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Abstract—Recently, the relationship between muscles’ models [21] and principal component analysis (PCA) [22]. Fast
electrical activity and body movements has been considered in orthogonal search, FOS, was developed by Korenberg [11] as a
many medical applications. In these applications, uses of non-  nonlinear identification method for approximating a system’s
expensive and portable of electromyography (EMG) electrodes  output. This method is based on Gram-Schmidt orthogonal
have advantageous compared to the use of force sensors and  jdentification. The main goal of this study is to consider the

cameras which are often very expensive and require massive ability of a FOS model to predict the mastication movement
structures. In this paper, we evaluate the ability of the Fast using the EMG signals of masticatory muscles
Orthogonal Search (FOS) methodology to predict jaw motion

using Electromyography (EMG) signals recorded from two Electromyography (EMG) has been employed to study
masticatory muscles, namely masseter and temporalis. Results  changes in the electrical activity of the muscles during
show the efficiency of FOS in predicting the Kkinematic  mastication [24 and 25]. Experimentally obtained signals,

parameters (position and orientation) based on EMG signals.  together with the physiological cross-sectional area of the
Additionally, the proposed model can be utilized to control  myscles, have been employed to estimate instantaneous muscle
masticatory robots employing recorded EMG signals. forces [26] or to differentiate food-texture characteristics [24].

Additionally, EMG has been used to identify differences in
chewing patterns between individuals and to classify
individuals into groups according to their chewing efficiency
[10]. In this paper the relationship between clenching

I INTRODUCTION movement and EMG signals of mastication muscle are

The human chewing process has been investigated in considered.

various studies. In general, mastication involves two simple
movements: clenching and grinding. In clenching, the
mandible moves only in the sagittal plane, whereas in grinding
it follows a circle path in the frontal plane [1-2]. The
temporalis, masseter and lateral Pterygoid muscles perform the

Keywords— Electromography (EMG); Fast orthogonal search
(FOS); mastication muscles; orthognal Functions.

The rest of the paper is organized as follows: Section II
describes the experimental setup and theoretical background of
the FOS technique. Results are prepared in section III. Finally
section IV provides conclusion remarks.

main role in the mastication process. Recently, EMG signals II. MATERIALS AND METHODS
have been employed in rehabilitation applications to study
changes of muscles’ electrical activity during mastication [3-6]. 4 Experimental Setup

EMG has also been utilized to distinguish the differences

between chewing patterns of individuals [7-10]. Six volunteers (four males and two females) participated in

this study. All subjects were well-informed about the

Various attempts have been made to estimate movements  procedure and provided written consent to the experimental
for controlling prosthetic devices including employing fast  protocol. In each trial, volunteers were asked to perform a
orthogonal search (FOS) [11 and 12], parallel cascade = maximum voluntary mandible opening and closing (clenching
identification (PCI) [13 and 14], Laguarre estimation technique =~ movement) in the sagittal plane (Fig.1) within an interval of 5
(LET) [15 and 16], artificial neural networks (ANN) [17, 18, sec. Three trials were used for training and another 3 trials
19 and 20], principle dynamic mode (PDM) [16], Hammerstein =~ were employed for model validation. To record the electrical
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activity of muscles, an 8-channel electromyography (EMG)
system was employed.

In this study for each subject EMG signals were recorded
from four muscles, namely right and left masseter, and right
and left temporalis (Fig. 2.a). Surface electrodes were placed
~2 cm apart, oriented parallel to the muscle fibers, between the
belly of each muscle and its end. The recorded raw EMG
signals were passed through a band-pass (15-400 Hz) 3" order
Butterworth filter, rectified and smoothed. Moreover, to trace
the chewing trajectory, Simi Reality Motion System (GmbH,
Germany) was employed [23]. To record the jaw motion, 6
small reflective markers were adhered to specific facial
locations (Fig. 2). Forehead markers were used as reference
points. The recorded camera signals were rectified and
smoothed by a moving average window of size 200. EMG and
force signals are recorded synchronously.

In this work, three kinematic parameters (displacement
along x and z directions and rotation about y-axis) were
considered as outputs that are to be predicted from EMG
signals. Fig. 3 shows the general view of the procedure.

