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Abstract. In this paper, we present a framework for developing ontolo-
gies in a modular manner, which is based on the notions of interfaces and
knowledge encapsulation. Within the context of this framework, an on-
tology can be defined and developed as a set of ontology modules that can
access the knowledge bases of the others through their well-defined inter-
faces. An important implication of the proposed framework is that on-
tology modules can be developed completely independent of each others’
signature and language. Such modules are free to only utilize the required
knowledge segments of the others. We describe the interface-based modu-
lar ontology formalism, which theoretically supports this framework and
present its distinctive features compared to the exiting modular ontology
formalisms. We also describe the real-world design and implementation
of the framework for creating modular ontologies by extending OWL-DL
and modifying the Swoop interfaces and reasoners.

1 Introduction

OWL-DL has been well established and widely used in the recent years as an
expressive description logic based language for representing ontologies. Nonethe-
less, several challenges still exist in efficiently creating large-scale OWL-DL on-
tologies specially for complex domains. Developing a large monolithic ontology
can lead to performance difficulties in reasoning, management challenges when
some parts of the ontology changes based on new domain requirements, and
also issues in ontology integration when several parts of an ontology have been
developed by different groups of experts.

Recently, the development of ontologies in a modular manner has been pro-
posed to address the above mentioned issues [19]. The idea of modularization
can also be seen in the software engineering field and mainly in Object Oriented
design where complex software systems are modeled as a set of self-contained
components [18]. The behavior of these components are defined through their
interfaces which are separated from their later detailed implementation. Conse-
quently, components can utilize each others’ functions without being consciously
aware of each other detailed implementation. Then implementation changes can
occur even after logical component inter-connections have been specified.

A. Sheth et al. (Eds.): ISWC 2008, LNCS 5318, pp. 517–532, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



518 F. Ensan and W. Du

Due to their perceived advantages, a considerable amount of work has been
dedicated to creating new formalisms for ontologies which support developing
ontologies in a modular manner. Distributed Description Logics (DDL) [3], Pack-
age Based Description Logics P-DL) [1], E-connections [14] and Semantic Import
[2] are among such formalisms. DDL defines a modular ontology as a set of on-
tology modules which are connected through ‘bridge rules’. A bridge rule forms a
mapping between two concepts of two different ontology modules. Further, Con-
text OWL (C-OWL) [4] has been introduced as an extension to OWL to support
the syntax and semantics of such bridge rules. E-connections is another formal-
ism, which supports ontology modularization by introducing a new type of roles
(called links) whose domain and range belong to different ontology modules. The
authors in [10] describe their extension to OWL for supporting E-connections
‘links’ and also the modification of the Pellet reasoning engine to support its
semantics. The Semantic Import and P-DL formalisms allow ontology modules
to import the knowledge base elements of each other.

Despite these numerous efforts, it seems that ontology modularization is still
far from the level of maturity needed to be accepted as an established method for
developing ontologies. For instance, E-connections is based on a limiting precon-
dition that the domain of the ontology modules need to be completely disjoint.
DDL restricts mappings to ontology concepts and does not support role map-
pings or creating complex concepts using foreign terms. The decidability of con-
sistency checking in P-DL in its current form can only be proven when it restricts
importing terms to concepts and also when all of the component modules are
in the same description logics language [1]. Moreover, as it is shown in [9] P-DL
consists of some ambiguities in its introduced semantics such that for performing
a reasoning task on a module, the union of the knowledge bases of all modules
should be processed. Semantic Import provides reasonable expressiveness that
allows a module to use the others’ terms in its complex concepts, however, the
properties of the formalization is being discussed under the assumption that a
module imports all of the symbols of the others [2].

In addition to the technical issues discussed above, there is a missing feature
in the existing formalisms, that is support for ‘knowledge encapsulation’, which
would benefit ontology modularization. By knowledge encapsulation we mean
providing support for ontology modules to define their main contents using well-
defined interfaces, such that their knowledge bases can only be accessed by other
modules through these interfaces. The advantages of knowledge encapsulation
in ontology design and development can be enumerated as follows:

– Since ontology modules are connected indirectly through their interfaces, they
can evolve independent of each others’ signature and knowledge bases. While
the interfaces of a module do not change, its entire knowledge base can change
without requiring other connected modules to change their signatures.

