

8th Seminar on Geometry and Topology Amirkabir University of Technology, December 15-17, 2015

On Semicovering Maps

Majid Kowkabi* and Behrooz Mashayekhy and Hamid Torabi

Abstract

In this talk, after reviewing the concept of covering and semicovering maps, first we give a modified definition for semicovering maps which seems simpler than the original one given by J. Brazas. Second we present some conditions under which a local homeomorphism becomes a semicovering map.

AMS subject Classification 2010: 57M10, 57M12, 57M05.

Keywords: local homeomorphism, fundamental group, semicovering map.

1 Introduction

It is well-known that every covering map is a local homeomorphism. J. Brazas [2, Definition 3.1] generalized the concept of covering map by the phrase "A semicovering map is a local homeomorphism with continuous lifting of paths and homotopies". Note that a map $p: Y \to X$ has continuous lifting of paths if $\rho_p: (\rho Y)_y \to (\rho X)_{p(y)}$ defined by $\rho_p(\alpha) = p \circ \alpha$ is a homeomorphism for all $y \in Y$, where $(\rho Y)_y = \{\alpha : I = [0, 1] \to Y | \alpha(0) = y\}$. Also A map $p: Y \to X$ has continuous lifting of homotopies if $\Phi_p: (\Phi Y)_y \to (\Phi X)_{p(y)}$ defined by $\Phi_p(\phi) = p \circ \phi$ is a homeomorphism for all $y \in Y$, where $(PY)_y = \{\alpha : I = [0, 1] \to Y | \alpha(0) = y\}$. Also A map $p: Y \to X$ has continuous lifting of homotopies if $\Phi_p: (\Phi Y)_y \to (\Phi X)_{p(y)}$ defined by $\Phi_p(\phi) = p \circ \phi$ is a homeomorphism for all $y \in Y$, where elements of $(\Phi Y)_y$ are endpoint preserving homotopies of paths starting at y. He also gave a simpler definition in [3, Remark 2.5] for semicovering maps and showed that the condition continuous lifting of paths is enough for defining semicovering map, which is equivalent to the original definition of semicovering map given in [2, Definition 3.1].

Fischer and Zastrow showed that a local homeomorphism with Hausdorff domain is a semicovering if and only if all lifts of paths and their homotopies exist [4, Remark 5.1].

Now in this talk, we give a modified definition for semicovering maps which seems simpler than the original one given by Brazas [2, 3]. Moreover, we obtained some conditions under which

^{*}Speaker

a local homeomorphism is a semicovering map. In fact, we prove that a local homeomorphism with unique path lifting property (UPLP) and path lifting property (PLP) is a semicovering map. Also, we show that if $p: \tilde{X} \to X$ is a local homeomorphism, \tilde{X} is Hausdorff and sequential compact, then p is a semicovering map. By an example we show that a local homeomorphism is not necessary a semicovering map (see Example 3.3).

2 Notations and Preliminaries

Definition 2.1. ([6]). Assume that X and \tilde{X} are topological spaces. A continuous map $p : \tilde{X} \longrightarrow X$ is called a **local homeomorphism** if for every point $\tilde{x} \in \tilde{X}$ there exists an open set \tilde{W} such that $\tilde{x} \in \tilde{W}$ and $p(\tilde{W}) \subset X$ is open and the restriction map $p|_{\tilde{W}} : \tilde{W} \longrightarrow p(\tilde{W})$ is a homeomorphism.

In this talk, a local homeomorphism $p : \tilde{X} \longrightarrow X$ is denoted by (\tilde{X}, p) , and we always consider \tilde{X} a **path connected space** and p a **surjective map**.

Definition 2.2. ([1]) Let $p: X \longrightarrow X$ be a local homeomorphism and let $f: (Y, y_0) \to (X, x_0)$ be a continuous map with $f(y_0) = x_0$. Given \tilde{x}_0 in the fiber over x_0 . If there exists a continuous map $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ such that $p \circ \tilde{f} = f$, then \tilde{f} is called a **lifting** of f.

Definition 2.3. ([7]) Assume that X and \tilde{X} are topological spaces and $p : \tilde{X} \longrightarrow X$ is a continuous map. Given \tilde{x}_0 in the fiber over x_0 . The map p has " **path lifting property**" if for every path f in X, there exists a lifting $\tilde{f}: (I,0) \to (\tilde{X}, \tilde{x}_0)$ of f.

For abbrevition we write PLP instead of Path Lifting Property.

Definition 2.4. ([7]) Assume that X and \tilde{X} are topological spaces and $p : \tilde{X} \longrightarrow X$ is a continuous map. Given \tilde{x}_0 in the fiber over x_0 . The map p has "**unique path lifting property**" if for every path f in X, there is at most one lifting $\tilde{f} : (I, 0) \to (\tilde{X}, \tilde{x}_0)$ of f.

For abbrevition we write UPLP instead of Unique Path Lifting Property.

Let X be a fixed topological space. The set of all local homeomorphisms onto X with unique path lifting property forms a category. In this category a morphism from $p: \tilde{X} \to X$ to $q: \tilde{Y} \to X$ is a continuous function $h: \tilde{X} \to \tilde{Y}$ such that $p = q \circ h$.

