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1 INTRODUCTION

Water is an economic and social commodity and is
one of our primary needs. Due to the importance of
water resources, management of these resources is
highly needed. As far as river engineering is con�
cerned, especially in cases of floods and water harvest�
ing, it is important to have knowledge about the quan�
tity of water [3]. In order to predict river flows, it is
essential to use computers and the latest innovations in
this field. Statistical, hydraulic and hydrological mod�
els are used widely in the prediction of stream flows.
However, since the mid�1990s, the use of artificial
intelligence models, such as Artificial Neural Net�
works (ANNs), has been considered [7, 28].

Furthermore, hydraulic and hydrological concep�
tual models may have practical problems, and are sen�
sitive to errors (small though) of input parameters.
While some empirical and statistical models lack the
required generalizability power, artificial intelligence
models are found to be the right tools for making a
relationship between the input and output values, par�
ticularly while dealing with non�linear and complex
relationships without any necessity to know the phys�
ical relationships. Black box methods, such as the
ANNs, are data�driven approaches that have been

1 The article is published in the original.

extensively used in water resources management [5, 8,
16, 20], which includes rainfall�runoff modeling [10,
39, 40], water quality modeling [17, 31], groundwater
modeling [24], flood prediction [12], sediment fore�
casts [19], and flow prediction [26, 35, 41, 42].

River flow modeling is one of the most complex
hydrological challenges and its values are affected by a
large number of different variables [33, 44]. ANNs are
able to understand these complexities, but they usually
require a large number of input parameters in a long
time interval as data in order to improve their model
efficiency [11]. Issues involving river flow modeling
include errors in data, corrupted data and in some
cases, insufficient data (including lack of information
on a special input parameter or insufficiency of time
intervals for that parameter) [2, 4]. According to the
previous researches, one of the parameters for predic�
tion, especially in snow basins, is the snow parameter.
Researchers have shown that snowmelt water stored in
the river basin has a significant impact on river dis�
charge [1, 14, 25, 30].

Snow Water Equivalent (SWE) is the most com�
mon parameter in modeling stream flow, which is used
for inserting the snow effect. In this regard, either
SWE statistical information is not available in a con�
siderable percent number of basins, or its time interval
is not adequate for modeling. Therefore, it seems nec�
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essary to use alternative parameters that are available.
Zeland et al. (1999) first used Cprecip parameter,
which represents the accumulated snow in winter as an
input to the model in order to predict the weekly dis�
charge of the Winnipeg basin in Canada. Moreover,
Amiri et al. (2012) applied Cprecip parameter in the
Tajan River for daily flow forecasts. He showed that
applying changes in Cprecip parameter, in order to
adapt it with the studied basin, had a positive impact
on model performance.

The main goal of this research was to compare
Cprecip parameter with SWE common parameter,
and explain how they adapt to changes in the basin. In
the next section, we further describe the studied area
and examine the statistical parameters. In Section 3, a
brief introduction of ANN performance metrics is
stated. Also, the Cprecip parameter and the results of
the modeling process are explained in Section 4. In
addition, we further discuss how to adapt to changes in
the Cprecip parameter of the basin. Finally, in
Section 5, the overall results obtained from this
research are provided.

STUDY AREA AND DATA SETS

The Haraz River is located in Mazandaran prov�
ince of Iran. It originates in the Lar Valley to the south
of Mount Damavand and it flows north into the Cas�
pian Sea. The Haraz River supplies the water required
for agriculture in the adjacent cities. Also, the river has
a large mountainous drainage basin. Since snow is

responsible for more than half of the precipitations in
this basin, the river water is mainly supplied by the
slow�melting winter snow. In addition, many rivers are
created by annual rainfall, especially in the highlands,
which helps the regular discharge. The Haraz River
drainage area is more than 1100 km2. Karsang Hydro�
metric Station is located 20 km south of Amol City on
the Haraz River, and its rate of weekly discharge was
considered as the output of this research. The geo�
graphical coordinates of Karsang Hydrometric Station
lies between the longitudes of 52°22′05″, latitudes of
36°16′25″, and its height above the sea level is 375 m.
The Haraz River basin is shown in Fig. 1.