– An ontology module can express its knowledge content through different
interfaces with different levels of complexity and completeness. Hence, mod-
ules can access those parts of an ontology module they need without being
required to go through the complicated knowledge base.
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– Using interfaces, the specification of the knowledge of an ontology module
and the exact meaning of these content can be separated. Consequently, an
ontology module can provide new meaning for a concept which is used by
other modules through its interfaces.

In this paper, we propose a new framework for developing ontologies in a mod-
ular manner based on an interfaces-based formalism. This framework supports
a type of knowledge encapsulation that allows ontology modules to define vari-
ous interfaces through which other ontology modules can access their knowledge
base. Based on this interface-based formalism, a modular ontology is defined as a
set of ontology modules, which can be developed independent of each others’ lan-
guage and signature. Furthermore, the formalism addresses the technical issues
existing in the current ontology modularization proposals. The interface-based
formalism enjoys a great expressiveness power, which allows a module to create
its knowledge base from the other modules’ knowledge expressed through their
interfaces. At the same time, it allows for partial reuse, i.e., it lets a module use
only the necessary parts of the knowledge base of the other modules. In addi-
tion, the consistency checking of a modular ontology is decidable even though
the modules are in different description languages.

The rest of this paper is organized as follow: Section 2 provides preliminar-
ies regarding basics of description logics and also epistemic queries. Section 3
introduces the syntax and semantics of the proposed interface-based formalism.
Section 4 presents the important features of the formalism. Section 5 illustrate
the implementation of the framework for OWL ontologies. Section 6 discusses
related works and finally, section 7 concludes the paper.

2 Preliminaries

OWL-DL provides an expressiveness equivalent to the SHOIN (D) Description
Logic (DL). A DL knowledge base is defined as Ψ = 〈T , A〉, where T denotes
TBox and comprises of a set of general inclusion axioms and A stands for ABox
and comprise of a set of instance assertions. The signature of an ontology is
defined as a set of all concept names (CN ), role names (RN ) and individulas
(IN ) which are included its knowledge base. The semantic of a DL is defined
by an interpretation I = (ΔI , ·I) where ΔI is a non-empty set of individuals
and ·I is a function which maps each C ∈ CN to CI ⊆ ΔI , each R ∈ RN to
RI ⊆ ΔI × ΔI and each a ∈ IN to an aI ∈ ΔI . An interpretation I satisfies a
TBox axiom C � D iff CI ⊆ DI , satisfies an ABox assertion C(a) iff aI ∈ CI

and an ABox assertion R(x, y) iff 〈xI , yI〉 ∈ RI . An interpretation I is a model
of a knowledge base Ψ if it satisfies every TBox axiom and ABox assertion of Ψ .
A knowledge base is consistent iff it has a model. A concept C is satisfiable if
there is a model I for Ψ such that CI �= ∅.

DL ontologies are based an open-world assumption, i.e., the knowledge base
of an ontology is not considered to be complete and consequently if something
cannot be proven, it cannot be assumed to be false based on the knowledge base.
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Nevertheless, there have been some proposals in the literature that attempt to
augment the semantics of DLs with close-world reasoning capabilities. Epistemic
operator K is introduced in [7] and allows queries whose result can be captured
by the closed-world assumption approach. K queries ask about the facts that
are known to be true with the extent of information available in the current
knowledge of a given knowledge base. [5] investigates mechanisms for posing K
epistemic queries to expressive DL knowledge bases. [17] shows the capability of
the Pellet reasoning engine for answering K queries for concepts and roles that
are posed to simple knowledge bases.

To have a formal understanding of K queries, let C be a concept in a descrip-
tion logic knowledge base Ψ , KC reports a set of individuals which are known
to belong to C in every model of Ψ . An epistemic interpretation for Ψ is defined
as I = (J , M), where J is an interpretation of Ψ with the domain Δ, and M
is a set of interpretations for Ψ over Δ. The epistemic interpretation for simple
epistemic concepts and roles are defined as below:
(KC)I =

⋂
j∈M(C)j

(KR)I =
⋂

j∈M(R)j

An epistemic model for a knowledge base Ψ is a maximal non-empty set M such
that for every J ∈ M, (J , M) satisfies all TBox inclusion axioms and ABox
assertions of Ψ . Consider an epistemic query KC(x) posed to a knowledge base
Ψ , Ψ � KC(x) if for every epistemic model I = (J , M) for Ψ , x ∈ KCI. An
epistemic query KR(x, y) is also defined in the same way as Ψ � KR(x, y) if for
every epistemic model I = (J , M) for Ψ , (x, y) ∈ KRI.

