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This article analyses diffusion-type processes from a new point-of-view. Consider two statistical hypothe-
ses on a diffusion process. We do not use a classical test to reject or accept one hypothesis using the
Neyman–Pearson procedure and do not involve Bayesian approach. As an alternative, we propose using a
likelihood paradigm to characterizing the statistical evidence in support of these hypotheses. The method
is based on evidential inference introduced and described by Royall [Royall R. Statistical evidence: a
likelihood paradigm. London: Chapman and Hall; 1997]. In this paper, we extend the theory of Royall to
the case when data are observations from a diffusion-type process instead of iid observations. The empir-
ical distribution of likelihood ratio is used to formulate the probability of strong, misleading and weak
evidences. Since the strength of evidence can be affected by the sampling characteristics, we present a
simulation study that demonstrates these effects. Also we try to control misleading evidence and reduce
them by adjusting these characteristics. As an illustration, we apply the method to the Microsoft stock
prices.

Keywords: diffusion-type processes; evidential paradigm; the law of likelihood; likelihood ratios;
statistical evidence; misleading evidence

AMS Subject Classifications: 62A99; 62F03; 62M02

1. Introduction

Inference on stochastic processes involves analysis of dependent observations. The earliest
work on statistics for stochastic processes was done by Grenander.[1] He continued to study
this subject and extended much of statistical concepts and methods for stochastic processes.
‘Abstract inference’ is a complete collection of the result of these studies.[2] Hypothesis testing
for stochastic processes is one of his most important works in this book. Some other earlier issues
are Anderson and Goodman,[3] Billingsly,[4] Hajec,[5] Rao [6] and Lipster and Shiryeyv.[7]

Recently studies on inference for stochastic processes are excessive and is specialized to
branches of stochastic processes, but in this paper we focus on diffusion processes. Suppose
W(t) is a Wiener process and consider the following stochastic differential equation (SDE):

dXt = a(t, Xt) dt + σ(t, Xt) dW(t).

*Corresponding author. Email: khalil.shafie@unco.edu
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2 A. Dadgar et al.

This equation under some conditions has a unique continuous strong solution [8] called diffusion-
type process. Diffusion process is of the form

Xt = X0 +
∫ t

0
a(s, Xs) ds +

∫ t

0
σ(s, Xs) dW(s).

For example, let Xt denote the coordinates of a particle in a liquid at an instant t. The velocity of
the motion liquid at the point x and the instant t is equal to a(t, x). Also suppose that fluctuational
movement of this particle is a Wiener process with 0 mean, then Xt is a diffusion-type process.[8]

Diffusion-type process is used for model building in social, physical, engineering, financial
and medical sciences. In economics and insurance marketing, diffusion process is a standard
instrument for modelling the swing of price. Practically when we use diffusion process for mod-
elling a real process, we meet unknown parameters which need to be estimated. This is done by
observing continuous realizations of the process or from discrete sample data. Most of the time
the process is not observable continuously because of restrictions on measuring instrument or
inability of observations at all the time points. The idea of parameter estimation for discretely
observed diffusion models is discussed in the early work by Le Breton.[9] Furthermore estima-
tion of unknown parameter in diffusion processes is discussed in [10–12]. Pedersen [13] offered
a method for approximating maximum likelihood estimator (MLE) for diffusion processes and
discussed consistency and asymptotic normality of that estimator.[14] Ait-Sahalia [15] studied
nonlinear diffusion processes and presented a method to estimate the transition density function
of these processes. Parakasa Rao [8] presented several different methods for parameter estima-
tion of diffusion processes and also studied some properties of estimators such as consistency and
asymptotic normality. Sorensen [16] presented his PhD thesis about Inference for diffusion pro-
cess. He discussed estimation of diffusion parameters, and approximation of the score function
for discretely observation and designed likelihood approximations for volatility models (spe-
cial case of diffusion). Pedersen [17] used the diffusion process for modelling the nitrous oxide
emission rate from the soil surface. A Markov-chain Monte Carlo methodology for analysis of
the diffusion model with application in finance is presented by Eraker.[18] Estimating multi-
dimensional unknown parameter of diffusion processes is studied by Biby and Sorenson.[19]
Ait Sahalia [20] presented an approximation approach for the maximum likelihood estimation
for diffusion processes. The numerical techniques for obtaining MLE of diffusion processes
are presented in [21]. Biby et al. [22] studied some methods for estimating parameters when
marginal distribution and auto-correlation are given. Chen et al. [23] discussed a test for diffu-
sion models based on kernel estimation. Boukhetala and Guidoum [24] designed a R package,
say Sim.DiffProc, which provides a simulation of diffusion processes and different methods of
simulation of solutions for SDEs of the Ito’s type, in financial modelling and other areas of
applications.