(b)
Fig. 2 (a) Marker position on the subject's face, (b) Two-dimensional
reconstruction of the marker set
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Fig. 3 General view of experimental setup

B. Fast Ortogonal Search (FOS)

This method was first introduced by Kornberg in 1985 [11,
12]. The main goal of this method is to minimize the mean-
square error of estimation by choosing the best basis functions
from all the candidate functions (including polynomial, square
and sigmoid functions), which cause the maximum reduction
in the mean square difference between estimation and
measured data. In fact, in this method, Kornberg proposed an
efficient method to obtain the appropriate coefficients
corresponding to the selected basis functions. Employing the
FOS method we have

¥ = Y a,p, (n)+e(n) (M)

where y(n) is the measured output, e(n) is the prediction

M
error and Z a,p, (n) is the estimated output. Additionally
m=1

p,and a, are the selected basis functions and their
corresponding coefficients, respectively. To obtain a, by

conventional methods, complicated and time-consuming
calculations are required. Kornberg [12] used some orthogonal
functions ¢,, that are orthogonal to p, and then based on this

property, obtained the corresponding coefficient g, related to
these function. Therefore,

y(m) =), 8,4, (n)+e(n), where q,(n)q; (1)=0,i #j  (2)

m=1
The orthogonal functions g,, can be obtained as follows,

q,(n)=p,(n)=1
q,(n)=p,(n)—a,q,(n)
: 3)

4, (1) =P, ()= 3,2,,4, (1)

where coefficient ¢, is calculate as
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:qr(n)qm (n) m=2,.,.M @
" q;(n)

where M is the number of function are chosen. Now for the
coefficient g, that minimizes the MSE of the estimate, we

have [11]

Tr=1..,m—1

3 (g, ()
q; (n)
Kornberg demonstrated that to obtaina,, , only coefficients

)

i

a,. and g, would suffice [11, 12]. Moreover, he noticed

that there is a recursive solution for obtaining ¢,, andg, .
Therefore, by multiplying ¢, with the two sides of Eq. (3), the
numerator and dominator of «,, are obtained, respectively.
Also, by multiplying y with the two sides of Eq. (3), the
numerator and dominator of g, are obtained, respectively. To
choose the best basis function, the MSE reduction (Eq. 6)

must be calculated. The computational algorithm was
developed following the steps illustrated in Fig. 4.

_—2
Yy (n)g, .. (n)
iy ) ©
1 (n)
Select Function #1
¥
Select Next Function [+
v

1-Calculate py, (M)p-(n) m=M+1..... Meandidates =1.----M
2-Calculate y(n)pm,(n) m=M+1..... Meanaidate

.
Calculate &, by Eq. (4) as
* PG = 2 (M) — ZI21 i Pm () q: (1)

© %, =12, Il qt,,
+
Calculate mby Eq. (6) as
¢ YR = Y (P () — L7 @y (D) (1)

. qzm = pzm — E;r:ll%rqzm
B
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Fig. 4 Structure of the FOS method

III. RESULTS AND DISCUSSION

The recorded EMG and kinematics data during 3 trials are
shown in Fig. 5 for one of the subjects.

To validate the trained models RMSE, Cross-Correlation
(CC) and Average Absolute Error (AAE) were employed as the
evaluation criteria

Z(yi _.);i )2
RMSE =100* -t —— 7
20 @

D)
CC=100* d (8)

JZX%YJZXﬁY
D =)l

AAE=-4+ — (9)
n

where y, and y, are the actual and predicted outputs,

respectively, and z is the number of samples.

In this paper, four kinds of basis functions (common,
squared, quadratic and sigmoid functions) were employed.
TABLE I, summarize these functions. In this table E,, and

E,, are the EMG signals of Masseter and Temporalis muscles,
respectively. Also, E,,, and E,,, represents the delayed,

recorded EMG signals. In this paper, the total delays were
selected 100 ms and the first basis function is offset function.
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Fig. 5 Sample data recorded from subject 2.
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TABLE L
Common Functions

offset

List of basis function

Te

=

Ma Te(d)

*E

try

Ma(d)

*E
%

ETu(d)
*

Ey, ETa(d)

Squared Functions

v E Ma(d) Te(d)
\/EMa *EMa(d) wa ¥ E
\/EMa * Em;z) Ma(d) *

Ma Ta

E
E

=

£
Ma Ma(d) Ma(d) Ta

SO I ORI IO

=

P
Ma Ma(d) Ta(d)

o]
5

5

=

IS

Ta

0

ETa*ETa(d) EMn(d)*ETn(d)
Quadratic Functions
EMu *EMa EMa(d) *EMa(d)
Eruay * Eraa) E *Eq,
Sigmoid functions
sigm(E,,) sigm (Ey,)
sigm (E y1,0)) sigm(Er, )
sigm (E ;) *sigm (E 1)) sigm (E ) *sigm (Ez,)

sigm(E ) *sigm (Ep, )
sigm (E,)*sigm (ETu(d))

sigm (EMa(d)) *sigm (Er,)
sigm (E yyu00)) * sigm (Ep,4))

Fig. 6 shows the ability of the FOS method to predict both
the position and orientation of mandible of subject 2,
respectively, employing the aforementioned EMG signals of
one subject. In this figure all groups of basis functions are
employed and the number of basis functions is M=8. Fig. 6
shows that the predictions of y and z directions are more
reasonable rather than x direction.
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Fig. 6 Performance of FOS in predicting position and orientation variables for
validation data. Z-score normalization was applied to both input and output
measurements.

For all subjects, RMSE, CC and AAE, for both training and
validation phases are summarized in TABLE II. As
demonstrated, the ability of FOS differed from one subject to
another.