3 An Interface-Based Framework for Modular Ontologies

3.1 Formalization

In this section, we introduce the interface-based formalization of modular on-
tologies and highlight its main features using the following example.

Example 1. Consider a case where we want to develop an ontology for the tourism
domain. We have found an ontology describing different places in Canada and an
ontology which covers North America. We desire to utilize these existing ontolo-
gies rather than gathering and categorizing geographical information regarding these
places in the tourism ontology from scratch. In addition, we want to have a reliable
way to understand and use the main features of the these ontologies without being
required to go through their knowledge bases and figure out their taxonomies and
axioms.

Furthermore, suppose that we introduce the Sightseeing concept as a notion to
represent the places where tourists are interested to visit. Each sight needs to have
a name and a specific address, so that a tourist can easily locate it. However,
it is possible to specialize the definition of a sight from different perspectives.
For example describing from a scientific perspective, a sight refers to a place
that exhibits scientific value. This place may relate to one or more branches of
science and can be visited by various scientists. On the other hand, from the
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natural perspective, a sight relates to a place with natural attractions, such as
beaches, mountains, parks and jungles. Visiting the places in this category is most
suitable in certain seasons of the year and the visitors may need to take specialized
equipments with them to be able to enjoy their visit. In the tourism ontology, we
desire to only know the common sense of sightseeing concept, while its different
specializations can be later bound to it based on different requirements.

Through the interface-based modular ontology formalism, a ‘modular ontology’
is defined as a set of ‘ontology modules’(modules) and ‘interfaces’. An interface
is a set of knowledge base expressions, which are used in a module but their
exact meaning are provided by other ontology modules. An ontology module
may utilize or realize a set of interfaces. Referring to Example 1 we can define a
modular ontology as a set of ontology modules: Tourism and Canada Destination,
where the Canada Destination ontology module ‘realizes’ the interface concept
Place and provides its meaning, properties and instances. The interface concept
Place would be ‘utilized’ by the Tourism ontology. Definitions 2 and 3 give the
formal specifications of interfaces and modules in the proposed formalism.

Definition 2. An interface I is defined as I = 〈CN , RN , T 〉 where T is the
TBox of the interface and CN and RN are sets of concept and role names used
in T . I has no ABox assertions. We say an interface I ′ extends I if CI′

N 	 CI
N

and RI′

N 	 RI
N or T I′ ≡ T I � α where α is a set of general inclusion axioms

defined using the signature of I ′.

It is easy to see that if I ′ extends I and I ′′ extends I ′, I ′′ also extends I. We
use Exd(I) to denote a set of all interfaces that extends I.

Definition 3. An ontology module M is defined as M = 〈Ψ, Ir, Iu〉 where Ψ is
the knowledge base and Ir is a set of all interfaces which is realized by M and
Iu is a set of all interfaces which is utilized by M . M can be in any description
logic language, but it must support nominals.

We define a module M as consistent with regards to its interfaces iff Ψ∪(
⋃

i∈Ir

Ti) ∪ (
⋃

j∈Iu
Tj) is consistent. A module which utilizes or realizes an interface

must be consistent regarding to it. Let P be a concept or role name in an interface
I, it is referred in the knowledge base of modules as I : P . A module M realizes
an interface I, either if I ∈ Ir or there is an i ∈ Exd(I) such that i ∈ Ir.

Given an interface, we refer to the module which uses it as utilizer module and
the module which gives semantics to its terms as realizer module.

