

46th Annual Iranian Mathematics Conference 25-28 August 2015 Yazd University

Talk

On generalized covering subgroups of a fundamental group

рр.: 1**–**3

On Generalized Covering Subgroups of a Fundamental Group

S.Z. Pashaei, M. Abdullahi Rashid, B. Mashayekhy, H.Torabi Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran

Abstract

In this talk, after reviewing concepts of covering, semicovering and generalized covering subgroups introduced by J. Brazas, we give a new criterion for a subgroup $H \leq \pi_1(X, x_0)$ to be a generalized covering subgroup.

Keywords: Genertalized covering subgroup, Fundamental group, covering map, semi-covering map

Mathematics Subject Classification [2010]: 55Q05, 57M05, 57M10

1 Introduction

Recently, the notion of covering space has been extended using eliminating some of its properties and keeping some others [1,2,3,5]. For instance, semicoverings are introduced by eliminating the evenly covered property and keeping local homeomorphismness and unique path lifting property [2]. In the case of generalized coverings, local homeomorphismness has been replaced with unique lifting property [1,3,5]. It is well-known that for connected and locally path connected spaces every covering is a semicovering and every semicovering is a generalized covering. Let $p:(X,\tilde{x_0})\to (X,x_0)$ be a map and $H=p_*\pi_1(X,\tilde{x_0})\leq$ $\pi_1(X,x_0)$. Then H is called a covering, a semicovering or a generalized covering subgroup if p is covering, semicovering or generalized covering map, respectively. It is shown that His a covering subgroup if and only if it contains an open normal subgroup of $\pi_1^{qtop}(X,x_0)$ [2,6]. Brazas showed that H is a semicovering subgroup if and only if it is an open subgroup of $\pi_1^{qtop}(X,x_0)$. He also proved that H is a generalized covering subgroup if and only if $p_H: \tilde{X}_H \to X$ has the unique path lifting property, where $p_H: \tilde{X}_H \to X$ is the well-known endpoint projection [3]. Now in this talk, we show that for a connected and locally path connected space X, a subgroup H of $\pi_1(X,x_0)$ is a generalized covering subgroup if and only if $(p_H)_*\pi_1\left(\tilde{X}_H,e_H\right)=H.$

2 Notations and Preliminaries

Definition 2.1. A pointed continuous map $p:(\tilde{X},\tilde{x_0})\to (X,x_0)$ has **UL** (unique lifting) property if for every connected, locally path connected space (Y,y_0) and every continuous map $f:(Y,y_0)\longrightarrow (X,x_0)$ with $f_*\pi_1(Y,y_0)\subseteq p_*\pi_1(\tilde{X},\tilde{x_0})$, there exists a

^{*}Speaker

Yazd University

Talk

On generalized covering subgroups of a fundamental group

рр.: 2**–**3

unique continuous lifting \tilde{f} with $p \circ \tilde{f} = f$ and $\tilde{f}(y_0) = \tilde{x}_0$. If \tilde{X} is a connected, locally path connected space and $p: \tilde{X} \longrightarrow X$ is surjective with UL property, then \tilde{X} is called a **generalized covering space** for X. A subgroup $H \leq \pi_1(X, x_0)$ is called a **generalized covering subgroup** of $\pi_1(X, x_0)$ if there is a generalized covering map $p: (\tilde{X}, \tilde{x}_0) \longrightarrow (X, x_0)$ such that $H = p_*\pi_1(\tilde{X}, \tilde{x}_0)$.

Definition 2.2. A map $f: Y \longrightarrow X$ has **UPL** (unique path lifting) property if it has UL property for the closed interval I = [0,1]. A map $f: Y \longrightarrow X$ has \mathbf{UPL}' (only unique path lifting) property if any two paths $\alpha, \beta: [0,1] \to Y$ are equal whenever $f \circ \alpha = f \circ \beta$ and $\alpha(0) = \beta(0)$.

