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Abstract.  A new neural network (NN) predictive controller (NNPC) algorithm has been developed and 
tested in the computer simulation of active control of a nonlinear structure. In the present method an NN is 
used as a predictor. This NN has been trained to predict the future response of the structure to determine the 
control forces. These control forces are calculated by minimizing the difference between the predicted and 
desired responses via a numerical minimization algorithm. Since the NNPC is very time consuming and not 
suitable for real-time control, it is then used to train an NN controller. To consider the effectiveness of the 
controller on probability of damage, fragility curves are generated. The approach is validated by using 
simulated response of a 3 story nonlinear benchmark building excited by several historical earthquake 
records. The simulation results are then compared with a linear quadratic Gaussian (LQG) active controller. 
The results indicate that the proposed algorithm is completely effective in relative displacement reduction. 
 

Keywords:  structural control; active controller; neural network controller; neuro-predictive algorithm; 

model predictive control (MPC); fragility curves  

 
 
1. Introduction 
 

With the increasing progress in the field of structural control, various control methods have 

been proposed. Generally, these methods can be divided in two groups. The first group includes 

control methods which require a mathematical model of the system to operate (Gholampour et al. 

2014, Suhir 2014, Zhang et al. 2008). Although structural models can be developed, there are 

many sources of uncertainty, measurement noise and nonlinearity that result in less-effective 

control algorithms. LQR, LQG, H2 and sliding mode control methods are some examples of this 

group. The second group includes control methods which do not require an accurate mathematical 

model of the system (Reigles and Symans 2006, Pourzeynali et al. 2007, Lu et al. 2010, 

Karamodin et al. 2012). They are based on the actual measured responses of the system and are 

therefore, referred to as nonmodel-based control methods. Fuzzy and neural network control 

methods are some examples of this group. 

Model predictive control (MPC) belongs to a class of algorithms which compute a sequence of 

manipulated variable adjustment to optimize the future behavior of a plant. A state model is 

utilized to predict the open-loop future behavior of the system over a finite time horizon from 

present states. The predicted behavior is then employed to find a finite sequence of control actions 

that minimizes a particular cost function within pre-specified constraints. MPC displays its 
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effectiveness in its computational expediency, treatment of constraints, real-time applications, 

intrinsic compensation for time delays, and potential for future extensions of the methodology. The 

MPC scheme has been commonly utilized for the control of chemical processes and applications to 

automotive and aerospace industries (Qin and Badgwell 1996, Camacho and Bordons 1999). 

Rodellar et al. (1987) and Lopez- Almansa et al. (1994a, b) applied a special case of MPC that is a 

predictive control scheme in civil engineering studies. Other applications of MPC to the control of 

civil engineering structures have been demonstrated by Mei et al. (2001, 2002), Karamodin and 

Kazemi (2008) and Kim et al. (2013). 

MPCs can be divided in two groups: linear and nonlinear. Linear MPC refers to a family of 

MPC schemes in which linear models are used to predict the system dynamics, even though the 

dynamics of the closed-loop system is nonlinear. Many systems are, however, in general inherently 

nonlinear. In these cases, linear models are often inadequate to describe the process dynamics and 

nonlinear models have to be used. This motivates the use of nonlinear model predictive control.  

Developing nonlinear model of complex systems is difficult. One method to do that is artificial 

neural networks (ANNs). The ANNs have been proven to be useful for solving certain types of 

problems that are nonlinear, complex and poorly understood. This type of network has been found 

to be a powerful computational tool for organizing and correlating information. The applications of 

ANNs to the area of structural control have been used through controller replication, system 

identification, or system inverse identification (Jung et al. 2004, Bani-Hani et al. 2006, Lee et al. 

2006, Kumar et al. 2007)  

In this paper active neural network predictive controller (NNPC) is used to control nonlinear 

structures subjected to ground excitations. A neural network model of nonlinear structure predicts 

future structural response. The controller then calculates the control input that will optimize a cost 

function over a specified future time horizon. Since the NNPC is very time consuming and not 

suitable for real-time control, NNPC is used to generate the training data for a neural network (NN) 

controller. The effectiveness of the NNPC and NN controllers are illustrated and verified using 

simulated response of a 3-story full-scale, nonlinear benchmark building excited by several 

historical earthquake records. Fragility curves are generated to show the reduction in probability of 

damage. The performance of this algorithm is compared with the LQG controller. 