A module which utilizes an interface needs to access the instances provided by
the realizer modules. In the interface-based formalism, we follow a query-based
approach to augment the semantic of a utilizer module with the individuals pro-
vided by the realizer modules. For instance, regarding Example 1, the Tourism
ontology module may pose a query to the Canada Destination ontology on the
location of an accommodation. Through the proposed formalism, the Tourism
KB is augmented with the individuals that are provided by Canada Destination
for the Place concept. This augmentation approach brings considerable advan-
tages for the framework. First, after augmenting a module with appropriate
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individuals from other modules, reasoning engines are not required to take into
account the other modules’ knowledge bases anymore. Analogous to the idea
of knowledge compilation which is employed in [19] for DDL, knowledge aug-
mentation leads to local reasoning instead of reasoning on external modules,
which entails lower time complexity. Secondly, The augmentation process does
not pose any limitations on the semantics of the module which realizes an inter-
face. This module’s semantics can be changed independently of the semantics of
those modules which utilize its interfaces. In other words, those modules which
require an interface are dependent on the interface of the realizer modules but
not vice versa.

In order to augment the domain of a utilizer module, the proposed formal-
ism uses epistemic queries to retrieve the individuals of interfaces’ concepts and
roles from the realizer module. The hypothesis behind this approach is that a
utilizer module looks at the realizers as black-boxes whose knowledge about the
interface terms are compete enough for reasoning. As an explanatory example
assume that in the case of Example 1, the Tourism ontology uses an interface
concept SingleLingualCity which refers to those cities that have only one of-
ficial language:

SingleLingualCity ≡ City 
 ≤ 1 hasOfficialLang.Language

North America Destination ontology realizes this interface concept with the
following expressions in its knowledge base:

City(New York),
hasOfficialLang(New York, English),
Language(English)

From the point of view of the Tourism ontology, the knowledge base of North
America is complete for reasoning about places and cities, so New York will
be recognized as a SingleLingualCity. Observe that without using epistemic
queries, SingleLingualCity would not match any instance from the realizer
module.

Based on the definition of interfaces and modules, we now define a modular
ontology as follows:

Definition 4. A modular ontology is a triple O = 〈M, I, F 〉 where M is a set
of ontology modules, I is a set of interfaces whose description logic is less or
equally expressive with regards to the description logic of the ontology modules
(description constructors of any given interface is the subset of the description
constructors of any ontology module) and F is a configuration function F :
M×I → M which chooses one realizing module for every utilizer module-Interface
pair. F (M, I) = M ′ if:

(c1) I ∈ IM
u and ( I ∈ IM ′

r or there is an i ∈ Exd(I) such that i ∈ IM ′

r )
(c2) M and M ′ are consistent regarding I and i
(c3) Let Ci and Rj be the result sets of queries K I : Ci and K I : Rj posed to

M ′, ΨM

⋃
Ci∈I(I : Ci ≡ Ci)

⋃
Rj∈I(I : Rj ≡ Rj) is consistent.
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A path PATH in an modular ontology is defined as a set of modules which
are connected through the configuration function F . PATH(M) specifies the path
which includes module M .

Based on Definition 4, the final form of a modular ontology is specified by the
configuration function F. This function shows the connected modules thorough
interfaces and its value can be set at configuration time. Introduction of the
configuration function F in Definition 4 implies the development and configura-
tion times of a modular ontology are distinguishable. The development time is
when an ontology module is developed, its necessary interfaces as well as those
interfaces that it realizes are specialized. The configuration time is the time
when the required modules are selected to realize the interfaces of a particular
module. (e.g. someone may develop the Tourism ontology through the proposed
framework and specify that it needs the place interface concept. However, at
configuration time it would be finalized whether the Canada ontology or the
North America ontology will realize the place concept).

For being connected through the configuration function, two ontology modules
should satisfy the three conditions mentioned in Definition 4. First of all a module
should realize an interface or one of its extension in order to be selected by
the configuration function and be connected to the utilizer module. Secondly,
two modules should be consistent with regards to their interfaces. And finally,
the third condition ensures that the integration of two modules does not entail
inconsistencies. Since the domain of the utilizer module would be augmented by
the individuals of the interface terms from the realizer modules through epistemic
K queries, condition three ensures that this augmentation does not lead to an
inconsistency in the utilizer module. Example 5 shows the formal representation
of the situation which is described in Example 1.