As seen, much effort has been done by statisticians to analyse diffusion processes and test or
estimate the unknown parameters. But a very important question is ‘What do data say about the
parameters?’. Neither the question nor its answer is to be found in the above works. In statistical
hypothesis, a very important object is the support of data for statistical hypotheses. When do
data organize evidence in favour of one hypothesis vis-a-vis another? When does a given set of
observation support one hypothesis over another? In this paper, we will deal with this question
and show that measuring the statistical evidence can be a competitor for available methods to
analyse diffusion processes.

The structure of this article is as follows. Section 2 introduces the evidential inference and
extends this issue to diffusion processes. Section 3 considers two hypotheses for a parametric
diffusion process and discusses the calculation of evidential index. Some specification of sam-
pling can impress the strength of the statistical evidence, Section 4 studies these effects through
simulation, Section 5 applies the method to the Microsoft stock prices and Section 6 concludes.
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2. Evidential inference for diffusion processes

2.1. Evidential inference

Sciences look into statistics for help in interpreting data. Scientists expect from statistics to make
a clear image from the collected real data such that they can evaluate support of observations
from the hypothesis they think may be true. One of the inference method in classical statistics is
hypothesis testing. The Neyman–Pearson approach is often used for hypothesis testing. Despite
of its logical structure and its strong mathematical fund, using it leads to some defect in statistical
methods.

(A) The result of a Neyman–Pearson test is to accept or reject a hypothesis over another.
This method answers ‘Yes’ or ‘No’ and all different theorems in this approach are designed and
proved with the default that our goal is to reject or accept the null hypothesis. This method cannot
evaluate the measure of support of data from H1 over H2.

(B) In Neyman–Pearson test, the probability of type one error is specified before test by
researcher. Thus, accuracy of this test is not characteristic of the result.

Generally two types of accuracy could be defined for a statistical test, pre-experimental accu-
racy and post-experimental accuracy. Pre-experimental accuracy is the sole characteristic of the
test regardless of the observation determined by the researcher and can vary from a researcher
to another. But post-experimental accuracy is determined after observing and collecting data. In
the Neyman–Pearson method, whereas the probability of the type one error is determined before
the test, and directly affects the test result (rejection or acceptance of the hypothesis), only pre-
experimental accuracy is considered. So the result of the test is influenced by the researcher’s
decision about the size of the test.

(C) Neyman–Pearson test is designed to help with decision-making problem, when the situ-
ation induces us to choose between two actions.[25] Suppose that we want to analyse the two
hypotheses H1 and H2, and by that we want to decide which of the two actions A or B to take?
The best answer for this question is obtained by Neyman–Pearson test.

Now, consider this question; Which hypothesis is supported more by the observations, H1 or
H2? And how strong is this support? Neyman–Pearson method does not provide any answer for
this question. This essential question had not been answered, maybe because for half a century
(1930–1990), all statistical methods were dominated by the popular Neyman–Pearson theory.
What do statistical data as evidence say about our hypotheses? This question is answered in
evidential inference.

2.2. The law of likelihood

Evidential inference uses the law of likelihood as the base for interpretation of statistical data as
evidence. The law of likelihood was proposed for the first time by Hacking.[26] If one hypoth-
esis H1 implies that a random variable X takes the value x with f1(x) probability while another
hypothesis H2 expresses that this probability is f2(x), then the observation X = x is evidence
supporting H1 over H2 if f1(x) > f2(x) and the likelihood ratio R(x) = f1(x)/f2(x) measures the
strength of the evidence.

Likelihood ratio has a basic and important role in statistical inference. Its application for
MLE calculation and solving problem for hypothesis testing is obvious. In evidential inference
likelihood ratio measures the strength of statistical evidence for supporting a hypothesis over
another.[27] Likelihood ratio that is close to 1 represents a weak evidence, and extreme ratio
(very large or very close to 0) represents a strong support. It is logical that a large number k be
chosen and when the likelihood ratio is greater than k or less than 1/k we count data as strong
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4 A. Dadgar et al.

evidence, and when it takes value between 1/k and k we conclude that evidence is weak. The
values k = 8 and 32 have been proposed as benchmark by Royall.[27] Also Jeffreys [28] and
Edward [29] have proposed similar criteria. In this paper, we use Royall’s benchmark.