 

 

2. MPC scheme 
 

MPC is based on iterative, finite horizon optimization of a plant model. At each consecutive 

sampling instant k the current plant state is sampled and a cost minimizing control strategy is 

computed for a relatively short time horizon in the future. The optimization cost includes 

minimization of the difference between the predicted and desired responses and the control effort 

subject to prescribed constraints such as limits on the magnitude of the control force. In the MPC 

scheme, first a reference response trajectory yr (k) is specified. The reference trajectory is the 

desired target trajectory of the structural response. This is followed by an appropriate prediction 

model, which is then used to estimate the future structural response y(k). The prediction is made 

over a pre-established extended time horizon using the current time as the prediction origin. The 

general principle of predictive control is as follows: at each consecutive sampling instant k, the 

control inputs u(k) = u(k|k), u(k +1|k), . . . , u(k + λ-1|k) are calculated, assuming u(k + n|k) = u(k + 

λ-1|k) for n ≥ λ, where λ is the control horizon. The applied notation „u(k + n|k)‟ means the 

prediction of the control input value for the future time k + n, performed at the time k. The control 
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inputs are calculated in such a way as to minimize differences between the predicted controlled 

outputs �̂�(k + n|k) and the desired outputs yr(k+p|k) over the prediction horizon p (n = 1, 2, . . .,p). 

Then, only the first element u(k|k) of the calculated sequence is applied to the structure, i.e., u(k) = 

u(k|k). At the next sample (k + 1), there occurs a new measurement of the process outputs and the 

whole procedure is repeated, with the prediction horizon of the same length p, but shifted by one 

step forward. Fig. 1 describes schematically the basic MPC scheme. 

Determination of the control input trajectory over the control horizon is realized in the 

predictive algorithms on the basis of a model, by minimizing a cost function describing the control 

quality over the prediction horizon. A prime component of this function is the cost of deviations of 

the predicted outputs from the set points, i.e., the cost of predicted control errors. Moreover, it is 

also typical to include into the cost function, penalties on control changes. Regarding the two 

components, the following most commonly used quadratic cost function can be formulated 

𝐽 = ∑ (𝑦𝑟(𝑡) − �̂�(𝑡 + 𝑗))2𝑝
𝑗=1 + 𝜌 ∑ (�̂�(𝑡 + 𝑗 − 1) − �̂�(𝑡 + 𝑗 − 2))2𝜆

𝑗=1             (1) 

where p and λ define the prediction and control horizons, respectively. The �̂� variable is the 

tentative control signal, yr is the desired response, and �̂� is the network model response. The ρ 

value determines the contribution that the sum of the squares of the control increments has on the 

performance index. 

 

 

3. Three-story benchmark building 
 

The representative structure employed in this study is the SAC 3 story nonlinear benchmark 

building. The structure is designed for the Los Angeles, California area and defined by Ohtori et al. 

(2004). It‟s 36.58 m by 54.87 m in plan, and 11.89 m in elevation, Fig. 2. The bays are 9.15 m on 

center, in both directions, with four bays in the north-south (N-S) direction and six bays in the 

east-west (E-W) direction. 

 

 

Fig. 1 MPC scheme 
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Fig. 2 Plan and elevation of 3 story nonlinear benchmark building 
 

 

The building‟s lateral load-resisting system is comprised of steel perimeter moment-resisting 

frames (MRFs) with simple framing between the two furthest south E-W frames. The interior bays 

of the structure contain simple framing with composite floors. The floor system is assumed to be 

rigid in the horizontal plane. Since the building is quite regular in plan and elevation, only half of 

the building is considered for further analysis. The MRF to be analyzed is one of the two in the 

North-South direction and was assigned half the seismic mass of the whole structure. The first, 

second and third periods of frame are 1.01, 0.33 and 0.17 s, respectively. 