Example 5. Regarding Example 1, Let ‘Tourism’ be an ontology module which
utilizes the interface ‘Location’. Furthermore let the signature and TBox of them
be as follows:

CTourism
N ={Accommodation}

RTourism
N ={hasAddress}

CLocation
N ={Place}

The ontology module Tourism can use the interface terms for creating complex
concepts and for defining general inclusion axiom. For instance the TBox of the
tourism ontology has the following axiom:

Accommodation� ∃hasAddress.Location:Place.
Let ‘Canada Destination’ (CD) and ‘North America Destination’ (NAD) be

two ontology modules which realize the interface Location. Two different values
for the configuration F lead to two different modular ontologies O1 and O2 as
follows:

O1={ { Tourism, CD, NDA},{Location}, F1 },
where F1(Tourism,Location)=CD
O2={ { Tourism, CD, NDA},{Location}, F2 },
where F2(Tourism,Location)=NDA
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3.2 Augmented Semantics

To give a formal specification for the notion of augmentation for an ontology
module, we define an augmentation function as follows:

Definition 6. Let PTBox(M) be a set of all axioms in the TBox of all inter-
faces in PATH(M) for a given ontology module M , an augmentation function
Aug : M → M is a function such that ΨAug(M) is defined as the union of the
following elements:

(i) T M ,
(ii) PTBox(M),
(iii) {I : c1} � . . . � {I : cn} where ci is a member of the result set of KI : C

posed to F (M, I) for all concepts C in all I ∈ IM
u ,

(iv) {I : x1}� . . .�{I : xn} � {I : y1}� . . .�{I : ym} where 〈xi, yj〉 is a member
of the result set of KI : R posed to F (M, I) for all roles R in all I ∈ IM

u .

Based on Definition 6, the result set of the epistemic queries posed to the realizer
module is being inserted to the knowledge base of the utilizer module as new nom-
inals. The following definition gives the exact semantic of the augmented module.

Definition 7. An augmented semantics for a module Mj in a modular ontology
O = 〈M, I, F 〉, is defined as Ij = (�Ij , ·Ij ), where �Ij is a non-empty domain
for Aug(Mj) and a mapping function ·Ij which maps each concept of Aug(Mj) to
a subset of �Ij , each role of Aug(Mj) to a subset �Ij ×�Ij and each individual
name from Aug(Mj) to an element aI ∈ �Ij . ·Ij maps Mj concept expressions
based on the semantic of concept constructors of Mj. For the concepts and roles
of the utilized interfaces, the function develops mapping as follows:

(i) For every interface concept I : C, x ∈ (I : C)Ij iff {x}Ij ⊆ �Ij and
Ψk � KC(x), where KC is an epistemic query posed to Mk = F (Mj , I),

(ii) For every interface role I : R, 〈x, y〉 ∈ (I : R)Ij iff {x}Ij ⊆ �Ij and
{y}Ij ⊆ �Ij and Ψk � KR(〈x, y〉), where KR is an epistemic query posed
to Mk = F (Mj , I).

An ontology module is augmentedly consistent if there is an augmented in-
terpretation I (augmented model), which satisfies all axioms and assertions in
ΨAug(M). Let α be an inclusion axiom or an ABox assertion ΨAug(M) |= α if
for every augmented model I, α is satisfied by I. For a concept expression α,
ΨAug(M) |= α if for every augmented model I, α is satisfiable.

In order to augment the knowledge base of a module, we exploit the notion
of nominals. The conditions (i) and (ii) of the Definition 7 ensure that the
interface concepts and roles in a utilizer module is interpreted the same as their
interpretation in the realizer modules. For instance in the situation described
in Example 5, suppose the realizer module expresses that {Toronto, Montreal,
Vancouver} individuals are of the type of the Place concept. These places are
inserted as nominal to the domain of the Tourism ontology module and the
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concept Location:Place is interpreted in such way to be equal to {Toronto,
Montreal, Vancouver}.

Let us make two remarks about the proposed semantics. First, since the aug-
mented semantic is defined for an ontology module, the � and ¬ symbols in a
modular ontology are interpreted from the point of view of each augmented mod-
ule. For example ¬I : C in a utilizer module Mi is interpreted as �Ii \ (I : C)Ii

when I : C has been interpreted to be equal to the result set of KI : C posed
to F (Mi, I). Second, we do not make a unique name assumption and hence
two nominals may refer to the same individual; therefore, an inserted nominal
to a module can be interpreted to be equivalent to an existing nominal in its
knowledge base.

