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a b s t r a c t

We present a shifted nested iterative method for solving systems of linear equations with
a coefficient matrix that contains a dominant skew-Hermitian part. This new scheme is
practically the inner/outer iterations, which employs the CGNR method as inner iteration
to approximate each outer iterate, while each outer iteration is induced by a convergent
splitting of the coefficient matrix. Convergence properties of the new scheme are studied
in depth and possible choices of the shift parameter are discussed. Moreover, an adapted
version of the method is used for ill-posed problems and image restoration. At the last,
numerical examples are used to further examine the effectiveness and robustness of the
new method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in science and engineering require the solution of a system of linear equations

Ax = b, (1)

where A ∈ Cn×n is a large sparse matrix. The iterative solution of this system requires some forms of splitting. Among these
forms of splitting is the Hermitian and skew-Hermitian splitting [1], which has been shown to have advantages over many
existing matrix splitting iteration methods for the solution of Hermitian systems or positive definite linear systems [2,1,
3,4]. In the Hermitian and skew-Hermitian splitting, the coefficient matrix A is decomposed into its Hermitian and skew-
Hermitian components. We consider this splitting as

A = H + S, (2)

where H = (A + AH)/2 and S = (A − AH)/2. When H dominates S, we have ∥H−1S∥2 < 1 and may use nested splitting
conjugate gradient (NSCG) method [2]; but if S dominates H , it means that ∥H−1S∥2 is large and therefore we cannot
guarantee the convergence of NSCGmethod.When the skew-Hermitian part S is dominant, it is typically harder to solve the
linear system (1) and appears challenging from a numerical point of view [5,6]. In this paper, we present an efficient iterative
method, namedNS-CGNR, for cases inwhich the skew-Hermitian component S dominates theHermitian componentH . Note
that here the condition of dominant skew-Hermitian part is the sufficient condition but not necessary.
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In the remainder of this paper, we use λ(M) and ∥M∥2 to denote the eigenvalue and the spectral norm of a matrix
M ∈ Cn×n, respectively. Note that ∥.∥2 is also used to represent the 2-norm of a vector. Also, it must be reminded that
A = B − C is called a splitting of the matrix A if B is nonsingular. This splitting is a convergent splitting if ρ(B−1C) < 1;
and a contractive splitting if ∥B−1C∥ < 1 for some matrix norm. For matrix B, we denote by κ(B) = ∥B∥2∥B−1

∥2 its
Euclidean condition number, and for a Hermitian positive definite matrix B, we define the ∥ · ∥B norm of a vector x ∈ Cn

as ∥x∥B =
√
xHBx. Then the induced ∥ · ∥B norm of a matrix H ∈ Cn×n is define as ∥H∥B = ∥B

1
2 HB−

1
2 ∥2. In addition, it

holds that ∥Hx∥B ≤ ∥H∥B∥x∥B , ∥H∥B ≤
√

κ(B)∥H∥2 and ∥I∥B = 1, where I is the identity matrix.
The organization of this paper is as the following. Section 2 represents the establishment and the analysis of the

NS-CGNR method for the linear system (1) and its convergence properties. Section 3 presents an adapted version of the
NS-CGNRmethod for ill-posed problems and image restoration. Section 4 is devoted to numerical experiments and included
some experimental results and applications in ill-posed problems and image restoration to illustrate the effectiveness of our
approach. Finally, we demonstrate our conclusions in Section 5.

2. Establishment and analysis of the NS-CGNR method

Consider theHermitian and skew-Hermitian splitting (2). Since thematrix S may be singular, we introduce a shift (ν > 0)
and define quasi-Hermitian splitting as

A = (H − νI) + (S + νI) = Hν + Sν . (3)

Then the system of linear equations (1) is equivalent to the fixed-point equation

Sνx = b − Hνx.

Given an initial guess x(0)
∈ Cn, assume that we have computed approximations x(1), x(2), . . . , x(l) to the solution x∗

∈ Cn

of the system (1). Then the next approximation x(l+1) may be defined as either an exact or inexact solution of the system of
linear equations

Sνx = b − Hνx(l). (4)

Nowwe solve the system of linear equations (4) by the CGNRmethod [7]. An implementation of the NS-CGNRmethod is
given by the following algorithm. In this algorithm, kmax and jmax are the largest admissible number of the outer and inner
iteration steps, respectively. x(0) is an initial guess for the solution, and the outer and inner stopping tolerances are denoted
by ϵ and η, respectively.