Three sensors for displacement measurements system on the first, second, and third floors of 

structure and one sensor for ground acceleration measurement are used for feedback in the control 

system. During large seismic events, structural members can yield, resulting in nonlinear response 

behavior that may be significantly different than a linear approximation. To represent the nonlinear 

behavior, a bilinear hysteresis model is used to model the plastic hinges. These plastic hinges, 

which are assumed to occur at the moment resisting column-beam and column-column 

connections, introduce a material nonlinear behavior of structures. 

 

 

4. Proposed control strategy 
 

4.1 Neural network predictive controller 
 

Fig. 3 illustrates the proposed control strategy. The required control force is calculated by an 

NNPC algorithm, which is based on MPC scheme. NNPC consists of a neural network model of 

structure and a numerical optimization algorithm. Basically there is no limitation on choosing 

response for control, but because here the three story structure is used for simulation and for short 

structure relative displacement can be the most important criteria, this response is selected for 

control. The neural network model is used to predict the open-loop future behavior of the story 
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over a finite time horizon from present states. Here, one controller is used for each story to control 

relative displacement of the story. The input to the neural network model is the relative 

displacement of story and ground acceleration. The ground acceleration is assumed to be constant 

over the horizon. The output of the neural network is the predicted relative displacement of story, 

which is then sent to the optimization algorithm to find a finite sequence of control actions, which 

minimizes the cost function (Eq. (1)) within pre-specified constraints. Here, p, λ and ρ are selected 

5, 5 and 0.005, respectively. 

As discussed above, the NNPC proposed in this paper requires a neutral network model of 

structure. This NN model calculates the relative displacement of story based on the current and 

few previous histories of relative displacement, ground acceleration, and control force. To train the 

NN, the band limited white Gaussian noise  is used to generated randomly control force and 

Elcentro records is used to generate data as ground acceleration (Fig. 4). Relative displacement of 

stories due to these ground acceleration and control forces are calculated considering nonlinear 

material behavior described by Ohtori et al. (2004) and briefly presented in this paper. The 

sampling rate of the training data was 100 Hz for 30s period, which resulted in 3000 patterns for 

training, testing, and validation. To select the network architecture, it is required to determine the 

numbers of inputs, outputs, hidden layers, and nodes in the hidden layers which is usually done by 

trial and error. The most suitable input data in our case were found to be the current and the two 

previous histories for the relative displacement, ground acceleration and control force. In addition, 

one hidden layer, with fifteen nodes, was adopted as one of the best suitable topologies for the NN. 

The tansig activation function is used for the hidden layer and the linear function for the output 

layer, which represents the control force. 

 

4.2 Neural network controller 
 

As stated earlier, the NNPC controller should minimize a performance index at each time step 

to find the required force in order to produce the desired response. This minimization is very time 

consuming and is not suitable for real-time control of system subjected to seismic excitations. So, 

The NNPC is used to train a single neural network that works as a standalone controller. This NN 

controller estimates the control force from the feedback sensors directly.  

 

 

 

Fig. 3 Proposed control strategy 
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Fig. 4 Training NN model of structure 

 

 

One controller is trained for each story. Training these NN controllers are performed offline by 

generating the required training patterns when the structure is excited by 40 s of the El Centro 

earthquake record and controlled by the NNPC controllers. The data used to train these controllers 

are prepared as depicted in Fig. 5. The sampling rate is 200 Hz and the training patterns numbered 

8000. The network architecture was designed to have 9 input neurons representing the current and 

two previous histories of the ground acceleration, relative displacement of story and control force. 

One hidden layer having 20 hidden neurons was selected by trial and error. Finally, the output 

layer has one neuron, representing the control force of each story. The tansig activation function 

was used for the hidden layer and linear was used for the output layer (control force). 

 

 

5. Control performance 
 

To investigate the effectiveness of the control system, two groups of criteria are selected. The 

first includes criteria are proposed in nonlinear benchmark problem defined by Ohtori et al. (2004) 

to evaluate interstory drift ratio, story acceleration and base shear. The second is fragility curves. 

The fragility curves show the probability of structural damages as a function of ground motion 

intensity. 

