
A Resource Discovery Framework for Semantic Grids Based on the
Interface-Based Modular Ontology Formalism

Faezeh Ensan ∗, Alireza Ensan †, Weichang Du ∗

∗ Faculty of Computer Science, University Of New Brunswick
Fredericton, NB, Canada

† Faculty of Electrical and Computer Engineering, Ferdowsi University Of Mashhad
Mashhad, Iran

∗ {faezeh.ensan,wdu}@unb.ca, † al−en52@stu-mail.um.ac.ir

Abstract

Semantic grids refer to those grids that their resources
and services have been described by the means of seman-
tic meta data and ontologies. In this paper we propose a
resource discovery framework for semantic grids using the
notion of modular ontologies. We exploit interface-based
modular ontology formalism whose through ontologies can
be described and be accessed by a set of interfaces. We
show how this formalism help looking for distributed re-
sources in semantic grids. We describe the architecture of
the resource managers nodes and their resource discovery
algorithms.

1 Introduction

Grid has arisen as an emerging technology in resent
years which enables sharing computational resources be-
tween different systems that are distributed across virtual
organizations. Grid technology mostly comes with a mid-
dleware which is responsible for resource management.
This layer provides services for discovering and allocating
available resources to consumers considering administrative
pollices, allocation rules and constrains and quality of ser-
vice [1]. Resource discovery is one of the most important
services provided by the resource management middleware
which given a query, attempts to find the most appropriate
resources fulfilling the query requirements from available
resource providers.

Resource discovery can be more semantically accurate
if available resource are described using semantic Web
techniques and specially ontologies. Using ontologies, re-
source providers and consumers can query and share their
resources with more flexibility without employing limiting
symmetric attribute-based techniques [2]. The idea of ap-

plying semantic Web achievements in the computational
grids area leads to introduction of the notion of semantic
grid [3]. In semantic grids, computational resources and
services are described by means of semantic data models
and meta data.

Recently several researches [2, 4, 5] are performed in or-
der to facilitate the resource management tasks by defining
a few global or local ontologies for grid resources. Devel-
oping a global comprehensive ontology which describes all
available resources among distributed machines is a prob-
lematical task. Some experts should recognize all of con-
cepts related to the all potential resource. This ontology
may be subject of frequently change because of introduc-
tion of new resources or extracting new relationships be-
tween them. In addition, within grid environment, resource
holders are independent, self contained virtual organiza-
tions and it is hardly successful to provide such a compre-
hensive ontology such that be accepted by all of them and
all of new incoming ones. Few existing researches which
address these problem by defining multiple local ontologies
for every node in grid are still in initiate stages of maturity
and should deal with ontology matching and merging chal-
lenges.

In this paper we propose a new framework for ontology-
driven resource discovery in grids, utilizing the notion of
modular ontologies. Modularization is a new alternative on-
tology development process against the traditional mono-
lithic approach. In this paper we employ the interface-
based modular ontology formalism that we introduced in
[6, 7]. Using this formalism, our resource discovery frame-
work provides different grid nodes with the capability to
define and use their own ontologies while these ontologies
can have connections to other nodes’ ontologies and can be
easily communicate.

Fourth International Conference on Semantics, Knowledge and Grid

978-0-7695-3401-5/08 $25.00 © 2008 IEEE

DOI 10.1109/SKG.2008.73

351

2 Resource Discovery Framework

In this section we discuss the grid resource discovery
framework based on the interface-based modular ontolo-
gies.

The interface-based modular ontology formalism is a
new designed formalism for creating modular ontologies.
Through this formalism, a modular ontology is defined as a
set of ontology modules and interfaces where an interface
is a set of concept and role names and their inclusion ax-
ioms and a module is an ontology in any description logic
language. An ontology module can either realize or utilize
an interface. A realizer module should provide definitions
and assertions for roles and concepts of a specific interface.
On the other hand, a utilizer module augment its knowl-
edge base with the definitions and assertions provided by
the other (realizers) modules. In the definition of modular
ontologies, there exist also a configuration function which
specifies which utilizer and realizer modules should be con-
nected.

Each grid includes nodes which provide resources
(providers), consume resources (consumers) or manage re-
sources (resource mangers). Each grid node has its own lo-
cal ontology module which describe its available resources.
These ontologies may describe different concepts or may
give different categorizations and axioms about the same
resources. Interface-Based modular ontology formalism is
employed to integrate these distributed ontologies and ex-
tract the most appropriate meaning for the terms of resource
queries posed to different heterogenous nodes. In follow-
ing, we first scrutinize the resource advertisement process
performed by provider resource. Secondly, we describe the
architecture of resource managers and go through the detail
of task each of the components of the architecture should
perform.