Definition 2.3. Let H be a subgroup of $\pi_1(X, x_0)$ and $P(X, x_0) = \{\alpha : (I, 0) \to (X, x_0) | \alpha is \ a \ path\}$ be a path space. Then $\alpha_1 \sim \alpha_2 \ mod \ H$ if both $\alpha_1(1) = \alpha_2(1)$ and $[\alpha_1 * \alpha_2^{-1}] \in H$. It is easy to check that this is an equivalence relation on $P(X, x_0)$. The equivalence class of α is denoted by $\langle \alpha \rangle_H$. Now one can define the quotient space $\tilde{X}_H = \frac{P(X, x_0)}{\alpha}$ and the map $p_H : (\tilde{X}_H, e_H) \to (X, x_0)$ by $p_H(\langle \alpha \rangle_H) = \alpha(1)$, where e_H is the class of constant path at x_0 .

For $\alpha \in P(X, x_0)$ and an open neighborhood U of $\alpha(1)$, a continuation of α in U is a path $\beta \in P(X, x_0)$ of the form $\beta = \alpha * \gamma$, where $\gamma(0) = \alpha(1)$ and $\gamma(I) \subseteq U$. Thus we can define a set $\langle U, \langle \alpha \rangle_H \rangle = \{\langle \beta \rangle_H \in X_H | \beta \text{ is a continuation of } \alpha \text{ in } U \}$. It is shown that the subsets $\langle U, \langle \alpha \rangle_H \rangle$ as defined above form a basis for a topology on \tilde{X}_H for which the function $p_H : (\tilde{X}_H) \to X$ is continuous [7, Theorem 10.31]. Moreover, if X is path connected, then p_H is surjective. This topology on \tilde{X}_H is called the Whisker topology [4].

Some properties of the space X_H and the map p_H are as follows: The map $p_H: X_H \to X$ has the path lifting property. Moreover, every path α in X beginning at x_0 can be lifted to a path $\tilde{\alpha}$ in X_H beginning at e_H and end at $\langle \alpha \rangle_H$ [7, Theorem 10.32]. For every $H \leq \pi_1(X, x_0)$ the space X_H is path connected [7, Corollary 10.33].

Brazas [3, theorem 24] showed that a subgroup $H \leq \pi_1(X, x_0)$ is a generalized covering subgroup of $\pi_1(X, x_0)$ if and only if $p_H : \tilde{X}_H \longrightarrow X$ has $\mathbf{U}PL'$ property.

3 Main results

In the trivial case H=1, clearly $H \leq (p_H)_*\pi_1(\tilde{X}_H,e_H)$. Fischer and Zastrow [5] using this fact found an equivalent condition for UPL property in $p_e: \tilde{X}_e \to X$. They also showed that a space X admits a generalized universal covering if and only if $p_e: \tilde{X}_e \to X$ has UPL' property [5, Lemma 2.8]. Then Brazas extended the result for every generalized covering subgroup [3, Lemma 21] and showed that for any subgroup $H \leq \pi_1(X, x_0)$, $H \leq (p_H)_*\pi_1(\tilde{X}_H, e_H)$ [3, corollary 20]. Moreover, he showed that if $p_H: \tilde{X}_H \to X$ has UPL property, then $H = (p_H)_*\pi_1(\tilde{X}_H, e_H)$ [3, Lemma 21]. In the following theorem we investigate the convers of the above result.

Theorem 3.1. For any $H \leq \pi_1(X, x_0)$, if $(p_H)_*\pi_1(\tilde{X}_H, e_H) \leq H$, then $p_H : \tilde{X}_H \to X$ has UPL property.

The following corollary is the main result of this talk.

Corollary 3.2. Let $H \leq \pi_1(X, x_0)$. Then the end point projection $p_H : \tilde{X}_H \to X$ is a generalized covering map if and only if $(p_H)_*\pi_1(\tilde{X}_H, e_H) = H$.