 

5.1 Benchmark problem criteria 
 

In the benchmark problem, two far-field and two near-field historical ground motion records 

are proposed: (1) El Centro. The N-S component recorded at the Imperial Valley Irrigation District 

substation in El Centro, California, during the Imperial Valley, California earthquake of May 18, 

1940. (2) Hachinohe. The N-S component recorded at Hachinohe City during the Tokachi-oki 

earthquake of May 16, 1968. (3) Northridge. The N-S component recorded at Sylmar County 

Hospital parking lot in Sylmar, California, during the Northridge, California earthquake of January 

17, 1994. (4) Kobe. The N-S component recorded at the Kobe Japanese Meteorological Agency 
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station during the Hyogo-ken Nanbu earthquake of January 17, 1995. The absolute peak 

acceleration of the earthquake records are 3.417, 2.250, 8.2676, and 8.1782 m/sec
2
, respectively. 

Moreover, various levels of each of the earthquake records including: 0.5, 1.0 and 1.5 times the 

magnitude of El Centro and Hachinohe; and 0.5 and 1.0 times the magnitude of Northridge and 

Kobe are employed. This is a total of 10 earthquake records to be considered in the evaluation of 

the control strategy. 

To show the performance of the proposed controllers, time histories of relative displacement of 

the third story when the structure is subjected to the El Centro and Hachinohe earthquakes are 

depicted in Figs. 6 and 7 considering NNPC and NN controllers, respectively. As can be seen, the 

relative displacements are noticeably reduced after control action. Not only the peak responses but 

also the overall amplitudes are reduced in the responses. 

The performance of the controller is also investigated based on the evaluation criteria (𝐽1 − 𝐽6) 

specified for the nonlinear benchmark buildings (Ohtori et al. 2004), which are briefly presented in 

Table 1. These criteria are calculated as a ratio of the controlled and the uncontrolled responses. 

The first three criteria are based on peak interstory drift ratio (𝐽1), level acceleration (𝐽2) and 

base shear (𝐽3), over the range i=[1,3]. In these expression: 𝑑𝑖(𝑡) is the interstory drift of the 

above ground level over the time history of each earthquake, ℎ𝑖 is the height of each of the 

associated stories, 𝛿𝑚𝑎𝑥  is the maximum interstory drift ratio of the uncontrolled structure, 

�̈�𝑎𝑖(𝑡) and �̈�𝑎
𝑚𝑎𝑥 are absolute acceleration of the i-th level with and without control devices 

respectively, 𝑚𝑖 is the seismic mass of the i-th above ground level and 𝐹𝑏
𝑚𝑎𝑥 is the maximum 

base shear of the uncontrolled structure for each respective earthquake. 

 

 

 

Fig. 5 Training NN controller 
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Fig. 6 Comparison of relative displacement of the 3rd_story for uncontrolled and NNPC 

 

 

 
Table 1 Performance criteria 

𝐽1

= 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑡,𝑖

|𝑑𝑖(𝑡)|

𝑖

𝛿𝑚𝑎𝑥
} 

Interstory drift ratio 

𝐽2 = 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑡,𝑖|�̈�𝑎𝑖(𝑡)|

�̈�𝑎
𝑚𝑎𝑥

} 

Level acceleration 

𝐽3 = 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑡|∑ 𝑚𝑖�̈�𝑎𝑖(𝑡)𝑖 |

𝐹𝑏
𝑚𝑎𝑥 } 

Base shear 

𝐽4

= 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑖

‖𝑑𝑖(𝑡)‖

𝑖

‖𝛿𝑚𝑎𝑥‖
} 

Normed interstory drift ratio 

𝐽5 = 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
𝑚𝑎𝑥𝑖‖�̈�𝑎𝑖(𝑡)‖

‖�̈�𝑎
𝑚𝑎𝑥‖

} 

Normed level acceleration 

𝐽6 = 𝑚𝑎𝑥 𝐸𝑙 𝐶𝑒𝑛𝑡𝑟𝑜
𝐻𝑎𝑐𝑖𝑛𝑜𝑒
𝑁𝑜𝑟𝑡𝑟𝑖𝑑𝑔𝑒

𝐾𝑜𝑏𝑒

{
‖∑ 𝑚𝑖�̈�𝑎𝑖(𝑡)𝑖 ‖

‖𝐹𝑏
𝑚𝑎𝑥‖

} 

Normed base shear 
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Fig. 7 Comparison of relative displacement of the 3rd_story for uncontrolled and NN Controller 