4 Properties of the Interface Based Formalism

In this sectionwedescribe the significantproperties of theproposedmodularization
framework. Initially we point out two features, ‘directed semantic’ [1] and ‘poly-
morphism’ which are driven from the interface base nature of the formalism. Sec-
ondly we prove decidability of the formalism and its capability to propagate the
logical consequences of the public parts of inter-connected modules to each others.

4.1 Directed Semantic

In the previous section, we pointed out that according to the proposed interface-
based modular formalism, the realizer modules are semantically independent
from those modules which utilize their interfaces . The importance of such in-
dependency is brightened when we observe that it leads to ‘directed semantic’
[1]. Directed semantic means that if a module which uses a set of interface
terms, gives new semantics to these terms, this semantic does not affect their
meaning in the original modules. For instance, in the case of Example 1, sup-
pose that the Tourism ontology uses the interface concept BeautifulPlaces
and RuralPlaces and the modular ontology has been configured in such way
that the Canada Destination realizes these two interface concepts. The Tourism
ontology may add an inclusion axiom that BeautifulPlaces � RuralPlaces,
however, through our formalism, this subsumption does not necessarily hold in
the Canadian Destination ontology.

4.2 Polymorphism

The proposed formalism supports polymorphism in the development of modu-
lar ontologies in the sense that the meaning of an interface term is subject to
specialization based on the configuration of the ontology. When one develops
an ontology, she only needs to work with general interfaces, and the specialized
meaning of interface concepts would be bound to it in configuration time. For
instance, in Example 1, we may define the Sightseeing as an interface concept
while Natural Sightseeing and Scientific Sightseeing are modeled as two exten-
sions for this concept. The Tourism ontology may configured to use the one of
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specialized meaning of Sightseeing. Furthermore, it will be possible to extend
the meaning of Sightseeing in the future through the introduction of more per-
spectives without any changes on the syntax of the Tourism ontology. Example
8 shows this capability of the formalism:

Example 8. Regarding Example 1, suppose that the ontology module ‘Tourism’
utilizes the interface Attractions which represents the notion of sightseeing and
its related properties and concepts. Knowledge base of the Tourism module in-
cludes the following axioms:

PlaceToGo � Attractions:Sightseeing
Let ScientificAttractions be an extension for Attractions with the following
axiom:
Sightseeing � (∀ HasScienceBranch.ScienceBranch)

 (∃ IsVisitedBy.Scientist)
Further, let NaturalAttractions be another extension for Attractions with the
following axioms:
Sightseeing � (∃HaveBestSeason.Season)

 (∃ HavePreCondition.Equipment),
Sightseeing � Beach � Jungle�Park � mounts

Here, ScientificAttractions and NaturalAttractions provide two morphs
(forms) for the Sightseeing concept, hence the tourism ontology can answer
different type of queries related to the concept Sightseeing based on the type of
configuration.

4.3 Decidability

Consistency checking is a basic problem in description logic knowledge bases to
which the other reasoning problems can be reduced. This issue is more vital in
the proposed interface-based formalism because different modules can be defined
using different description logics; hence their integration may lead to new incon-
sistency problems. In the following, we show that the consistency checking of aug-
mented modules in a modular ontology is decidable in our proposed formalism.

Lemma 9 1

Let M be an ontology module in a modular ontology, such that it supports nominals
and there exists an algorithm for creating completion graphs for deciding the con-
sistency of its description logic2. The problem of consistency checking for Aug(M)
is decidable.

Hence, while the formalism provides an expressiveness power which allows creat-
ing complex concepts using foreign terms, it ensures that the consistency check-
ing of the integration of different ontology modules is decidable.
1 For the proofs of all discussed lemmas in this paper see: http://falcon.unb.ca/ ∼

m4742/mo.pdf
2 Such algorithms can be found in [12,11].
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Fig. 1. An example of propagating logical consequences in the interface-based modu-
larization formalism

4.4 Transitive Logical Consequences and Partial Reuse

The interface-based formalism supports propagating the logical consequences of
the public part of an ontology module to all of the connected ontology modules,
while its private parts do not have such consequence propagation. Hence, the
formalism does not require the ontology modules to use or import all of the
terms of the other connected modules and does not require reasoning engines
to process the union of all inter-connected modules. The public section of each
ontology module is the knowledge base of its interfaces. Lemma 10 shows that
the logical consequences of a module’s interfaces propagate to all other modules
that are connected to it.