2.1 Resource Advertisement

As we mentioned in the previous paragraphs, every
provider node has its local ontology that describe its avail-
able resources. With the purpose of joining a grid, a
provider node should define an ontology interface for its
ontology or select to utilize or realize among existing inter-
faces of other nodes. Figure 1 shows an example of four
resource providers and a resource manager node with dif-
ferent ontologies and interfaces. This example illustrates
the main different ways that a provider can join a grid:

1 A provider node can introduce a new interface
ontology and insert it to the interface pool of the
resource manager node. As an explanatory example,
consider that the first resource provider (p1) has a set
of available resources and a simple ontology with the

Figure 1. An example of a grid with different
nodes and distributed ontology modules.

following ABox assertions:

Processor(Intel Celeron processor 560)
Processor(Intel
Pentium 4 processor 532)

Processor(Motorola MC68EC060RC75)

According to Figure 1, this node has inserted a new
interface (I1) to the resource manager interface pool
and has set itself as a realizer ontology module for it.

2 Alternatively, a provider node may choose one of the
existing interfaces in interface pool and introduce an
extension to it by defining new concepts, roles or
axioms. It should insert this extending interface to
the resource manager pool as well. In the example
shown in Figure 1, the second provider node (p2), has
introduced interface I2 as an extension to the existing
interface I1 and specified itself as a realizer module
for this interface. I2 gives new information about
processors and specify that verb”fast path CPU” is
a sub set of those processors that have a bus speed
greater than 8 MHz. Suppose the ABox of the local
ontology module of p2 be as follows:

Processor(Motorola 68000 Macintosh)
Processor(Motorola PowerBook 100)
HasBusSpeed(Motorola
68000 Macintosh, 8 MHz)
HasBusSpeed
(Motorola PowerBook 100, 16 MHz)

According to the above knowledge base, we can rec-

352

ognize that p2 gives new information about processors
independently of the knowledge provided by p1.

3 The third option would be the provider node decides to
use the ontologies provided by other nodes for describ-
ing its available resources. In this case it should select
among existing interfaces from the resource manager
interface pool and also select an appropriate realizer
module for the interface. In figure 1, p3 has selected
I2 and also selected p2 as the realizer module in order
to attain a definition for processors and fast processors.

4 The last possibility is that a provider node find a
suitable interface in the interface pool which can
appropriately describe its resources but decides to
uses its own ontology as the realizer of that interface
inserted of using existing available ontology modules
from other provider nodes. For instance in Figure 1,
p4 has a few processors and fast processors which can
be described using the interface I2. However it has
prefered not to use the ontology provided by already
existing realizer module p2. Instead it introduces itself
as an new realizer module for I2 with following TBox:

Intel v Processor
Fast Processor ≡ Intel

From the point of view of the p4 node, all of fast pro-
cessors are of type Intel. Nonetheless, this interpreta-
tion has not affect on the ontology of p2. It also has
not affect on the knowledge of p3 about processors un-
less it has change the configuration function and set its
realizer module equal to p4.

2.2 Resource Manager Architecture

Figure 2 shows the architecture of the resource man-
agers. The main components of the resource manager are
the interface pool, resource matching unit, node withdrawal
unit and description logic reasoner. Interface pool is a
knowledge warehouse where grid nodes register their inter-
face ontologies (as we saw in the previous section). It has
mechanisms for inserting, deleting, retrieving and searching
among ontology interfaces as well as the name and address
of the grid nodes connected to interfaces.

Through our proposed framework for grid resource dis-
covery, resource requests are expressed as RDQL query
expressions using concept names and roles defined in the
knowledge base of interfaces that are present in the inter-
face pool. For instance, in the sample grid shown in Figure
1, a consumer node may pose a resource query for all pro-
cessors which has a bus speed more that 8 MHz as follows:
(Processor) ∩∃HasBusSpeed> 8Mhz

Figure 2. Resource Manager Architecture

The resource manager node needs a reasoner component
to process the available ontologies and produce suitable re-
sult set for a description logic resource query. In following,
we talk about the two other components in more detail.

Resource Matching Unit: It receives The RDQL
query expressions from resource consumers. Subsequently,
it looks for those interfaces that have all the concept
names and role name of the received query in the in-
terface pool and redirect the query to the related modu-
lar ontologies. For example consider the (Processor)
∩∃HasBusSpeed> 8Mhz has been posed in the re-
source manger discovery unit in the grid illustrated in
Figure 1. The unit will find interface I2 that includes
(Processor) concept name and HasBusSpeed role
name. Using the interface pool, resource discovery unit
find that the p2,p3 and p4 nodes are connected as the
I2, consequently, it redirect the query to their knowl-
edge base and examine the return result set. The result
set of p2 is equal to {Motorola 68000 Macintosh
Motorola PowerBook 100 }. The result set of p3 is an
empty set for the reason that the only individual of the p3
knowledge base (Intel Celeron processor 560)
is not a fast processor and therefore its bus speed is less
than 8 MHz. p4 does not have any ABox assertions so its
result set is also empty. In circumstances where there are
more than a node with non empty result sets to the resource
query, the resource manager should employ quality of ser-
vice measures and resource allocation policies that are be-
yond the scope of this paper.