 

 

The next three criteria are based on normed building responses. The interstory drift (𝐽4), level 

acceleration (𝐽5), and base shear (𝐽6) are defined in their normed based forms where the norm, 
‖ . ‖ , is computed using the following equation 

‖ . ‖ = √
1

𝑡𝑓
∫ [ . ]2𝑑𝑡

𝑡𝑓

0
                                  (2) 

which 𝑡𝑓 is a sufficiently large time to allow the response of the structure to attenuate.  

Table 2 presents the evaluation criteria as the ratio of the controlled response to the 

uncontrolled response for each earthquake record individually for NN and LQG controllers. Here, 

the NN controller is designed to reduce the relative displacement and as can be seen in Table 2 it 

has reduced both the peak and normed drift criteria (J1 and J4) for all earthquake records 

significantly. According to this table, J1 and J4 are reduced 13-81% and 44-91%, respectively 

considering different earthquakes. Unfortunately, NN controller has increased peak and normed 

acceleration criteria (J2 and J4) especially normed acceleration for all earthquake records. 

Reduction of building acceleration is important in situations where occupant comfort is a high 

priority. A circumstance where control of acceleration takes precedent over control of drift often 
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arises with the design of very tall and slender buildings. In these situations other criteria can be 

used for optimization in the proposed control strategy instead of relative displacement or even 

multi objective criteria can be employed. In Table 2, J3 and J6 also show that the peak and normed 

base shear are increased in most cases. Comparing the NN and LQG controllers concludes that the 

NN is more successful than LQG controller in most earthquakes, considering drift criteria.  

 

5.2 Fragility curves 
 

One method in estimation of seismic damage in buildings and bridges and evaluation of the 

effects and robustness of control methods is so called fragility curves. The fragility defines the 

conditional probability of the seismic demand (D) placed upon the structure exceeding its capacity 

(C) limits for a given level of earthquake intensity (S), as shown in the following equation 

Fragility= P[D≥C|S]                               (3) 

Different methods have been used to develop fragility curves. These methods may be 

sub-divided into four categories based on the sources of data as: empirical, judgmental, analytical 

and hybrid vulnerability methods (Kwon and Elnashai 2006). In the absence of adequate empirical 

data, analytical methods usually have been used to develop fragility curves. In these methods, the 

structural demands and/or capacities used to evaluate failure probability are estimated through 

such methods as elastic spectral, nonlinear static and nonlinear time history analyses (Padgett and 

DesRoches 2008). Here, nonlinear time history analyses are used to generate fragility curves. 

 
Table 2 Performance criteria for NNC and LQG controllers 

  
Erth 

Quake 

El  

centro 

El  

centro 

El  

centro 

Hachin 

ohe 

Hachin 

ohe 

Hachin 

ohe 

North 

ridge 

North 

ridge 
Kobe Kobe 

Maxi 

Mum 

  (Intensity) (0.5) (1) (1.5) (0.5) (1) (1.5) (0.5) (1) (0.5) (1)   

Criteria Controller 
          

  

J1 NNC 0.19 0.61 0.87 0.13 0.14 0.22 0.41 0.78 0.62 0.86 0.87 

  LQG 0.42 0.59 0.75 0.62 0.74 0.83 0.86 1.11 0.69 0.73 1.11 

J2 NNC 1.93 1.29 1.33 2.11 1.30 1.20 1.14 1.36 1.14 1.00 2.11 

  LQG 0.53 0.69 0.91 0.62 0.75 0.84 0.89 1.05 0.83 0.88 1.05 

J3 NNC 0.69 1.20 1.34 0.70 0.58 0.80 0.86 1.17 1.26 1.20 1.34 

  LQG 0.40 0.70 0.79 0.52 0.73 0.91 0.82 0.87 0.74 0.94 0.94 

J4 NNC 0.39 0.45 0.56 0.27 0.18 0.17 0.09 0.37 0.30 0.31 0.56 

  LQG 0.45 0.48 0.50 0.32 0.35 0.99 0.50 0.67 0.26 0.32 0.99 

J5 NNC 13.01 7.71 4.56 10.13 5.99 4.76 11.05 2.42 8.46 4.90 13.01 

  LQG 0.44 0.54 0.56 0.30 0.36 0.43 0.59 0.66 0.53 0.63 0.66 

J6 NNC 3.24 2.25 1.65 2.40 1.50 1.29 3.06 1.31 2.43 1.70 3.24 

  LQG 0.40 0.49 0.51 0.28 0.34 0.41 0.61 0.59 0.47 0.58 0.61 
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When developing fragility curves, selection of representative set of earthquakes that represents 

