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Abstract—Biting force varies based on type of food that is
being chewed. To study human mastication comprehensively, it is
better to consider the electromyography (EMG) activity of the
masticatory muscles and bite force. The aim of this study is to
evaluate SEMG-force relationship by utilizing Laguerre
expansion technique (LET). In this work, the electrical activity of
only two masticatory muscles, namely masseter and temporalis
are measured. Results denote the ability of LET in predicting
mastication biting force based on EMG signals. Additionally, the
proposed model can be able to control masticatory robots using
recorded EMG signals. In these applications, uses of non-
expensive and portable of electromyography (EMG) electrodes
have advantageous compared to the use of force sensors and
cameras which are often very expensive and require massive
structures.
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L INTRODUCTION

The significance of the chewing process on digestion and
health necessitates studies of the mastication system. The
mastication process is generated by a complex group of
muscles that are on both side of the jaw. The main muscles of
mastication are left/right masseter, left/right temporalis and
left/right pterygoid muscles [1-2]. Surface electrodes are only
able to record the electrical activity of the bilateral masseter
and temporalis muscles [1-2]. Food scientists are interested in
investigating the relation between food texture, bite force and
electromyography signals [1-12]. Electromyography (EMG)
has been employed to study changes in the electrical activity
of the muscles during mastication [11, 13-15]. Changes in
EMG parameters are better able to assess the sensory
characteristics compared mechanical measurements [11].
Experimentally obtained signals, together with the
physiological cross-sectional area of the muscles, have been
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employed to estimate instantaneous muscle forces [16-17] or
to differentiate food-texture characteristics [11].

The relationship between muscles’ electrical activity and
force is of special importance in many applications including
gait analysis, orthopaedics, rehabilitation, ergonomic design,
haptic technology, telepresence surgery and human-machine
interaction [1, 18-21]. Recently, various researchers used
surface EMG (SEMG) to estimate muscle force [18-25].
Parametric and non-parametric models have been employed to
obtain an accurate estimation of the SEMG-force relationship.
Parametric methods mainly employed muscle activation and
contraction dynamics as well as physiological measurements
[18 and 19]. To estimate SEMG-force relationship various
methods has been utilized including fast orthogonal search
(FOS) [20-21], parallel cascade identification (PCI) [22-23],
Laguerre estimation technique (LET) [24-25], and principle
dynamic mode (PDM) [25]. The aim of this study is to
evaluate SEMG-biting force relationship by utilizing Laguerre
expansion technique (LET).

The rest of the paper is organized as follows: Section II
describes the experimental setup and theoretical approach of
the LET. In section III, results are presented and discussed.
Finally section IV provides conclusion remarks.

II.  MATERIALS AND METHODS

A. Experimental Setup

Five volunteers (age 2342 years) participated in this study.
All Subjects were free of any muscular pain and had no past
history of orthopaedic and neurological disorders. Ethical
approval for the study was granted by the Ferdowsi University
of Mashhad. All subjects provided written informed consent.
SEMG signals were recorded from masseter and temporalis
muscles. Fig. 1a represents the location of electrodes on both
muscles. Subjects were seated in a comfortable chair and
instructed to sit still during recording sessions. They were
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unable to view the computer screen. Each experiment
consisted of eight repeated trials. In each trial, subjects were
asked to perform biting (Fig. 1a) within an interval of 5 s. To
record the electrical activity of muscles, an 8-channel EMG
system was employed. Surface electrodes were placed ~2 cm
apart, oriented parallel to the muscle fibers, between the belly
of each muscle and its end. Also to measure bite force, a
device was designed and produced (Fig. 1b). This device is
made of three FSR sensors that are able to record forces up to
100 N. Moreover, the shape of this device would allow
recording of a natural bite. Subjects were seated in a
comfortable chair and instructed to sit still during recording
sessions. They were unable to view the computer screen. EMG
and force signals are recorded synchronously.

