite generation strategies that are
based on the eight coverage criteria are able
to develop test suites such that S≪ 2n;

H2 Although S ≪ 2n, the generated test suites
are able to maintain an acceptable (high) fault
coverage.

Now in practice, once a feature model is con-
figured and a specific application is derived, the
selected features will be replaced by suitable soft-
ware components, Web Services or software pro-
grams that are able to fulfil the requirements of that
feature. The replacement of features with appropri-
ate implementation details is often done manually
by engineers using proprietary software; therefore,
information on them is not publicly available. In
view of this issue and to be able to evaluate the effi-
cacy of our coverage criteria and their correspond-
ing test suite generators, we developed an fault gen-
eration simulator. The lack of publicly available
datasets has already been pointed out in [10, 4, 3]
and several authors and tool suites (such as FaMa
[7] and 3-CNF model generator [23]) have been us-
ing model generation techniques to test their work
for the lack of a better means.

The simulator considers the three introduced
metrics shown in Table 1 for each feature model,
i.e., NF, CTCR, and NVC, and generates faults for
the feature model correspondingly. Feature mod-
els with more features, higher ratio of CTCR and a

95



Figure 4: Coverage of generation strategies.

higher number of valid configurations will contain
more faults generated by the simulator. The gener-
ated faults are in one of the following categories:

1. faults in individual features: The simulator
will select a number of features from the
feature model proportional to NF and NVC.
These selected individual features will be con-
sidered to contain faults and will need to be
detected by the generated test suites;

2. faults in repulsive features: These faults will
be generated in the form of n-tuples, where
each tuple contains a set of 2 or more features.
The idea behind these faults is that a configu-
ration will contain fault due to the interactions
between the features if the n features in the n-
tuple are all in that configuration. These faults
are proportional to NF and CTCR, i.e., more
faults in repulsive features would be generated
for a feature model with higher values for NF
and CTCR.

3. faults in attracting features: For this type of
fault, a pair of features are selected and an
fault occurs if one of the features in the pair
is present in the configuration and the other is
not. Similarly, the number of faults in attract-
ing features is dependent on NF and CTCR.

Further details and code for the fault generator is
available for download at http://ebagheri.
athabascau.ca/splt/splt.zip. Inter-
ested researchers are encouraged for replication
studies.

5.3 Results and Analysis

In order to evaluate the test suite generation strate-
gies, the fault generation simulator was executed
over each of the feature models in Table 1. This
resulted in a set of faults for each of the feature
models, which needed to be identified and covered
by the generated test suites. The composition of
the generated test suites were as follows: each test
suite consisted of a set of tests, which were fea-
ture model configurations (complete productions
of the context-free grammar) that corresponded
with the eight coverage criteria. Each of the fea-
ture model configurations are therefore a collec-
tion of selected features from the feature model.
The obtained raw data (non-average values) are re-
ported at http://ebagheri.athabascau.
ca/splt/appendix.pdf due to space limita-
tion. The following analyzes the observations in
detail.

Figure 3 shows the size of the generated test
suites. This figure depicts two aspects of the test
suite size, i.e., the average number of tests gener-
ated for each test suite and also the average size of
each test, i.e., the number of features that it con-
tains. The average values are calculated over the
values obtained from each of the test suites gener-
ated for each of the objects of study over 10 trials
to remove the effect of randomness in the fault gen-
erator. Two main observations can be made from
Figure 3: 1) test suites generated based on EBNF
grammar terminals tend to be larger both in the
number of tests that they offer and also the num-
ber of features that each test contains. This can be
taken as a sign of comprehensiveness; however, be-
fore this conclusion can be made, it is important to
evaluate whether the greater number of tests in each
test suite results in a higher fault coverage or not; 2)
the average size of the tests (the number of features
that it contains) in the suites that were generated
by the lower bound of the equivalence partitions
are smaller than those generated based on the up-
per bound, which is a logical consequence of these
coverage criteria.

It was observed that test suites generated based
on terminals tend to be larger and may hence be
more comprehensive. It is important to analyze
whether the larger size of the test suites developed
based on this strategy constitutes higher coverage
or not. For this purpose, Figure 4 shows two impor-
tant results of the test suites, namely the average
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Figure 5: efficacy of generation strategies.

terminal coverage of the test suites and the fault
coverage ratio. Average terminal coverage shows
the percentage of the number of distinct features
in the tests of the test suite that could appear in a
feature model configuration over all of the avail-
able leaf features in the feature model. The fault
coverage ratio is the number of faults covered by
the test suite over all of the existing faults. It was
argued earlier that MxTI and MinTI subsume Ter-
minal Symbol Coverage (c.f. Figure 2). This is
reflected in Figure 4 as well where the average ter-
minal coverage is 100%. It is worth mentioning
that MxNTI and MinNTI have a very high aver-
age terminal coverage, an indication that these two
coverage criteria are able to cover most of the leaf
features of the feature model. Moreover, as it can
be seen in Figure 4, MxTI and MxNTI have the
highest fault coverage ratio. This is an indication
that these two coverage criteria are able to detect
the most number of faults and are the two test suite
generation strategies with the highest fault cover-
age.