the variability in seismic input is an important step. Usually the number of available and usable 

actual ground motion records is not sufficient to obtain the accurate results. Somerville et al. (1997) 

generated three set of 20 ground motions for the SAC project to represent ground motions having 

probabilities of exceedance of 50% in 50 years (corresponding to a return period of 72 years), 10% 

in 50 years (corresponding to a return period of 474 years), and 2% in 50 years (corresponding to a 

return period of 2475 years) in the Los Angeles region. These sets of ground motions are referred 

to as the 50 in 50 Set, 10 in 50 Set, and 2 in 50 Set, respectively. The acceleration histories have 

been scaled so as to conform roughly to the 1997 NEHRP design spectrum for firm soil for the 

specified return periods. Since Bazzuro and Cornell (1994) suggested that five to seven input 

motion are sufficient for representing the hazard, in this study only two sets of ground motions (2 

in 50 set and 10 in 50 set) including 40 earthquakes are used as a seismic input. 

Definition of limit states plays a significant role in the construction of the fragility curves. 

FEMA 356 (2000), defines three limit states based on inter-story drift. These limit states are the 

Immediate Occupancy (IO), the Life Safety (LS) and the Collapse Prevention (CP). FEMA 

specifies 0.7, 2.5 and 5% for the maximum inter-story drift ratio of steel moment frames associates 

with the IO, LS and CP limit stats, respectively. 

Fig. 8 shows fragility curves for uncontrolled and controlled structure subjected to 40 ground 

motions considering FEMA limit states.  

As it is obvious, NN controller reduces the probability of damage for a wide and common 

range of intensities, significantly. But, When PGA (sa) is greater than 1.3 g (2.3 g), the NN 

controller increases the probability of damage. Because the ground motion intensities are rarely 

greater than stated amount, the performance of the NN controller in damage reduction is realized, 

perfectly. Fig.8 shows that the performance of the controller in low intensities is better than high. 

This figure also shows that the NN is more effective in damage reduction than the LQG controller. 

Moreover, as can be seen, the NN controller is effective for a wider range of intensities than the 

LQG controller. 

 

 

 

  

Fig. 8 Fragility curves for controlled and uncontrolled structure 
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6. Conclusions 
 

In this paper active neural network predictive controller (NNPC) is used to control nonlinear 

structures subjected to ground excitations. A neural network model of nonlinear structure predicts 

future structure response. The controller then calculates the control input that will optimize a cost 

function over a specified future time horizon. Since the NNPC controller is very time consuming 

and not suitable for real-time control, NNPC controller is used to obtain the training data for a 

neural network (NN) controller. The effectiveness of the NNPC and NN controllers are illustrated 

and verified using simulated response of a 3-story full-scale, nonlinear benchmark building excited 

by several historical earthquake records. 

Table 2 presented the evaluation criteria as the ratio of the controlled response to the 

uncontrolled response. The results demonstrate that the NN algorithm is quite effective in relative 

displacement reduction for wide range of motions from moderate to severe seismic events, 

compared with the LQG controller. Since here the proposed controller was designed to minimize 

the relative displacement, it can be concluded that the proposed control strategy has worked 

properly. Moreover, Table 2 showed that the proposed controller increases the acceleration 

response. So, in the situation that the acceleration reduction is the most important criteria such as 

tall buildings, other criteria or multi objective criteria can be used for optimization in the proposed 

control strategy. Generating fragility curves for the uncontrolled and controlled structure shows 

that in common ground motion intensities the proposed controller is completely effective to reduce 

the probability of damage. 
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