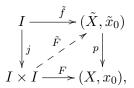
Theorem 2.5. Let (\tilde{X}, p) be a local homeomorphism of X, Y be a connected space, \tilde{X} be Hausdorff and $f: (Y, y_0) \to (X, x_0)$ be continuous. Given \tilde{x} in the fiber over x_0 there is at most one lifting $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x}_0)$ of f.

Proof. Let $\tilde{f} : (Y, y_0) \to (\tilde{X}, \tilde{x_0})$ and $f' : (Y, y_0) \to (\tilde{X}, \tilde{x_0})$ be two continuous map with $p \circ \tilde{f} = f$ and $p \circ f' = f$. Put $A = \{y \in Y | \tilde{f}(y) = f'(y)\}$, $B = \{y \in Y | \tilde{f}(y) \neq f'(y)\}$. Clearly $A \cup B = Y, A \cap B = \phi$ if $B = \phi$, then $\tilde{f} = f'$, hence we can assume that $B \neq \phi$. We show that A is an open subset of Y. Let $a \in A$, then $\tilde{f}(a) = f'(a) = b$. Since (\tilde{X}, p) is a local homeomorphism, there exists $v \subseteq \tilde{X}$ such that $b \in v$, $p : |_v : v \to p(v)$ is homeomorphism. Put

 $W = \tilde{f}^{-1}(v) \cap f'^{-1}(v)$, then $w \in W$, and W is an open subset of Y. So $p \circ \tilde{f}(w) = p \circ f'(w)$ and $\tilde{f}(w), f'(w) \in v$ and p is monomorphism on v thus $\tilde{f}(w) = f'(w)$ so $W \subseteq A$.

Now we show that A is closed. consider an arbitrary sequence $y_n \to y$ in A. So $\tilde{f}(y_n) \to \tilde{y}, f'(y_n) \to f'(y)$ since $y_n \in A, \ \tilde{f}(y_n) = f'(y_n)$ and since \tilde{X} is hausdorff, $\tilde{f}(y) = f'(y)$ and A = Y.

Theorem 2.6. [5, Theorem 3.1] (local homeomorphism Homotopy theorem for paths)Let (\hat{X}, p) be a local homeomorphism of X with PLP and \tilde{X} be T_2 . Consider the diagram of continuous maps



where j(t) = (t,0) for all $t \in I$. Then there exists a unique continuous map $\tilde{F} : I \times I \to \tilde{X}$ making the diagram commute.

Theorem 2.7. [5, Theorem 3.5] Let $p: \tilde{X} \to X$ be a local homeomorphism with PLP and \tilde{X} be T_2 . Let $x_0, x_1 \in X$ and $f, g: I \to X$ be paths such that $f(0) = g(0) = x_0$, $f(1) = g(1) = x_1$ and $\tilde{x}_0 \in p^{-1}(x_0)$. If $F: f \simeq g$ rel \dot{I} and \tilde{f}, \tilde{g} are the lifting of f and g respectively with $\tilde{f}(0) = \tilde{x}_0 = \tilde{g}(0)$, then $\tilde{F}: \tilde{f} \simeq \tilde{g}$ rel \dot{I} .

Theorem 2.8. [5, Theorem 3.2] (Lifting criterion) If Y is connected and locally path connected, $f: (Y, y_0) \to (X, x_0)$ is continuous and $p: \tilde{X} \to X$ is a local homeomorphism with UPLP and PLP where \tilde{X} is path connected, then there exists a unique $\tilde{f}: (Y, y_0) \to (\tilde{X}, \tilde{x_0})$ such that $p \circ \tilde{f} = f$ if and only if $f_*(\pi_1(Y, y_0)) \subset p_*(\pi_1(\tilde{X}, \tilde{x_0}))$. Moreover, if f is a local homeomorphism, then \tilde{f} is a local homeomorphism.

Corollary 2.9. [5, Corollary 3.3] If Y is simply connected and locally path connected and $p: \tilde{X} \to X$ is a local homeomorphism with UPLP and PLP and \tilde{X} is path connected, then every map $f: (Y, y_0) \to (X, x_0)$ has a lifting.

Corollary 2.10. [5, Corollary 3.4] If X is connected and locally path connected, (\tilde{X}, p) , (\tilde{Y}, q) are local homeomorphisms with UPLP and PLP, \tilde{Y} is T_2 and path connected, \tilde{X} is path connected, and $p_*(\pi_1(\tilde{X}, \tilde{x_0})) = q_*(\pi_1(\tilde{Y}, \tilde{y_0}))$, then there exists a homeomorphism $h : (\tilde{Y}, \tilde{y_0}) \to (\tilde{X}, \tilde{x_0})$ such that $p \circ h = q$.

Definition 2.11. [5, Definition 3.8] $p: \tilde{X} \to X$ is called a **regular local homeomorphism** if $p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ is a normal subgroup of $\pi_1(X, x_0)$.