Lemma 10

(1) Let M1 = 〈T , Iu, Ir〉 be an augmentedly consistent module in a modular
ontology, I1 =

⋃
I∈(Iu, Ir) I and α be a concept expression (General inclusion

axiom) whose signature is a subset of the signature I1. If I1 |= α, for all
augmentedly consistent module such as M on PATH(M1), ΨAug(M) |= α.

(2) Furthermore, consider an augmentedly consistent module M2 on PATH(M1)
and let I2 be defined for M2 similarly to I1 for M1. Let I : A and I : B be
two concepts in I1 and I : C a concept in I2. If I1 |= I : A � I : B and
I2 |= I : B � I : C, for all augmentedly consistent modules such as M on
PATH(M1), we have ΨAug(M) |= I : A � I : C.

As an explainer example, consider the situation shown in Figure 1. According
to the figure, there are three ontology modules: Tourism, Canada Destination
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and Urban Areas and three interfaces: Location, Attractive Location and In-
dustrial Location where the last two interfaces are extensions of the Location
interface. Tourism and Canada Destination utilize Attractive Location and In-
dustrial Location, respectively. Moreover Canada Destination realizes Attrac-
tive Location and Urban Areas realizes Industrial Location. Since Industrial
Location is the public part of the Urban Areas ontology modules, all of its
axioms is propagated to the connected ontology modules. According to Indus-
trial Location RuralPlace � ¬UrbanPlace, and since Canada destination has
BeautifulPlace � ¬RuralPlace in its own interface, its augmented semantics
entails BeautifulPlace � ¬UrbanPlace.

The following proposition shows the unsatisfiability of a concept in a realizer
module will be preserved in all of its utilizer modules.

Proposition 11. Let M be a module which realizes interface I, for all modules
M ′ such that F (M ′, I) = M , ΨAug(M ′) |= I : C �⊥, if ΨAug(M) |= I : C �⊥

Proof Sketch: For every unsatisfiable concept I : C, the result set of the query
KI : C is the empty set.

In contrast to the public section, the private section of an ontology module
does not necessarily propagate monotonically through connected modules. For
example in the case of Figure 1, consider that Urban Areas module indicates that
IndustrialPlace(Toronto),UrbanPlace(Toronto)and UrbanPlace(Montreal)

in its ABox. The Canada destination ontology module may conclude that
IndustrialPlace is a subclass of UrbanPlace even though this axiom does
not necessary hold in the realizer module Urban Areas.

5 Implementation

In this section, we present the implementation of the interface-based formalism
introduced in the previous sections. The objective of this implementation is to
allow ontology developers to define a modular ontology based on the definitions
provided by the formalism as a set of ontology modules and interfaces, configure
the modular ontology and select the connected ontologies, and also be able to
perform reasoning on the developed modular ontology.

For the purpose of the implementation, we perform two tasks. First, we extend
OWL-DL in order to allow ontology modules to use or realize a set of interfaces
and second we extend the architecture of the Swoop ontology editor and browser
in order to be able to work with interfaces and perform reasoning on the modular
ontologies based on the semantics described earlier.

In order to extend OWL-DL, we define ‘useInterface’ and ‘realizeInterface’ as
two new built-in ontology properties, analogous to the definition of ‘owl:imports’.
‘useInterface’ and ‘realizeInterface’ are followed by the ID of interfaces they use
and realize, respectively. We also modify OWL-API, a set of java interfaces for
manipulating owl ontologies, such that an ‘ontology’ object has references to its
used and realized interfaces.
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Fig. 2. A new extension to the architecture of Swoop for supporting interface-based
modular ontologies

Swoop [13] is an ontology browser and editor which is tailored for OWL ontolo-
gies. It provides a convenient environment for manipulating multiple ontologies.
The architecture of Swoop is comprised of three components: Model, Reasoning
and Rendering. In addition, it consists of a plug-in loader which loads the appro-
priate reasoner or renderer in the environment. We modify the architecture of
Swoop by introducing an augmented reasoner as well as a configuration object
which can be shared among different layers of the architecture. Figure 2 depicts
the modified architecture of the Swoop ontology editor.