The other important aspect of the test suite gen-
eration strategies is their efficacy. We view efficacy
as the tradeoff between the size and number of the
test suites and the fault coverage ratio. Simply put,
test suites with a smaller size and fewer number
of tests that have a higher fault coverage ratio are
more desirable than the others and are hence more
efficient. We argue that a strategy that is able to
generate such test suites is an efficient strategy.

To analyze the efficacy of the test suite gener-
ation strategies, the diagram in Figure 5 is plot-
ted, which shows the tradeoff between the average
size of the test suites (average number of tests ×
average size of tests) and the fault coverage ratio.
The most desirable strategies are those that are lo-
cated in the top left corner of this diagram. This

Figure 6: Average fault detected per test.

is because the top left corner locates the strategies
that have the highest fault coverage ratio and at the
same time the smallest test suite size. Based on
this figure, MxNTI is the most efficient strategy.
Despite the fact that MxTI had a high fault cover-
age ratio, it is not as efficient as MxNTI because its
average test suite size is comparatively higher than
MxNTI, meaning that more tests are generated in
the test suites of MxTI and therefore much more ef-
fort is required as compared to MxNTI to identify
the available faults. This has also been portrayed
in Figure 6, which depicts the average number of
faults detected per test developed by each of the
strategies. As it can be seen, MxNTI has the high-
est detection rate per test. This is an observation
that depicts how MxNTI is more efficient than the
other strategies.

In summary, the results of our analyis show that
MxNTI and MxTI have the highest fault coverage
and MxNTI has the highest efficacy from amongst
the eight coverage criteria. In any case, since both
of these strategies have significantly reduced the
number of tests as compared to the standard strat-
egy based on Derivation Coverage, both of these
strategies can be considered as being viable for
generating test suites for feature models. However,
in more resource constraint environments, MxNTI
has benefits over MxTI with the trade-off of a
slightly lower fault coverage.

Now that we have analyzed each of the test suite
generation strategies in isolation, it is important to
see how the collection of the test suites perform
together, i.e., what would the results of the tests
be if all of the test suites generated by the eight
coverage criteria were combined into one test suite
(removing the duplicate tests). The results of this
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Table 2: Total number of tests generated by the coverage criteria and the related fault coverage.
NF #Tests by derivation

coverage
#Tests by our ap-
proach

fault coverage of our
approach

Digital Video System 26 2.27E+04 63 89%
Bicycle 27 1152 63 87%
ATM Software 29 4.30E+04 81 78.33%
TV Series 29 21984 103 84.00%
Smart Home 35 1.05E+06 125 92.30%
Sienna 38 2520 126 97%
Arcade 61 3.30E+09 201 92.33%
HIS 67 6400 147 96.23%
Model Transformation 88 1.65E+13 255 92%

is reported in Table 2. The results shown in Ta-
ble 2 can be used to evaluate our two hypotheses
(H1 and H2). It is important to compare our work
with tests generated by derivation coverage as it has
100% fault coverage. As can be seen, the number
of tests generated by all of the eight test suite gen-
erators is significantly less than the total number
of possible tests in a comprehensive testing pro-
cess based on derivation coverage. Therefore, we
can claim that H1 is correct in that S ≪ 2n (e.g.,
63 tests vs 2.27E + 04 tests – first row in Table
2). Furthermore, the second hypothesis (H2) that
claimed the generated test suites are efficient by
having a high fault coverage can also be consid-
ered to be true given the fact that in the worst case,
the fault coverage is 78.33%, which is relatively
high given the significant reduction in the size of
tests. The average fault coverage over all the fea-
ture models is close to 91%. Based on the obser-
vations of Table 2, we believe that compared to the
comprehensive tests based on derivation coverage
criterion, our test suite generation strategies, which
are based on the eight context-free grammar-based
coverage criteria are able to generate small size
test suites while maintaining a high fault coverage.
Given that we did not have access to the programs
of other test generation techniques, our compari-
son has been with baseline (derivation coverage).
In the future we will look into further comparative
analytics as the code for other related work become
publicly available.

5.4 Threats to Validity

We identify three main sources of threat to the va-
lidity for our experiments that need to be pointed