3 Main Results

By Theorems 2.6 and 2.8 we can prove that the following results:

Theorem 3.1. If $p: \tilde{X} \longrightarrow X$ is a local homeomorphism with UPLP and PLP, then $p_*(\pi_1(\tilde{X}, \tilde{x_0}))$ is an open subgroup of $\pi_1^{qtop}(X, x)$.

Now, the following theorem is one of the main results of this talk which modifies the definition of semicovering maps.

Theorem 3.2. A map $p: \tilde{X} \longrightarrow X$ is a semicovering map if and only if it is a local homeomorphism with UPLP and PLP.

Note that there exists a local homeomorphism without UPLP and PLP.

Example 3.3. Let $\tilde{X} = ([0,1] \times \{0\}) \bigcup (\{1/2\} \times [0,1/2) \text{ with coherent topology with respect to } \{[0,1/2] \times \{0\}, (1/2,1] \times \{0\}, \{1/2\} \times (0,1/2)\} \text{ and let } X = [0,1].$ Define $p: \tilde{X} \to X$ by $p(s,t) = \begin{cases} s & t = 0 \\ s+1/2 & s = 1/2 \end{cases}$. It is routine to check that p is an onto local homeomorphism which dose not have UPLP and PLP.

Theorem 3.4. If \tilde{X} is Hausdorff and sequential compact and $p : \tilde{X} \longrightarrow X$ is a local homeomorphism, then p has Path Lifting Property.

Corollary 3.5. If \tilde{X} is Hausdorff and sequential compact and $p: \tilde{X} \longrightarrow X$ is a local homeomorphism, then p is a semicovering map.

Proof. X is Hausdorff and sequential compact so by Theorem 3.4 p has PLP and by Theorem 2.5 p has UPLP. Hence Theorem 3.2 implies that p is a semicovering map.

Definition 3.6. Let $p: (\tilde{X}, \tilde{x_0}) \to (X, x_0)$ be a local homeomorphism with PLP and \tilde{X} be T_2 and path connected. A **local homeomorphism transformation** is a homeomorphism $h: \tilde{X} \to \tilde{X}$ such that $p \circ h = p$. We define $LH(\tilde{X}/X) = \{h: \tilde{X} \to \tilde{X} | p \circ h = p, h \text{ is homeomorphism}\}$. Clearly $LH(\tilde{X}/X)$ forms a group with ordinary composition. Also $LH(\tilde{X}/X)$ acts on fiber $p^{-1}(x_0)$ by $h\tilde{x_0} = h(\tilde{x_0})$ for $h \in LH(\tilde{X}/X)$ and $\tilde{x_0} \in p^{-1}(x_0)$.

Theorem 3.7. Let X be connected, locally path connected, and let $x_0 \in X$ and (\tilde{X}, p) be a local homeomorphism of X with PLP and \tilde{X} be T_2 and path connected. Then $LH(\tilde{X}/X)$ acts on $p^{-1}(x_0)$ transitively if and only if (\tilde{X}, p) is a regular local homeomorphism of X.

Theorem 3.8. Let (\tilde{X}, p) be a local homeomorphism of X with PLP and \tilde{X} be T_2 and path connected.

1. If $h \in LH(\tilde{X}/X)$, and $h \neq 1_{\tilde{X}}$, then h has no fixed point.

2. If $h_1, h_2 \in LH(\tilde{X}/X)$ and there exists $\tilde{x} \in \tilde{X}$ with $h_1(\tilde{x}) = h_2(\tilde{x})$, then $h_1 = h_2$.

References

- A. Arhangelskii, M. Tkachenko, *Topological Groups and Related Structures*, Atlantis Studies in Mathematics, 2008.
- J. Brazas, Semicoverings: A generalization of covering space theory, Homology Homotopy Appl. 14 (2012), no. 1, 33-63.
- [3] J. Brazas, Semicoverings, coverings, overlays, and open subgroups of the quasitopological fundamental group, Topology Proceedings Volume 44, 2014 285-313.
- [4] H. Fischer and A. Zastrow, A core-free semicovering of the Hawaiian Earring, Topology Appl. 160 (2013), no. 14, 1957-1967.
- [5] M. Kowkabi, H. Torabi, B. Mashayekhy, On the category of local homeomorphisms with unique path lifting property, Proceeding of 24th Iranian Algebra Seminar, November 12-13, 2014, 96-99.
- [6] J.R. Munkres, *Topology: A First Course*, second ed. Prentice-Hall, Upper Saddle River, NJ, 2000.
- [7] J.J. Rotman, An Introduction to Algebraic Topology, Springer-verlag New York, 1993.

Majid Kowkabi Department of Pure Mathematics Ferdowsi University of Mashhad P.O.Box 1159-91775, Mashhad, Iran. E-mail:m.kowkabi@stu.um.ac.ir Behrooz Mashayekhy Department of Pure Mathematics Ferdowsi University of Mashhad P.O.Box 1159-91775, Mashhad, Iran. E-mail:bmashf@um.ac.ir Hamid Torabi Department of Pure Mathematics Ferdowsi University of Mashhad P.O.Box 1159-91775, Mashhad, Iran. E-mail:h.torabi@ferdowsi.um.ac.ir