2.3. Misleading evidence

Consider a set of observation x and the likelihood ratio R(H1, H2, x) = f1(x)/f2(x) for two
hypotheses H1 and H2, R can take any value from 0 to infinity. Suppose in reality H2 is true,
if R takes a value greater than k = 8, then the data are a strong evidence to support H1 over H2,
so the evidence is strong but misleading. For a large number of k if R > k when H2 is true, data
are misleading evidence. Symmetrically when H1 is true, if R < 1/k evidences are misleading.

In statistical hypotheses, using data as evidence was proposed by Royall [27] for the first
time. Some other earlier issues are: probability of observing misleading evidence,[30] likelihood
methods for measuring statistical evidence,[31] interpreting statistical evidence by imperfect
models,[32] statistical evidence in sampling.[33] DeSantis [34] studied determination of sample
size using statistical evidence. Emadi et al. [35] compared record data and random observations
based on statistical evidence. Statistical evidence for regression models is studied by Blume
[36] and Blume et al.[37] Tompson [38] compiled a book in the nature of statistical evidence.
Evidential inference for record data is considered in [39]. Kateria and Balakrishnan [40] deal
with statistical evidence in contingency table analysis. Hoch and Blume [41] studied statistical
evidence for a cost-effectiveness analysis. Lastly mixture models in view of evidential inference
is studied in [42].

The Universal Bound. In evidential analysis observing strong misleading evidence is possible
but fortunately the probability of observing this improper evidence is controllable. There exists
an upper bound for this probability, and we are able to compute it. This upper bound is true for
all random samples observed from any arbitrary distribution, and hence is called universal.[30]

Theorem 2.1 Suppose under Hi hypothesis (i = 1, 2), X is distributed with fi density function,
then the probability of observing misleading evidence is lower than 1/k. Namely:

(A) P

(
f1(X )

f2(X )
> k | H2

)
≤ 1

k
(B) P

(
f1(X )

f2(X )
<

1

k
| H1

)
≤ 1

k

For a proof, see Royall.[30]
This inequality can be used for a sample from a diffusion process because the base of its proof

is Markov inequality.

2.4. Likelihood ratio for diffusion processes

This paper is an effort to characterize diffusion processes through likelihood paradigm. Con-
sider two statistical hypotheses about an unknown parameter in a diffusion process, we do not
use Neyman–Pearson approach or P-value procedure. As a complement for current techniques,
we propose measuring and illustrating observation as statistical evidence. In this framework,
we begin by calculating the Radon–Nikodym derivative for two hypotheses about diffusion
processes, of course the likelihood ratio is our intention. Afterwards we attempt to find the
empirical distribution of the likelihood ratio. Finally, the probability of misleading evidence and
weak evidence are discussed. Here, we study models in which the diffusion coefficient does not
depend on θ .

A very important problem in relation with stochastic processes is how to calculate the likeli-
hood ratio. Because, in abstract spaces, there exists no natural invariant Lebesgue measure which
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can be used to define the likelihood ratio, we let the Radon–Nikodym derivative of a hypothetical
measure with respect to another play the role of the likelihood ratio.[2]

Suppose PT
θ1

, PT
θ2

denote two probability function corresponding to H1 and H2 for stochastic
process {Xt : 0 ≤ t ≤ T}. The likelihood ratio R(Xt, θ1, θ2) = (dPT

θ1
/dPT

θ2
)(Xt) is the Radon–

Nikodym derivative. The likelihood function is defined as L(θ) = (dPT
θ /dμ)(Xt) where μ is a

σ -finite measure relative to which all measures PT
θ are absolute continuous.

Here, we discuss the diffusion-type process Xt of the form

dXt = a(t, Xt, θ) dt + σ(t, Xt) dWt,

where Wt is a standard Wiener process and only the draft coefficient depends on the parameter
and the diffusion coefficient does not. Now suppose the following hypotheses for θ , H1 : θ =
θ1, H2 : θ = θ2. We want to use evidential inference approach to determine and compute the
support of observation from these two hypotheses. Consider time interval [0, T], we want to
record the process in this interval. As said, the likelihood ratio for this process is obtained through
Radon–Nikodym derivative as

dPT
θ

dPT
W

= exp

(∫ T

0

a(t, Xt, θ)

σ 2(t, Xt)
dXt − 1

2

∫ T

0

a2(t, Xt, θ)

σ 2(t, Xt)
dt

)
.