The study includes 236 weekly data series which
were gathered for testing, dating from 11/01/2002 to
04/05/2007. It also includes 70 weekly data series used
for testing the network, from 05/11/2007 to
05/09/2008. The data includes variables, such as dis�
charge, rainfall, temperature, evaporation and snow
water equivalent, as demonstrated in Table 1. The data
characteristics, such as minimum, maximum, mean,
variance, and skewness are shown separately in two
phases of training and testing [22]. In order to avoid
any surprises at the testing phase of the model, testing
should be included in the largest quantities of dis�
charge. Also, the output range must be a subset of the
test period in the training phase, which is carefully
considered in the present study.
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Fig. 1. The Haraz River and its watershed.
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MATERIAL AND METHODS

ANNs are an idea for information processing that
is inspired by human brain. Therefore, the key ele�
ment of this idea is the new structure of the informa�
tion processing system. This system is composed by a
large number of highly interconnected processing ele�
ments (neurons) and acts coordinately to solve a prob�
lem. Also, same as humans, it learns by examples.
ANNs are set to perform a specific task, such as iden�
tifying patterns and classified information during the
learning process [15, 21]. A learning algorithm sets the
parameters of an ANN. ANNs have the remarkable
ability to derive meaning from complicated or impre�
cise data, derive relationships, and identify ways in
which information is very complex and difficult to be
applied for humans and other computer techniques. A
trained ANN can be considered as a specialist in the
analysis of data items. Finally, the key point in multi�
objective methods, such as ANN is minimizing the
number of neurons in the hidden layer and at the same
time maximizing precision of validation in the rest of
data [13].

Multi�Layer Perceptron (MLP) is a type of back�
propagation feed�forward neural network and its algo�
rithm is an oversight. This is the most practical neural
network in modeling, particularly in predicting river
flows [18]. Furthermore, a MLP with a hidden layer is
capable of approximating a complex nonlinear func�
tion with sufficient accuracy by selecting the optimal
architecture and learning function techniques. How�
ever, this selection depends on several factors requiring
the user experience and trial and error, and is not an
easy task [27, 38]. A typical MLP with one hidden
layer is shown in Fig. 2.

Input layer neurons only receive input values and
can distribute them among all hidden neuron layer.
Each neuron receives input weight added values in the
hidden layer and adds them up together. Then, the
output value is calculated based on the activation
function applied on the neurons. Also, the output
value of the output layer is computed in a similar man�
ner.

The mathematical form of a three�layer MLP is
given as below:

 (1)

Moreover, Xi is the ith input variable for the input
layer and Yk is the output variable at the kth neuron of
the output layer, Bj and Bk are the biases for the jth hid�
den neuron and the kth output neuron, Wji and Wkj are
weights in the hidden and output layers, M and M ' are
the number of neurons in the input and hidden layers,
and fh and f0 are the activation functions for the hidden
and output layers, respectively.

In order to predict the Haraz River flowing in this
study, a three�layer MLP was used with Levenberg–
Marquardt algorithm. Levenberg–Marquardt is the
quickest method in training [32]. Furthermore, logis�
tic and hyperbolic functions are usually used in the
activation function of the hidden layer while the linear
activation function is used in the activation function of
the output layer [21]. Therefore, in this study Tan Sig�
moid activation function is used for the hidden layer,
and the linear activation function is applied to the out�
put layer.

