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[bookmark: _GoBack]Abstract—In this paper we discuss the issue of optimal control of piecewise affine systems based on discontinuous quadratic Lyapunov function, given the stability of the said system, first we calculate the upper bound of the cost function, then we consider the control input as the state feedback and finally, by minimizing the upper bound of the cost function, the state feedback coefficients are calculated. Note that if we minimize upper bound the cost function is minimized. It is worth noting that the optimization problem is turned into a semidefinite programming problem with bilinear constraints. These problems can be solved using numerical or any other methods. Finally, to check the effectiveness of the method, we have listed a numerical example.
Introduction
Hybrid systems are dynamical systems with continuous time and discrete components. These systems can be used for modeling industrial processes. Piecewise affine systems are a subset of hybrid systems and their equivalence with other classes of the hybrid systems are shown [1]. Piecewise affine systems are an important category for modeling of complex and nonlinear systems, because many of such nonlinear systems such as saturated and etc. are inherently modeled in form of piecewise affine systems or can be approximated as a piecewise affine system [2]. Therefore, piecewise affine systems are an important tool and a starting point for studying nonlinear systems. These systems are defined by a series of linear systems that are defined by polyhedral in each region. In references [3] and [4] you can see the application of these systems in power electronics and process control. Furthermore, a wide range of nonlinear systems in engineering applications can be modeled using a piecewise affine system [5]. On the other hand,, the stability and performance analysis of the piecewise affine systems can be formulated and easily solved in the form on convex problems that are easily solved by numerical methods and this is an advantage for these systems. Analysis and controller design problems for piecewise affine systems has been a subject of debate over recent years and has been one of the most challenging issues in the field. Controllability and observability of these systems are discussed in reference [6]. Stability and synthesis analysis of piecewise affine systems are discussed in references [7] and [8]. In these cases stability is expressed in the form of linear matrix inequalities. In reference [9] controller design is done based on the output feedback and controller is obtained by solving a series of bilinear matrix inequalities that are solved using numerical algorithms. Quadratic controls of piecewise affine systems are discussed in reference [10]. Gain calculation of   for piecewise affine systems is done in [11] and [12].Optimal control of switch affine systems discussed in [15] and [18].Optimal control of switch Hybrid systems discussed in reference [16].In reference [17] and [19] and [21]optimal control of discrete piecwise affine systems obtained.In reference [20] optimal control of switch affine systems with dynamic programming obtained.But optimal control of these systems using the state feedback is not performed and this prompted us to perform this research. Here, the cost function is considered of Linear Quadratic Regulator (LQR) for a closed-loop system. The goal is controlling the state feedback in such a way that it stabilizes the closed-loop system and reduces the cost function to a minimum. Initially we discuss the conditions of stability in a piecewise affine systems, then we generalize these conditions to a closed-loop system based on discontinuous Lyapunov function. These conditions are expressed in terms of linear matrix inequalities. Then we prove a theorem and we use it to calculate the upper bound of the cost function. In the end based on the discontinuous Lyapunov function, the optimal controller design problem will become a semi-definite programming optimization problem with bilinear constraint which can be solved by genetic algorithm or numerical algorithms.All the previos works in fact designed optimal control for switch-affine systems or for discrete piecwise affine systems or the way they are used to design optimal control is limited and we cant increase the number of optimal control designe constraints but the method mentioned in this paper is not limited.
Definitions,stability analyis and upper bound
In this section, the definitions and backgrounds necessary for studying the next sections are described. Then we discuss the necessary conditions for stability analysis and , we obtain an upper bound for the cost function introduced 
Positive Matrix
The  matrix is called a positive matrix when  is similarly defined as negative matrix.
Definite positive matrix
Matrix  is called definite positive if  and the notation  is used to show it. In the same way, definite negative matrix is also defined.
piecewise affine systems
The mathematical description of PWA class in general is
	
	(1)


In which  shapes the designated areas and their collection is a partitioned space of the state. According to the type of partitioning systems of the PWA, there are two types of PWA, multi-faceted and oval.
	