For a proof, see [8]. By Ito’s formula,[43] the first term in this expression changes to

∫ T

0
a(t, Xt) dXt = F(T , XT ) −

∫ T

0
f (t, Xt) dt,

where F(t, x) = ∫ x
0 a(t, y) dy, and f (t, x) = (d/dt)F(t, x) + 1

2 (d/dx)a(t, x).

3. Measuring statistical evidence

In this section, we present a method for calculating the empirical distribution of the likeli-
hood ratio of two hypotheses on a diffusion process, using observations under both hypotheses.
Also, we use empirical distribution to obtain the probability of strong evidence (strong sup-
port from true hypothesis), weak evidence and misleading evidence (strong support from wrong
hypothesis).

First, we generate a realization of the process under H1, using Sim.DiffProc package of R.
Next, we compute the likelihood ratio. We repeat this process M times so for every repetition
we have a likelihood ratio value. Finally, we obtain the empirical distribution of the likelihood
ratio.

Example 3.1 Suppose Xt is a diffusion process with equation: dXt = θXt dt + dWt, where θ is
an unknown parameter and we have statistical hypotheses H1 : θ = 2, H2 : θ = 3. We want to
find the statistical evidence in support of these two hypotheses.

First, we simulate the process assuming H1 : θ = 2, and record the observations in inter-
val [0, 2], with the time increment of �t = 0.001 between two observations. The sample path
is shown in Figure 1. Next, we obtain the likelihood function for both hypotheses. Since

D
ow

nl
oa

de
d 

by
 [

2.
14

7.
24

4.
17

] 
at

 1
2:

02
 1

2 
Fe

br
ua

ry
 2

01
5 



6 A. Dadgar et al.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

time

X

Figure 1. A realization of the diffusion process of the form dXt = 2Xt dt + dWt .

a(t, Xt, θ) = θXt, and σ(t, Xt) = 1, the likelihood function is calculated as follows

L(θ | X ) = exp

[∫ T

0
θXt dXt − 1

2

∫ T

0
(θXt)

2 dt

]
.

For computing stochastic integral of
∫ T

0 θXt dXt, using Ito’s formula

F(t, x) = 1

2
θx2,

∂F(t, x)

∂t
= 0,

∂a(t, x)

∂x
= θ , and f (t, x) = θ

2
.

Now, ∫ T

0
θXt dXt = F(T , XT ) −

∫ T

0
f (t, Xt) dt = 1

2
θX 2

T −
∫ T

0

θ

2
dt,

and finally the likelihood function is

exp

[
θ

2
(X 2

T − T) − θ2

2

∫ T

0
X 2

t dt

]
, (1)

where XT is the last observation. Since Xt is not a direct function of t,
∫ T

0 X 2
t dt is not directly

computable; so numerical method is necessary, and Riemann or Simpson approximation is use-
ful. In this example, we use the Riemann method to approximate

∫ T
0 X 2

t dt by
∑N

t=0 X 2
t �t, where

�t = 0.001. The results are log L(θ1) = 56.35, log L(θ2) = 39.62, and R(θ1, θ2) = exp(16.72) =
18255921, so the observation are extremely strong evidence in favour of true hypothesis H1.

Example 3.2 Consider the diffusion process in Example 1 with the same hypotheses. Now, we
want to approximate the distribution of the likelihood ratio. First, all the above steps are repeated
M = 1000 times; For each realization, we have a couple of likelihood function values L(θ1, X )
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Table 1. Statistical evidence obtained from
empirical distribution of the likelihood ratio.

H1 H2

Strong 0.940 0.865
Misleading 0.054 0.129
Weak 0.006 0.006

and L(θ2, X ). Next, using these M couples we compute the likelihood ratios. Now, the empirical
distribution of the likelihood ratio is computable. We obtain the probability of strong, weak and
misleading supports.

Now all the above processes are repeated for a diffusion process with the same equation,
except that θ = 3. Thus again we have a distribution for the likelihood ratio with the difference
that now H2 is true. The results are given in Table 1. We can see from this table that when the data
are produced with H1 they are strong support for the true hypothesis (H1) with the probability
of 0.940, they are misleading with strong support from the wrong hypothesis with the proba-
bility of 0.054. Finally, the data are weak evidence (strong support for none of the hypotheses)
with the probability of 0.006. The second column shows these probability for the data produced
under H2.