According to the wide range of data used in this
study, the following equation was used to normalize
the data:

 (2)
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Table 1. Statistical characteristics of the data in training and testing stages

Variable
Training Testing

variance skewness average max min variance skewness average max min

Q, m3/s 485.31 1.00 39.85 96.16 16.8 161.14 2.03 31.94 84.76 17.53

P, mm 46.07 2.31 4.35 40.65 0 28.17 2.10 3.49 24.4 0

SWE,  mm 48.99 2.99 3.36 43.33 0 49.47 4.81 2.00 43 0

Tab, mm 196.84 0.36 16.41 49.2 0 293.48 –0.05 25.53 60.4 0

T, c 41.95 –0.02 9.79 21.88 –1.39 62.22 –1.20 12.50 22.12 –8.61

Input nodes 

Hidden layer 

Output layer 

River flow

Rain fall

Temperature

Evaporation

Snow water equivalent
Weights in the hidden layer

Weights in the Output layer

Input variables

(One node)

(M hidden nodes)

(M = 5)

Q(t)

P(t)

T(t)

Tab(t)

SWE(t)

1

M'

Q(t + 1)

Wkj

Wjj

Fig. 2. Multilayer Perceptron with one hidden layer.
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where X and Xn are the original and normalized data,
and Xmin and Xmax are the minimum and maximum
amounts of original data, respectively.

Accuracy of prediction is studied by performance
criteria. Performance criteria used in this study is con�
sisted of the five following criteria:

 (3)

 (4)

 (5)

(6)

 (7)

where obs is the flow rate of observing and forc is flow

rate predicted by the model. Also,  is mean and N
equals the number of data in the testing phase.

Performance criteria Coefficient of Determina�
tion (R2) is independent from the scale and if it is
more and closer to one, shows the observed and pre�
dicted values are close to each other. If R2 value of the
model is greater than 0.9, the result will be desirable
[23, 34]. In performance criteria of Root Mean Square
Error (RMSE), Mean Absolute Percentage Error
(MAPE), Standard Deviation Error (SDE) and Mean
Squared Derivative Error (MSDE), the lower and
closer the value is to zero, the better the performance

of the model. MSDE is an appropriate measure for
comparing observed and predicted discharge hydro�
graphs, but cannot be used in isolation as a measure of
model performance [9].

RESULTS AND DISCUSSION

Melting snow provides most of the base discharge
of a snowy river. Moreover, accumulation and melting
of snow plays an important role in rivers’ flood behav�
ior. In these situations, snow water equivalent is con�
sidered the most common variable for hydrological
predictions. The snow water equivalent is the height of
water calculated as a result of snow melting [29,
36, 37].

To improve the performance of neural networks,
Zeland et al. (1999) used Cprecip for the prediction of
input discharge in the Winnipeg basin in Canada.
Cprecip parameter is the cumulative precipitation
from the months of November to April. In fact, that is
the accumulated snow until now, and is stored during
winter and melts in spring. Cprecip parameter,
according to atmospheric conditions, is especially
designed for the Winnipeg Basin in Canada. There�
fore, necessary changes were made in order to apply
for the Mazandaran basin. While snow occurs during
the entire year in the Winnipeg basin in Canada, in the
Mazandaran basin snow melts by the end of spring,
except in certain areas. Therefore, in Cprecip–MAZ,
after the cumulative rainfall was calculated from the
first of November to the beginning of April, this value
was linearly reduced to zero by the first of June [6].

In modeling the Haraz River flow, the following
four input patterns were first used in order to predict
the following week’s discharge:

 (8)

 (9)

 (10)

(11)

where Q is the average weekly rate, P is the weekly
rainfall, T is the average weekly temperature, Tab is the
weekly evaporation, SWE is the weekly snow water
equivalent, Cprecip is the average weekly cumulative
precipitation, MAZ–Cprecip is the average weekly
cumulative precipitation of the Mazandaran zone, and
t is the computational time per week. For example, in
the last input pattern, the average discharge value of
the following week depended on the cumulative pre�
cipitation in the Mazandaran zone, as well as rainfall,
evaporation and discharge during that week.

In order to predict next week’s Haraz River flow,
using MLP and the obtained data from the river, the
first step was to train and then examine the models.
Table 2 shows the performance criteria for different
input patterns. The highest numbers for every period
and every performance measured are indicated in
bold. Also, the diagrams resulted from modeling with
the input pattern of Eq. (9) in the testing stage are
given as an example in Fig. 3.