In Fig. 7 the performance of the models is evaluated in
terms of CC and AAE. Each bar represents the average of CC
and AAE of predicting the kinematics parameters across six
volunteers with the vertical bars representing mean +standard
deviation. Generally the identified model for one subject may
not be valid for another subject. Discrepancies may be owing
to differences between subjects in, for example, electrode
positioning with respect to the motor points of the muscles, the
amount of tissue between the electrodes and muscles, and
characteristics of the muscles/muscle fibers. Fig. 7,
demonstrates that the models trained on the data obtained from
one of the subjects could be approximately generalized to other
subjects.
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Fig. 7 Summary of CC and AAE for each model corresponding to one subject
tested on all the other subjects.

In the process of training, FOS performs significantly
faster than other methods such as multi-layer perceptron and
radial basis function [12]. The reason is that in each step the
FOS algorithm searches for the best basis function which
causes the maximum reduction in mean square error between
predicted and measured data. TABLE III summarizes the time
required for the FOS training procedure while different
numbers of candidate functions are allowed for 6500 samples
on a Core i5 2.5-GHz CPU system.

TABLE II. RMSE (CC) [AAE] values for both training and
validation phases.
Outputs
Training Validation
" Sub. 1 2.48(94.5) [0.25] 9.6(90)[0.2]
‘E Sub. 2 3.9(94.9)[0.24] 14.1(76)[0.5]
g Sub. 3 5.5(95)[0.1] 5.6(94)[0.15]
% Sub. 4 15(85)[0.4] 31(71)[0.58]
§ Sub. 5 21(77)[0.4] 57(62)[0.54]
E Sub. 6 4.4(90)[0.3] 8.1(83)[0.4]
Sub. 1 1.1(98.6)[0.1] 5.9(95.8)[0.16]
.Elé Sub. 2 0.91(98.8)[0.09] 3.1(96.8)[0.15]
% Sub. 3 7(93)[0.21] 16(75)[0.4]
g Sub. 4 1.8(98)[0.1] 12.1(92)[0.2]
g Sub. 5 7.9(93)[0.2] 8.1(85)[0.2]
E Sub. 6 103(93)[0.2] 16(88)[0.3]
Sub. 1 1.3(97.8)[0.14] 10.5(92.8)[0.22]

:: Sub. 2 1.2(98.1)[0.15] 7.1(93)[0.3]
; Sub. 3 5.8(93)[0.2] 10.6(87)[0.3]
-g Sub. 4 4(92)[0.32] 22.3(77)[0.5]
'g Sub. 5 6.3(91)[0.31] 29(75)[0.4]
= Sub. 6 8.3(92.5)[0.2] 22(82)[0.3]

21

The number of basis functions allowed to be selected can
have a drastic effect on the accuracy of prediction. Although
increasing the number of basis functions during training
provides a decrease in RSME it may have a negative effect
during validation. In order to demonstrate this and justify our
choice of M we plot both training and validation RMSE for
different values of M in Fig. 8. As illustrated for M>8 the
validation RMSE does not decrease any further, even though a
decrease is observed for larger values during training. This
demonstrates that for each model to perform properly we need
to find the optimum number of candidate functions.

TABLE IIL
Time required for training with different numbers of basis functions
M=20 0.501 sec
M=15 0.37 sec
M=10 0.23 sec
M=5 0.15 sec
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Fig. 8 RMSE (%) for training and validation across of number of basis
function.

The provided analysis will aid researchers in
characterizing and investigating the mastication process,
through the specification of SEMG signal patterns (e.g.,
muscle displacements) and the observation of the resulting
mandible movement. Such models can provide clinical insight
into the development of more effective rehabilitation
therapies, and can aid in assessing the effects of an
intervention. The prediction of mandible movement from this
model can be utilized to better investigate tissue behavior in
joints, and to estimate the path of them during mastication.

IV. CONCLUSION

In this paper, we investigated the ability of the FOS method
to predict the kinematic parameters (position and orientation)
of mandible motion during the clenching movement from
recorded EMG signals of masseter and temporalis muscles
during jaw opening and closing. In general, results show that
this technique is able to provide reasonably accurate
predictions of masticatory movements in the sagittal plane.
Therefore, the EMG signals contain the significant information
about the process under study. Moreover, the results indicate
that the time required for training is small and that the FOS can
be considered a fast method. The consumed time for training
was approximately 0.08 sec and which is advantage when the
number of sample points in the data is high and in real time
control. Although no effort has been made to consider the
computational efficiency of the other algorithm, the FOS
method is believed to be more efficient than well-known
methods. Finally, we demonstrated that the number of basis
functions plays an important role in both training and
validation steps. This information can be employed to develop
control systems for rehabilitation robots or stimulus patterns
for paralyzed muscles. In future works, we aim to employ the
developed models for controlling potential robotic devices.
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