4. Simulation study

The strength of a realization of a diffusion process as statistical evidence can be affected by
some sampling characteristics and/or hypotheses. In this section, we aim to study this effects
by simulation. The items that we study their effects on strength of statistical evidence are: the
difference between two simple hypotheses | θ1 − θ2 |, last time of sampling T, the time between
observations or briefly sampling interval �t, and the number of trajectories used for simulation
M. At the end, we compare the Simpson approximation with the Riemann for the strength of the
statistical evidence.

The criterion for evaluation is the strength of evidence and its stability. Whenever the probabil-
ity of strong evidence is closer to 1 the evidence is stronger and more desirable. Weak evidence is
undesirable and misleading evidence is the most unfavourable, thus smaller probability of them
shows a stronger evidence.

Note that in order to see the effect of a parameter on our evidence, other parameters are
intentionally kept fixed.

4.1. Difference between two parameters

Example 4.1 Suppose Xt is a diffusion process with equation: dXt = θXt dt + dWt, where θ is
an unknown parameter. We let θ1 = 5 to be fixed and study the effect of changing θ2 by a step
increment from 1 to 10 on statistical evidence. The observations are generated under H1 : θ = 5
and M = 300, T = 1, �t = 0.01, then we measure the strength of evidence. The results are
given in Table 2. It is concluded that as distance between θ1 and θ2 increases, the probability of
weak and misleading supports decreases, so we obtain stronger support for the true hypothesis.
From Table 2, we can deduce for |θ1 − θ2| ≥ 3 the evidence is adequate and stable, and we
conclude that if |θ1 − θ2| < 3 we should set other components of sampling more strictly and
accurately to have strong evidence.
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8 A. Dadgar et al.

Table 2. Statistical evidence for fixed θ1 = 5 and changing θ2.

|θ1 − θ2| 0.25 0.5 1 1.5 2 3 4 5

Strong 0.00 0.02 0.02 0.07 0.63 0.95 0.98 0.99
Weak 0.03 0.07 0.08 0.11 0.13 0.05 0.02 0.01
Misleading 0.97 0.91 0.90 0.82 0.24 0.00 0.00 0.00

Table 3. Statistical evidence for different number of trajectories.

M 5 10 20 50 100 200 500 600 700

Strong 0.60 0.50 0.50 0.58 0.54 0.51 0.67 0.98 0.98
Weak 0.40 0.50 0.45 0.40 0.46 0.48 0.03 0.02 0.02
Misleading 0.00 0.00 0.05 0.02 0.01 0.00 0.00 0.00 0.00

4.2. Number of trajectories

Again consider the diffusion process in Example 3, with the hypotheses H1 : θ = 2, H2 : θ = 3.
We study the stability of statistical evidence when we gradually increase the number of repetition
in simulation from 5 to 700. Data are generated under H1 : θ = 2, T = 1, �t = 0.01. The results
are listed in Table 3. From this table, the statistical evidence for M ≥ 600 is strong and stable.

4.3. Sampling interval

For the above diffusion process and hypotheses, we study the stability of statistical evidence
with decreasing time interval between observations. We generated the data by simulation for
θ = 2, T = 1, M = 300. The result of simulation is given in Table 4.This table shows for �t ≤
0.001, we have stable strong evidence.

4.4. Last time of sampling

The strength of statistical evidence depends on the end time of observing the process. We want to
see the effect of T on strength of evidence. Here, the simulation is repeated for different T from
0.2 to 50 and θ = 2, �t = 0.01, M = 300. The evidential probabilities of different final time of
observations are given in Table 5. According to these results, we conclude that T > 2 is suitable
for strong stable evidence.

4.5. The Simpson approximation

Consider diffusion process dXt = θXt dt + dWt. As said in Section 2, we need numerical method
for the likelihood ratio computation. Since the Simpson approximation is more accurate than the
Riemann one, in this section, we obtain the integral by the Simpson method and compare the

Table 4. Statistical evidence for different sampling intervals �t.

�t 0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001

Strong 0.02 0.70 0.82 0.84 0.84 0.89 0.83 0.87 0.92 0.88
Weak 0.22 0.26 0.16 0.14 0.16 0.10 0.16 0.12 0.07 0.10
Misleading 0.76 0.04 0.02 0.02 0.00 0.01 0.01 0.00 0.00 0.02
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Table 5. Statistical evidence for different last time of sampling, T.

T 0.2 0.5 1.0 1.2 1.5 2 3 5 10 20 50

Strong 0.00 0.00 0.54 0.79 0.88 0.98 0.97 1.00 1.00 1.00 1.00
Weak 1.00 0.98 0.44 0.20 0.11 0.02 0.02 0.00 0.00 0.00 0.00
Misleading 0.00 0.02 0.02 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00

Table 6. Statistical evidence obtained from
empirical distribution of the likelihood ratio, with
Riemann and Simpson approximation.