Node Withdrawal Controller: When a resource
provider node is leaving a grid, it should send a withdrawal
message to the resource manager node. Node withdrawal
controller receives these messages and update the interface
pool and also sends a couple of update message to the de-
pendent grid nodes. The withdrawal of those nodes that

353

Algorithm 1 Node Withdrawal Control
Input: A node withdrawal message

msg = withdraw〈 px, G〉
where px is a provider node in the gird G.

RI := (Interface Pool).getAllInterfacesRealizedBy(px)
if (RI.size> 0)

for all I ∈ RI
UtilizerNodes := (Interface Pool).getAllNodeNamesUsing(I)
RealizerNodes :=
(InterfacePool).getAllNodeNamesRealizingOtharThan(I ,px)

if (UtilizerNodes.size> 0)
if (RealizerNodes.size> 0)

Send update configuration message
to(UtilizerNodes, RealizerNodes)

else
Send exit message to(UtilizerNodes)
Delete I

else
if (RealizerNodes.size= 0)

Delete I

realize a couple of ontologies will affect the grid interface
pool and also may affect on other nodes. If a node is the
only node which realizes an ontology that is used by another
node, its withdrawal makes the user nodes do not have the
meaning for their resource, subsequently they also should
leave the grid. However if the resource manager find that
there are other nodes that can help the utilizer modules de-
scribe their resource after laving a specific node, it let the
utilizer node informed to change its configuration and use
other available ontologies. Algorithm 1 demonstrates the
main body work of this unit.

As an explanatory example for the algorithm, Let’s study
the withdrawal process of the grid nodes p2 and p4 of
the gird which is demonstrated in Figure 1. p2 has a
realizer ontology module for the interface I2 (RI.size>
0) and I2 has been used by another ontology from p3
(UtilizerNodes.size > 0). In addition there exist p4
which realizes I2 (RealizerNodes.size > 0), conse-
quently the withdrawal controller send an update message
to p3, and get it informed that the p2 node does not any
more exist and it can change its realizer module from p2 to
p3 (Sendupdateconfigurationmessage). Now consider
that the p4 node also intend to leave the grid. p4 has a real-
izer ontology module for the interface I2 (RI.size> 0) and
I2 has been used by p3 (UtilizerNodes.size > 0). Since
p2 has been already left the grid, there are no In addition
no node that realizes the necessary ontology of p3. Conse-
quently, the withdrawal controller send an exit message to
p3 (Sendexitmessage) and ask it to leave the grid. Fur-
thermore I2 will be removed from interface pool.

3 Conclusion

In this paper, we presented a modular ontology based
resource discovery framework for semantic grids. The pro-
posed resource discovery framework in this paper has the

following contributions regarding to the existing solutions
in the literature:

• Each grid can have its own ontologies. The interface-
based modularity formalism supports the distribution
of these ontologies and their communications

• Using interface ontologies and contrary to most ex-
isting peer to peer approach, the proposed framework
does not required a huge amount of message passing
between all of grid nodes in order to find the appropri-
ate resources for a specific query. Using interface pool
component, the resource manager can easily find the
suitable candidate for resource requests.

• The withdrawal process is efficient in the light of this
face that when a node leave a grid, it only affects those
node that uses its knowledge about its resources and
not other grid nodes.

References

[1] K. Krauter, R. Buyya, and M. Maheswaran, “A tax-
onomy and survey of grid resource management sys-
tems for distributed computing,” Softw., Pract. Exper.,
vol. 32, no. 2, pp. 135–164, 2002.

[2] H. Tangmunarunkit, S. Decker, and C. Kesselman,
“Ontology-based resource matching in the grid - the
grid meets the semantic web,” in International Seman-
tic Web Conference, 2003, pp. 706–721.

[3] D. de Roure, N. R. Jennings, and N. Shadbolt, “The
semantic grid: A future e-science infrastructure,” pp.
437–470, 2003.

[4] M. Siddiqui, T. Fahringer, J. Hofer, and I. Toma,
“Grid resource ontologies and asymmetric resource-
correlation.” in NODe/GSEM, ser. LNI, R. Hirschfeld,
R. Kowalczyk, A. Polze, and M. Weske, Eds., vol. 69.
GI, 2005, pp. 205–219.

[5] H. Jin, Y. Pan, N. Xiao, and J. Sun, Eds., Grid and Co-
operative Computing - GCC 2004: Third International
Conference, Wuhan, China, October 21-24, 2004. Pro-
ceedings, ser. Lecture Notes in Computer Science, vol.
3251. Springer, 2004.

[6] F. Ensan and W. Du, “Aspects of inconsistency resolu-
tion in modular ontologies,” in Canadian Conference
on AI, 2008, pp. 84–95.

[7] ——, “An interface-based ontology modularization
framework for knowledge encapsulation,” in Interna-
tional Semantic Web Conference, 2008.

354