For modeling, first EMG and force signals were pre-
processed to remove both low and high frequency noise.
Recorded raw SEMG signals were passed through a band pass
(15-400 Hz) 3" order Butterworth filter. The resulting signals
were rectified and smoothed by a moving Gaussian window.
Finally, the rectified and smoothed SEMG signals were
normalized to Z-score. By doing the aforementioned
procedure we obtain the normalized data with zero mean and
unite variance. To process the force signal, a moving Gaussian
window with 400 points was applied to raw signals.

(b)
Fig. 1(a) Experimental setup and electrode positioning on subject's face, (b)
biting sensor
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Fig. 2 General view of the experimental setup

In this work, biting force of incisor teeth is considered as
output that is to be predicted from EMG signals. Fig. 2 shows
the general view of the experimental setup.

B. Laguerre expansion technique (LET)

The best way to Volterra kernel estimation is to use the
LET. The Laguerre functions have exponential behavior and
are orthogonal from zero to infinity. This method uses a set of
discrete, normalized and orthogonal Laguerre functions to
estimate Volterra kernels. As shown in Fig. 3, in this method,
filter banks are discrete Laguerre functions that take x (n) as
input and translate it to v,(n) by using discrete time

convolution with the corresponding Laguerre function [24-25].

Laguerre functions can be defined as

s m=a e g ()

where, b, (m)is discrete Laguerre function of order j and

Ja""’ - (1)

a(0<a<l)
represents the rate of exponential decline. As shown in Fig. 3,
v, (n) can be obtained by using discrete time convolution

m varies between 1 to M (system memory).

vj(m)zTMz_]bj(m)x(n—m)

m=0

2

where T denotes sampling rate. By substituting v, (m) in
f (.) (nonlinear function with order Q) the output of discrete
Volterra model can be calculated

Q L Jjra
y(my=co+ 330, G W (1), () +E(n)

r=l gy,

3)

where y (n)is the output, L is the number of filter banks,
&(n) is the estimation error and c, represents the coefficients
of discrete Laguerre expansion. Equation 3 can be rewritten as

“4)

where, V' is the matrix of filter bank's outputs. For
instance, the nth row of the matrix V is

y =Vc+e
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Fig. 3 Schematic of Laguerre expansion technique
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There are some ways to estimate these coefficients. For
instance, square Gram matrix can be employed to achieve the
solution of the estimation problem. But when the matrix V' is
not full-rank, the square Gram matrix is singular. Also the
number of columns in matrix ¥ is dependent on L (number of
filter banks) and Q (order of the nonlinear function).
Therefore, in estimations of high nonlinear order, the
phenomenon "dimension curse" occurs. In this case, a pseudo
inverse, V' *, can be utilized to calculate the coefficient
estimates as
c=V'y (6)

Where, V * represents pseudo inverse of matrix V . All
programming of the algorithm of LET is performed in
MATLAB (v. R2012b). Results are prepared in the next
section.

III.

The recorded EMG and bite forces during 5 trials are
shown in Fig. 4 for one of the subjects.

RESULTS AND DISCUSSION
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Fig. 4 Sample data set recorded from subjectl

To validate the trained models RMSE, Cross-Correlation
(CC) and Average Absolute Error (AAE) are employed as
evaluation criteria,

Z(yi _J?i)z

RMSE =100* 4t ——— 7
2. ?
> *5)
CC=100* : (8)
JZO 20
( i ﬁi)
g2 o

n
where y, and y, are the recorded and predicted outputs,

respectively, and # is the number of samples.

Fig. 5 represents the ability of LET to estimate bite force on
incisor teeth by employing the aforementioned EMG signals of
one subject. As shown in Fig. 5, estimated force (black dashed
line) follows the measured force (blue solid line) appropriately.
Therefore the Laguerre model has ability to find the
relationship between EMG and force.
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Fig. 5 Performance of LET in predicting bite force for validation data. Z-score

normalization was applied to both input and output measurements.

For all subjects, RMSE, CC and AAE, for both training and
validation phases are summarized in TABLE I. In general, the
LET performed well in predicting bite force. As can be seen,
the accuracy of LET varies from one subject to another. This
can be due to differences in electrode positioning with respect
to the muscles’ motor points, the amount of tissue between the
electrodes and muscles.