Riemann Simpson

Strong 0.943 0.945
Misleading 0.007 0.005
Weak 0.005 0.005

results. For the Simpson approximation:

∫ T

0
f (x, t) dt = �t

3

(
f (X0) + 4

N/2∑
i=1

f (Xt2i−1) + 2
N/2−1∑

i=1

f (Xt2i) + f (XT )

)

thus ∫ T

0
X 2

t dt = �t

3

(
X 2

0 + 4
N/2∑
i=1

X 2
t2i−1 + 2

N/2−1∑
i=1

X 2
t2i + XT

)

We compute the likelihood ratio through both methods then compare the strength of statistical
evidence. The results are given in Table 6. It shows that the strength of statistical evidence using
the Simpson method is not different from that of the Riemann method.

5. Application on real data

Diffusion models are used intensively in mathematical finance for modelling interest rate, stock
prices and option prices.[8, 16, 21] To demonstrate the methods discussed in this paper, we apply
them to a real data set. We use daily Microsoft stock prices from 4 February to 25 July 2014
publicly available at www.nasdaq.com/symbol/msft/historical. The data are plotted in Figure 2.
Let Xt be the daily stock price and Yt = Xt − X0. We fit a simple model of the form dYt = θYt dt +
dWt to the data. This model is chosen for the purpose of illustration and might not fit the data
very well. The maximum likelihood approach is used first to estimate θ . To do this, the likelihood
function (1) is maximized to obtain θ̂ML = 1.9.

Now, we suppose the following two hypotheses for θ , H1 : θ = 2, H2 : θ = 3, we want to
study these two hypotheses via both classical and evidential statistics approaches. Since the
likelihood function is maximized at 1.9, we believe that H1 is closer to the real θ . It is nec-
essary to compute the likelihood value for both hypotheses, as in Example 3.1. The results are
log L(θ1) = 26.377 and log L(θ2) = 18.236.

First, we test the hypotheses through the Neyman–Pearson method. For a test of the size
of α, we need to specify a critical value C such that α = P(L(θ2)/L(θ1) > C | H1). Then, if
L(θ2)/L(θ1) > C the hypothesis H1 is rejected and accepted otherwise.
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Figure 2. Daily observations of the Microsoft stock price.

For α equal to 0.01 and 0.05 the critical values are 0.37 and 0.18, respectively. These values
are determined by simulation of the diffusion process under H1 hypothesis. The result for the
data is R(θ2, θ1) = L(θ2)/L(θ1) = 0.0003, so H1 is not rejected at these significance levels.

Now, consider the hypotheses evidentially. For this, we need R(θ1, θ2) = L(θ1)/L(θ2) and its
distribution. We calculate the empirical distribution of R(θ1, θ2), the statistical evidence is as
follows, the probability of strong, misleading and weak evidence is 0.93, 0.00 and 0.07, respec-
tively. Finally, the value of R(θ1, θ2) for the observation is computed equal to 3431.073 which is
so much greater than 8 or 32, and it is concluded that the observation support H1 strongly.

6. Conclusion

To analyse diffusion processes much attempt has been made and numerous statisticians studied
this area. The results are based upon Fisher approach, Neyman–Pearson theory or Bayesian pro-
cedure, but none of them are good enough to answer the question ‘What do these data say?’ when
we have statistical hypotheses. We proposed using a likelihood paradigm to answer this ques-
tion. We used the Radon–Nikodym derivative to obtain the likelihood ratio. Also we obtained
the empirical distribution of likelihood ratio via simulation. Furthermore, we measured the sup-
port of data in favour of a hypothesis over another. This study could be a good complement for
classical inference of diffusion processes.

Since some specification of sampling can impress the strength of the statistical evidence, we
evaluated these effects through simulation studies. From the result of these simulations, we con-
cluded that, although the misleading evidence is possible in this context, but fortunately we can
control them, and by adjusting the items of sampling we can reduce the probability of observing
misleading evidence desirably and therefore have favourably strong evidence.

In this paper, parametric evidential inference for diffusion processes was discussed, where
only the draft coefficient depends on the parameter and the diffusion coefficient does not. The
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extension of the results to the more general diffusion models is a good field of study for future,
but it may be more complicated because the computation of the likelihood function is not
straightforward in general cases and some approximation methods are necessary.
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