46th Annual Iranian Mathematics Conference 25-28 August 2015

Yazd University

Talk

On generalized covering subgroups of a fundamental group

рр.: 3–3

Proof. Brazas showed that $H \leq (p_H)_* \pi_1(\tilde{X}_H, e_H)$ for any subgroup H of $\pi_1(X, x_0)$ [3, Corollary 20]. Combining this fact with Theorem 3.1 implies that if $(p_H)_* \pi_1(\tilde{X}_H, e_H) = H$, then $p_H : \tilde{X}_H \to X$ has **UPL** (unique path lifting) property. The convers holds using [3, Lemma 21].

Brazas [3, Theorem 15] showed that for any collection of generalized covering subgroups of $\pi_1(X, x_0)$, the intersection of them is also a generalized covering subgroup. But its proof is too long and need to use pullbacks. We will give a simple proof using Corollary 3.2.

Corollary 3.3. If $\{H_j \mid j \in J\}$ is any set of generalized covering subgroups of $\pi_1(X, x_0)$, then $H = \bigcap_{j \in J} H_j$ is a generalized covering subgroup.

Proof. At first, we show that $(p_H)_*\pi_1\left(\tilde{X}_H,e_H\right) \leq \bigcap (p_{H_j})_*\pi_1\left(\tilde{X}_{H_j},e_{H_j}\right) = H$ then, use Theorem 3.1 and assume that $[\alpha] = [p_H \circ \widetilde{\alpha}] = (p_H)_* [\widetilde{\alpha}] \in (p_H)_*\pi_1\left(\tilde{X}_H,e_H\right)$ where $\widetilde{\alpha}: I \to \tilde{X}_H$ is a loop in \tilde{X}_H at e_H with $\widetilde{\alpha}(t) = \langle \beta_t \rangle_H$. We define for every $j \in J$, $\widetilde{\alpha}_j: I \to \tilde{X}_{H_j}$ by $\widetilde{\alpha}_j(t) = \langle \beta_t \rangle_{H_j}$. It is clear that $\widetilde{\alpha}_j$ is a loop at $e_{H_j}, p_H \circ \widetilde{\alpha} = p_{H_j} \circ \widetilde{\alpha}_j$ and so $[p_H o \widetilde{\alpha}] = [p_{H_j} o \widetilde{\alpha}_j] = [\alpha]$ for every $j \in J$. Therefore, $(p_H)_* \leq H$. Now using Theorem 3.1 the result holds.

For a pointed space (X, x_0) we define: $\pi_1^{gc}(X, x_0) = \bigcap \{H \leq \pi_1(X, x_0) | H \text{ is } a \text{ generalized covering subgroup}\}.$

Corollary 3.4. For a pointed space (X, x_0) , $\pi_1^{gc}(X, x_0)$ is a generalized covering subgroup.

References

- [1] J. Brazas, Generalized covering space theories, 2014, www2.gsu.edu/jbrazas/gen-cov.pdf.
- [2] J. Brazas, Semicoverings, coverings, overlays and open subgroups of the quasitopological fundamental group, Topology Proc. 44 (2014), 285-313.
- [3] J. Brazas, The unique path lifting property and generalized covering maps, 2014, www2.gsu.edu/~jbrazas/research.html.
- [4] N. Brodskiy, J. Dydak, B. Labuz, A. Mitra, Topological and uniform structures on universal covering spaces, arXiv.org/abs/1206.0071.
- [5] H. Fischer, A. Zastrow, Generalized universal covering spaces and the shape group, Fund. Math. 197 (2007) 167196.
- [6] H. Torabi, A. Pakdaman, B. Mashayekhy, On the spanier groups and covering and semicovering spaces, arXiv.org/abs/1207.4394.
- [7] J.J. Rotman, An Introduction to Algebraic Topology, Springer, 1991.

Email: pashaei.seyyedzeynal@stu.um.ac.ir

Email: mbinev@stu.um.ac.ir

Email: bmashf@um.ac.ir

Email: h.torabi@ferdowsi.um.ac.ir