By comparing the input pattern of Eq. (8) with the
input pattern of Eq. (9), it could be observed that, at
the total test time and at all seasons of testing, the
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model with the input pattern of Eq. (8) had lower
accuracy than the model with input pattern of Eq. (9).
Moreover, the lack of a SWE parameter (representing
snow variable) in the input pattern of the model had a
negative impact on model predictions. For this reason,
a parameter was needed to enter snow effect on the

model for the snow zones where there are no SWE
parameters.

Results of the model with input pattern of Eq. (10)
show that the entire range of input Cprecip in the test
model, in all seasons except for spring, had a positive
impact on network accuracy. However, its precision for

Table 2. Performance metrics for different input patterns

Performance 
criteria Input pattern General Spring Summer Fall Winter

R2

INPUT 1 0.9169 0.8970 0.8999 –0.1756 0.5467

INPUT 2 0.9504 0.9429 0.9235 0.4878 0.7652

INPUT 3 0.9295 0.9056 0.9209 0.2040 0.6225

INPUT 4 0.9427 0.9329 0.9078 0.1082 0.8811

RMSE

INPUT 1 3.1678 4.2271 2.7889 2.2673 2.6424

INPUT 2 2.4473 3.1478 2.4379 1.4966 1.9016

INPUT 3 2.9182 4.0460 2.4794 1.8657 2.4111

INPUT 4 2.6314 3.4122 2.6770 1.9748 1.3534

SDE

INPUT 1 0.0688 0.0705 0.0688 0.0463 0.0614

INPUT 2 0.0514 0.0500 0.0530 0.0379 0.0370

INPUT 3 0.0652 0.0728 0.0524 0.0433 0.0556

INPUT 4 0.0493 0.0467 0.0463 0.0437 0.0265

MSDE

INPUT 1 14.1845 23.1145 16.1871 5.7446 5.0166

INPUT 2 9.5245 18.5932 7.8765 4.6905 3.8361

INPUT 3 12.5659 24.9183 11.1801 5.8204 3.2027

INPUT 4 9.5604 16.6212 9.7146 4.2709 3.7897

MAPE

INPUT 1 8.1540 7.6333 8.2751 7.2227 9.7787

INPUT 2 6.1559 6.0070 6.9980 4.0954 6.8822

INPUT 3 7.0442 6.8414 7.1252 5.5324 8.8511

INPUT 4 7.2406 7.2426 9.1215 5.6894 4.9994
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Fig. 3. Rating curve and scatter plot, observed versus predicted discharge for input pattern of Eq. (9) in testing period.
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the entire model test, during all seasons, was still far
from the network accuracy with input pattern of
Eq. (9). Therefore, several changes are required for
Cprecip in order to adjust to the zone of interest
(Haraz zone).

Moreover, MAZ–Cprecip model was used as an
input in the input pattern of Eq. (11) by Amiri et al.
[6], and was further introduced as the adapted Cprecip
with Mazandaran Province of Iran. The results indi�
cated the positive impact of changes in the input pat�
tern of MAZ–Cprecip with the accuracy of the pre�
diction model. The comparison of the performance
metrics with the input pattern and the input pattern of
Eq. (10) indicated that MAZ–Cprecip was markedly
superior to Cprecip in the entire test, during winter
and spring. Also, these two variables were observed to
have the same effect in the fall. However, during the
summer Cprecip had a better effect on the perfor�
mance of model prediction than the MAZ–Cprecip.
Furthermore, the comparison results of the model
with input pattern of Eq. (11) with the model with
input pattern of Eq. (9) demonstrated that the accu�
racy of these two models are very close; however, there
was still a difference in the accuracy of predictions.