As it is illustrated in Figure 2, the augmented reasoner can be defined as an ex-
tension to any existing reasoner available for Swoop. The augmented reasoner aug-
ments theknowledgebase of the ontologymodulewith the result set of the epistemic
queries posed to the modules which realize its required interfaces before performing
a reasoning task. The augmented reasoner uses the capability of performing epis-
temic queries from Pellet for doing its augmentation process. It uses the configura-
tion component in order to recognize the appropriate realizer modules.

We also modify the Model component of the Swoop architecture such that it
provides capabilities for loading and working with interfaces as well. Using the
extended OWL-API, the new version of Swoop supports loading interfaces and
configuring modular ontologies in such a way that for each ontology module the
users can select a realizer module for each of the interfaces it uses. Figure 3 shows
a snapshot of the modified Swoop environment for creating a modular ontology.

As it can be seen it this figure, a user can graphically see the configuration
of the modular ontology through the newly introduced tab: ”Configuration”.
Moreover, clicking on the ”Configure Module” button, a pop-up menu is shown
to the user that contains the list of all modules and for each selected module, the
list of all interfaces it uses and for any selected interface the list of its realizer
modules. The users can use this menu to change the configuration of a modular
ontology.
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Fig. 3. Interface-based modular ontologies in Swoop

6 Related Work

We can categorize the accomplished efforts on modular ontologies into two
classes: (i) those that attempt to decompose a large and comprehensive ontology
into a set of smaller and self-contained modules and (ii) those that introduce
new formalisms for developing modular ontologies.

With regards to the first category, [6] proposes an algorithm for extracting a
module from an ontology which describes a given concept. The extracted module
captures the meaning of that concept and should be ‘locally correct’ and ‘locally
complete’ which means that any assertions which are provable in a module should
also be provable in the ontology. Also any assertion which is provable in the
ontology and asserted using the signature of a module should be provable in
that module. The notion of local complete modules is close to the notion of
‘conservative extensions’ which is discussed in [8] and employed for extracting an
approximation of the smallest meaningfull module related to a set of concept and
role names from an ontology. [16] proposes an algorithm for segmentation of an
ontology by traversing through the ontology graph starting from a given concept
name. In [20], authors propose a method for partitioning a large ontology into
disjoint sets of concepts. It has been assumed that the given ontology is mostly
comprised of hierarchal relationships between concepts instead of more complex
roles and binary relationships.

The efforts in the second category focus on proposing new formalisms for
modular ontologies. These formalisms mostly provide new extensions to existing
description logics syntax and semantics in order to make automated reasoning
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over ontology modules feasible. The interface-based modularity formalism intro-
duced in this paper and also E-connections, DDL, P-DL and semantic import
which are discussed in the first section of this paper can be categorized in this
class of works. [15] describes a new formalism for ontology modularization. Based
on [15] a module is described by its identifier, a set of the identifiers of other
modules which are imported, a set of interfaces, a set of mapping assertions
between different concept names of imported modules and its concepts and an
export interface. It uses a mapping approach and defines a mapping function in
order to let a module use the others’ elements. Through this function, concepts
of different modules are mapped to a global domain. The notion of interfaces
in [15] are different from those that are defined in this paper. Contrary to our
approach for defining interfaces as independent ontology units which ensures
indirect connection of ontology modules, in [15] interfaces are a set of concept
names of a specific module that can be imported by others. Furthermore, in [15]
a module can only have one export interface, consequently it is not possible to
provide different perspectives for describing an ontology module.

7 Concluding Remarks

In this paper, we have described a framework for developing ontologies in a mod-
ular manner. The core of this framework is the interface-based modular ontology
formalism which supports knowledge encapsulation, i.e., it allows ontology mod-
ules to describe their content through well-defined interfaces. We showed that
this formalism provides a considerable expressiveness power by allowing ontology
modules to create complex roles and concepts using the interface terms. We have
also proven the decidability of the formalism and its capability for propagating
the logical consequences of the public parts of the ontology modules. In order to
make the application of the frameworks feasible in real-world applications, we
have extended the syntax and semantic of OWL-DL and the Swoop architecture.
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