	(2)


In (1) and (2)  and  of the matrix and vector are appropriate to the size.
It’s worth noting that system (1) assuming  turns into a piecewise linear system as follows:
	
	(3)



The border of neighboring areas  and  is defined as
	 
	(4)


Using the notation  and  we’ll have
	= 
	(5)

	  
	(6)

	} 
	(7)

	=  
	(8)




Stability Analysis 
Thorem 1:
Suppose   and   are unknown matrices with non-negative elements and appropriate dimensions and (k=1,2)   are unknown vectors with appropriate dimensions and non-negative elements and (i∈I) is a symmetric matrix, then we define following variables [13]
	+
=
=

	(9)



If there is a choice between  and  and  matrices and (k=1,2)vectors that can establish the following restrictions, then for system defined by equation (5) all the trajectory starting at X will exponentially converges to origin.
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	Where  
	(16)




Calculating the upper bound
Thorem 2:
For the system (5) if the conditions of therom (1) is met and the inequality is established, then the upper bound for cost function 
dt  is calculated [14]:
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Proof: Suppose that we prove  for the therom, another proof is the same. We multiply the said inequality in X from left and right and remove of non-negative terms. Then we take the integral of the expression that we desire in the interval :
	 
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	

	

	

	(19)
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You may notice in the above inequalities that all of them are a series of linear matrix inequalities in relation to the variables  and . Therefore, stability conditions for a closed-loop system are a series of linear matrix inequalities in relation to  and  and they are convex optimization problems that can be solved using numerical methods. Pay attention that because the cost function is dependent on the initial point, and this point is unknown and a random variable, we assume that the initial point of a random variable is monotonous with distribution, so that the dependency is eliminated. Operator  expresses the expected value and  represents the probability that  belongs to area . Since we considered the initial state as a monotonous random variable, therefor the probability of  and the covariance matrix  can be determined using the desired area’s information and the partition .


Optimal Control Design
In this section we describe the optimal controller design issues for piecewise affine systems using the state feedback. We assume that the designated system balance point is the initial point. Consider the system described with equations (1), in this case assume that state feedback controller is . The closed loop system takes the form below:
	
	(21)



We consider the cost function as:
	
	


With the consideration of the appropriate state feedback, the cost functions comes in the form of:
	

	

	
	

	   

	(25)




Using the notations of equation (21), it gives:
	

	

	 s
	(27)



By applying the said changes in the form of the equations, therom 2 for the system (26) is rewritten as:
Therom 3:
For the system (26) with (assuming that the system is stable) if the equations (30-41) are met, then the upper bound for the equation (22) is obtained:
	  
	(28)

	  

	(29)



In this case we’ll have: 
Proof: To prove this therom in therom 2, we convert  to . Now we can merge therom 1 and 3 and generally express the result in terms of therom 4:
 Therom 4:
For the system defined by equations (26) if the following conditions are met, then the system for each respective system trajectory exponentially convergent origin and             
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Finally, for optimal control design, the coefficient  must be calculated. To calculate these coefficients we consider a controller that minimizes the upper bound of cost function . So the desired optimization problem that leads to the controller design is as follows:

To solve optimization problem we use genetic algorithm for selecting the variable Ki. After defining Ki, the optimization problem is converted to a linear matrix inequality form which can be solved as a semi-definite programming problem
Numerical Example
Consider System (1) with grade 2 and  and the following matrices:
	

	

	




Suppose that the initial state  is a random variable with monotonous distribution in the interval  We assume the cost function as equation (22) and assume   and . We consider the control coefficient in interval . It becomes clear that the source is located in region  and the closed loop system is unstable. Matrices  and  and  and  and  and are calculated as:
	

	



Also, the parameters required to analyze the stability using therom (1) are:
	,,,
;,,


After the simulation, the appropriate control coefficients are obtained as follows. Also, the appropriate Lyapunov function for region is demonstrated in figure (1):
	



	



	



	Joptimal=0.1698
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Figure 1: lyapunov for region 

Conclusion
In this paper, we introduced a class of hybrid systems that are able to model a wide range of practical systems, then we discussed the mathematical description of affine linear systems and stability conditions of piece wise affine systems in form of terms of linear matrix inequalities and then calculated the upper bound of the cost function. In fact, theroms 3 and 4 are one the innovations of this article. We proved that the problem of optimal control of piece wise affine systems leads to solving an optimization problem with bilinear constraints. Then, by minimizing the upper bound and use of genetic algorithms and semi-definite programming we can calculate the controller coefficients. In the end, we demonstrated the effectiveness of the methods listed by using a numerical example.	
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Abstract—In this paper we discuss the issue of optimal control of piecewise affine systems based on
discontinuous quadratic Lyapunov function, given the stability of the said system, first we calculate the
upper bound of the cost function,then we consider the control input as the state feedback and finally,
by minimizing the upper bound of the cost function, the state feedback coefficients are calculated.Note
that if we minimize upper bound the cost function is minimized. It is worth noting that the
optimization problem is turned into a semidefinite programming problem with bilinear constraints.
These problems can be solved using numerical or any other methods. Finally, to check the effectiveness
of the method, we have listed a numerical example