Although the Haraz River basin is one of the major
basins of Mazandaran, it is colder and more moun�
tainous than the basin used by Amiri et al. [6] as a rep�
resentative region of Mazandaran. Considering the
lower prediction accuracy of the models with MAZ–

Cprecip input in summer, as well as the conditions of
the Haraz River basin, it can be said that accumulated
winter snow requires more time to be completely
melted. As a result, some changes were
applied on MAZ–Cprecip parameter and a new
parameter was designed for the Amol basin, which was
called H–Cprecip. In MAZ–Cprecip parameter, the
cumulative precipitation linearly decreased from the
beginning of April and became zero at the beginning of
June. This is while in the H–Cprecip parameter, the
amount of cumulative precipitation with the lower
slope was reduced so that it became zero at the begin�
ning of July. Time series of weekly Cprecip, MAZ–
Cprecip and H–Cprecip in the Haraz River can be
observed in Fig. 4.

Input model of Eq. (12) was then used to model the
weekly discharge of the Haraz River:

(12)

Performance coefficient results of neural networks
of input pattern in Eq. (12) are given in Table 3 for
weekly Haraz River flow model. The numbers
depicted in bold indicate the input pattern of Eq. (12)
for each period, and each performance criteria has the
best results among the five input pattern. The diagram
simulating the testing phase of input model of Eq. (12)
is given in Fig. 5. For a better comparison of the two
input patterns of Eqs. (12) and (9), absolute error plot
is shown in Fig. 6. Moreover, the results on the charts
indicate that the effect of H–Cprecip parameters on
the performance of the model was approximately
equal to SWE parameters over the entire range of test
in all seasons.

CONCLUSIONS

One of the important issues in the field of planning
and developing water resources is providing accurate
and consistent models with the structure of the prob�
lem for predicting river flows. This paper analyzes the
efficiency of artificial neural network in predicting
weekly discharge of the Haraz River and the results
proved that ANN had a good performance in this area.
We also found out that using different combinations of
input parameters in the model had a significant impact
on the accuracy of model predictions. On the other
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Table 3. Performance criteria for input pattern of Eq. (12)

Performance 
criteria Input pattern General Spring Summer Fall Winter

R2 INPUT 5 0.9503 0.9478 0.9147 0.3303 0.8069

RMSE INPUT 5 2.4510 3.0085 2.5747 1.7113 1.7247

SDE INPUT 5 0.0460 0.0400 0.0478 0.0350 0.0465

MSDE INPUT 5 7.6875 15.0642 6.5660 3.5332 2.8446

MAPE INPUT 5 6.9087 6.1487 8.9099 5.2613 5.7907
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hand, the lack of one of the parameters affecting the
rivers flow in the model’s input parameters had a neg�
ative impact on the accuracy of model prediction.

Furthermore, this study demonstrated that lack of
snow parameter in the input pattern led to reduce
model performance, especially in snow basins. Since
SWE was almost the only parameter used for entering
the snow effect on snow basins, a parameter should be
found to replace it in basins with unavailable SWE sta�
tistical information. Following the use of Cprecip
parameter, we found out that although this parameter
had a positive effect on the model prediction by being
added to the input pattern, its impact was far less than
the SWE. The reason is that Cprecip was designed for
the Winnipeg basin in Canada and the condition of
this basin was different from the one studied. There�
fore, MAZ–Cprecip parameter was applied, which
was designed according to Mazandaran zone condi�
tions.

The results showed that MAZ–Cprecip had a pos�
itive effect on the model when compared to
Cprecip, and its impact, although slightly different,

was close to the SWE effect. To eliminate the slight dif�
ference, H–Cprecip parameter was designed accord�
ing to the Haraz River basin. After adding H–Cprecip
to the input pattern, the results indicated almost iden�
tical effect of H–Cprecip parameter and SWE param�
eter on the performance model. In sum, we can con�
clude that in order to insert a snow variable effect in
the model when SWE is unavailable, it may be helpful
to design a Cprecip parameter according to the atmo�
spheric conditions of the basin being studied.
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