In LET trainings, there are two parameters (number of
filter banks, L , and rate of exponential decline, & ) that have an
effect on accuracy of the model. For fast dynamics it is better
to select a small value for & , and vice versa. As can be seen in
Fig. 6, by increasing ¢ , the accuracy of the model increased
(in both training and validation phases). In other words,
RMSE and AAE increased and CC decreased with
increasing ¢ , in both trainings and validation steps. It shows
that our system is slow and it is better to set a high value
foro .

TABLE I. RMSE (CC) [AAE] values for both training and
validation phases.
Output Training Validation
Sub. 1 19 (0.23) [89.7] 38(0.5) [82.5]
o Sub. 2 6.6 (0.1) [96.6] 11(0.2) [94.4]
1>
E Sub. 3 6.44 (0.1) [96.7] 13(0.2) [93.3]
D
2 Sub. 4 7.01 (0.2] (96.4) 23(0.3) [87.9]
Sub. 5 12 (0.2) [93.2] 25(0.3) [86.3]
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Fig. 6 Effect of varying ( in training and validation on (a) RMSE, (b) AAE

and (c) CC
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Another parameter that has to be optimized for optimal
prediction is the number of filters in the filter banks. As
shown in Fig. 7, by increasing the number of filters, RSME
and AAE decreased and CC increased in the training phase,
however it had a negative effect during the validation phase.
Fig. 7 indicates that despite increased accuracy in the training
phase by increasing the number of filters, the RMSE and AAE
increased and CC decreased for the validation data (for L >5).
This demonstrates that the phenomenon overtraining has
happened. Therefore, to avoid overtraining the optimum
number of filters has to be found for each model.
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Fig. 7 Effect of varying L (the number of filters) in training and validation
on (a) RMSE, (b) AAE and (c) CC

Moreover, Fig. 8 represents the intrasubject variability
results. Each bar represents the average of CC and AAE of
predicting the bite force across five volunteers with the vertical
bar representing mean +standard deviation. As it is mentioned
in previous work [26], identified for one subject is may not be
valid for another subject. Because there are some difference,
such as position of EMG's electrode, muscle fiber, muscle
volume and muscle length, between each subjects. Although,
from Fig. 8 can be concluding that identified models, for
subject 2 are able to use to other subjects appropriately. It
means this model have a more comprehensive to other models.
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Fig. 8 Summary of CC and AAE for each LET corresponding to one subject
tested on all the other subjects.

In this study, the relationship between EMG signal of jaw
muscles and biting force is investigated. Such models can
provide clinical insight into the development of more effective
rehabilitation therapies, and can aid in assessing the effects of
an intervention. The prediction of biting forces from this
model can be utilized to better investigate tissue loading in
joints, and to estimate of tensile ligament forces and
compressive cartilage loads.

IV. CONCLUSION

In this paper, we investigated the ability of the LET to
predict bite force from recorded EMG signals of masseter and
temporalis muscles. To record biting forces, a new device was
developed. In general, results showed that this method is
capable of providing reasonable accurate estimates of biting
forces on incisor teeth. Therefore, the EMG signals contain the
significant information about the process under study.
Moreover results indicated our dynamic system is slow,
therefore it is better to select high value for the rate of
exponential decline. Finally, it was demonstrated that the
number of filters in the filter bank has an important role in
training and validation steps. Moreover, the intrasubject
variability results show that this model has a good ability to
estimate biting force based on recorded EMG signals. This
information can be employed to develop control systems for
rehabilitation robots or stimulus patterns for paralyzed muscles.
Although no effort has been made to consider the
computational efficiency of the other algorithm, the LET
method is believed to be more efficient than well-known
methods. Thus, by predicting the subject’s biting, we can
provide applicable tools for EMG-based masticatory robot
control. In future works, we aim to employ estimated models
for detecting and characterizing food texture and for
controlling potential robotic devices. Moreover, we plan to
estimate biting force of molar teeth based on EMG signals.
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