out and clearly addressed. The first issue relates
to external validity, which is the extent to which
the obtained results of a study can be general-
ized to settings other than that under study and
other relevant research scenarios. In our experi-
ments, a limited number of feature models from the
SPLOT repository were used due to our restricted
access to appropriate models within the area of
software product lines. Even among the feature
models in SPLOT, many of them were too small
or non-descriptive to be useful, and therefore, only
a limited number could be used in our experiments.
Although these numbers are comparable to (even
higher than) similar studies in the area of product
lines [20, 10, 25], their limited number (not rep-
resentative of all possibilities) may pose threats to
the generalizability of the drawn conclusions. We
are currently working on the collection of a larger
set of feature models for future studies. The sec-
ond issue is again related to external validity. In
the experiments we have relied on a fault taxon-
omy introduced earlier in the paper. However, we
do not claim this to cover all types of faults that
can happen in software product line feature mod-
els. Therefore, given the limited scope of our fault
types, the results cannot be generalized for other
types of faults that could be encountered and are
not covered. At the present time, a comprehen-
sive fault taxonomy is yet to be developed for soft-
ware product lines; therefore, our focus has been
on three dimensions that were introduced in the pa-
per and the results are valid for these fault types
only. The last issue again concerns the involve-
ment of the test generator simulator that was used
in our experiments. Given that actual implementa-
tion components for each feature in the product line
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are not released by the industry, the actual statisti-
cal distribution of fault in features is not accurately
known and hence in our approach, heuristics-based
fault generation has been used. As such statistics
are not accessible to the research community yet,
we believe that the development of this simulator
is a significant step for reproducible test generation
strategy evaluation, which can be gradually im-
proved by the community as more insight is gained
through further replication studies.

6 Related Work

There are only a limited number of approaches that
directly address the issue of test generation in soft-
ware product lines. Closest to our work is by Co-
hen et al [10]. The authors propose to map OVM
product line representation models onto a relational
model for defining the cumulative coverage criteria
based on whose combination with combinatorial
interaction testing methods suitable tests are gen-
erated. The main drawback of this work is that
it has not been empirically validated. Similarly,
Cabral et al. suggest the development of a un-
derlying representation called feature dependency
graphs [8]. This representation is later used in com-
bination with a graph based testing approach called
the FIG basis path method. The work reports a high
fault coverage for tests as small as 24% of the ap-
plication space. However, the largest model used in
the experiments consisted of 38 products, which is
not significant compared to our experiments. Given
the complexity and number of possible configu-
rations, some other techniques employ automatic
analysis based on SAT solvers [19] such as Alloy
[16]. For instance, Uzuncaova et al. [31] propose a
hybrid approach by combining methods from soft-
ware product lines and specification-based testing
using Alloy. In their approach, each product is de-
fined as a composition of features represented as
Alloy formula. The Alloy analyzer is used to incre-
mentally generate test cases over partial specifica-
tions of the products. This approach is an improve-
ment over previous work that generated test cases
in a single pass execution of Alloy over complete
specifications [30]. Also, Perrouin et al. employ
the concept of T -wise test generation [25]. Their
approach attempts to address the large combinato-
rial number of required tests for a software product
line by only generating test sets that cover all pos-

sible T feature interactions. To achieve this, the au-
thors devise strategies to disintegrate T -wise com-
binations into smaller manipulable subsets, which
are then used in a developed toolset over Alloy for
generating the tests.

The authors of [20] base their work on the as-
sumption that despite the number of product line
configurations being exponential, but features are
often behavior-irrelevant, i.e., they augment but
do not change the behavior of a system. Accord-
ing to this assumption, many of the test cases be-
come overlapping and the smaller test sets will be
redundant; therefore, the authors are able to de-
sign a static program analysis method to find the
behavior-irrelevant features of the product line and
hence reduce the size of the test space. Unlike the
works presented in [20, 25, 30] that generally focus
on syntactical aspects of product lines for generat-
ing test cases and employ strategies such as pair-
wise testing, our approach employs a semantic ap-
proach for test generation where candidate tests are
developed based on a clear set of coverage criteria.
Hence, using our proposed approach the software
tester is able to generate tests based on specific cri-
teria that match her intent and hence is able to in-
terpret the test outcomes in light of the selected test
coverage criteria.

Other work which reduce the test space also exist
that mainly focus on the use of user requirements
to identify the most important set of features that
need to be tested [29]. Two recent systematic stud-
ies by Neto et al. [13] and Engstrm and Runeson
[15] cover the current state-of-the-art in software
product line testing.

7 Conclusions

In this paper, we have proposed to represent prod-
uct line feature models through context-free gram-
mars and defined eight coverage criteria for product
lines building on the work by Ammann and Offut
on BNF coverage criteria [1]. These coverage cri-
teria are based on the shortcomings of the existing
coverage criteria for BNF grammars for the pur-
pose of testing product line feature models. Our
work is one of the first in the field that proposes
clearly defined and validated coverage criteria for
testing software product lines. Equivalence parti-
tioning and boundary value analysis have been the
basis for defining the coverage criteria. Further-
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more, the proposed criteria have been used as a
foundation for defining several test suite generation
strategies. In order to evaluate the test suite genera-
tion strategies, several experiments were conducted
over SPLOT software product line feature mod-
els developed by both researchers and practition-
ers. The proposed strategies have shown to be quite
efficient for substantially reducing the number of
required tests and also having high fault detection
ratio. We evaluated two main hypotheses showing
that the test suite generation strategies based on the
eight coverage criteria are able to reduce the size of
the test space while maintaining a high fault cover-
age.
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