Algorithm 2.1. The NS-CGNR algorithm

1. x(0,0)
= x(0)

2. r (0)
= b − Ax(0)

3. For k = 0, 1, 2, . . . , kmax Do:
4. b̂ = b − Hνx(k,0)

5. r̂ (0)
= b̂ − Sνx(k,0)

6. z(0)
= STν r̂

(0), and p(0)
= z(0)

7. For j = 0, 1, 2, . . . , jmax Do:
8. w(j)

= Sνp(j)

9. αj =
||z(j)||22
||w(j)||22

10. x(k,j+1)
= x(k,j)

+ αjp(j)

11. r̂ (j+1)
= r̂ (j)

− αjw
(j)

12. If ||r̂ (j+1)
||2 ≤ η||r̂ (0)

||2 GoTo 17
13. z(j+1)

= STν r̂
(j+1)

14. βj =
||z(j+1)

||
2
2

||z(j)||22
15. p(j+1)

= z(j+1)
+ βjp(j)

16. End Do
17. x(k+1)

= x(k,j)

18. r (k+1)
= b − Ax(k+1)

19. If ||r (k+1)
||2 ≤ ϵ||r (0)

||2 Stop
20. x(k+1,0)

= x(k+1)

21. End Do
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To be reminded, for the splitting A = M−N , convergence of stationary iterativemethods is obtained if the spectral radius
ofM−1N satisfies the condition ρ(M−1N) < 1 [7]. Therefore, the parameter ν should be chosen as the splitting satisfies the
condition ρ(S−1

ν Hν) < 1.
From the work of Golub and Vandrestraeten [8], If

λmin(H)λmax(H) > min
λ∈Λ(S)

|λ(S)|, (5)

then there exists an ν for which ρ(S−1
ν Hν) < 1. Moreover, using

ν =
λmin(H) + λmax(H)

2
, (6)

can cause to decrease the upper bound of ρ(S−1
ν Hν), see [8].

Now, we can prove the following theorem for the convergence of NS-CGNR method, which is a direct conclusion of
Theorem 3.1 in [2].

Theorem 2.1. Let A ∈ Cn×n be a nonsingular and non-Hermitian matrix, and A = Hν + Sν be a contractive (with respect to the
∥ · ∥STν Sν -norm). Suppose that the NS-CGNR method begins from an initial guess x(0)

∈ Cn, and produces an iterative sequence
{x(l)

}
∞

l=0, where x(l)
∈ Cn is the lth approximation to the solution x∗

∈ Cn of the system of linear equations (1), obtained by solving
the linear system (4) with kl steps of CGNR iterations. Then

(a) ∥x(l)
− x∗

∥SHν Sν ≤ γ (l)
∥x(l−1)

− x∗
∥SHν Sν , l = 1, 2, 3, . . . ,

(b) ∥b − Ax(l)
∥SHν Sν ≤ γ (l)

∥b − Ax(l−1)
∥SHν Sν , l = 1, 2, 3, . . . ,

where

γ (l)
= 2


κ(Sν) − 1
κ(Sν) + 1

kl
(1 + ϱ) + ϱ, γ (l)

= γ (l)κ(Sν)
1 + ϱ

1 − ϱ
, l = 1, 2, 3, . . .

and ϱ = ∥S−1
ν Hν∥SHν Sν = ∥HνS−1

ν ∥2.
Moreover, for some γ ∈ (ϱ, ϱ1) with ϱ1 = min{1, 2 + 3ϱ}, and

kl ≥
ln((γ − ϱ)/(2(1 + ϱ)))

ln((κ(Sν) − 1)/(κ(Sν) + 1))
, l = 1, 2, 3, . . . ,

we have γ (l)
≤ γ (l = 1, 2, 3, . . .), and the sequence {x(l)

}
∞

l=0 converges to the solution x∗ of the system of linear equations (1).
For ϱ ∈ (0, r), which r is the positive root of quadratic equation κ(Sν)ϱ

2
+ (κ(Sν) + 1)ϱ − 1 = 0, and some γ ∈

((1 + ϱ)ϱκ(Sν)/(1 − ϱ), 1), and

kl ≥
ln(((1 − ϱ)γ − ϱ(1 + ϱ)κ(Sν))/(2(1 + ϱ)2κ(Sν)))

ln((κ(Sν) − 1)/(κ(Sν) + 1))
, l = 1, 2, 3, . . . ,

we haveγ (l)
≤ γ (l = 1, 2, 3, . . .), and the residual sequence {b − Ax(l)

}
∞

l=0 converges to zero.

Proof. See Appendix.

3. Application to ill-posed problems and image restoration

Image restoration and ill-posed problems assign an application where we may encounter linear system of equations (1).
In image restoration, the obstacle would be reconstruction of an original image that has been digitized and degraded by blur
and additive noise. Consider the following data production model for image restoration:

Bf = g. (7)

The right-hand side vector g in (7) represents the available output and is supposed to be imbrued by an error (noise) η, i.e.,
g = g + η, whereg is the unknown error-free right-hand side. The matrix B represents the blurring matrix, the vector f
that should be approximated symbolizes the original image, the vector η is the additive noise and the vector g represents
the blurred and noisy (degraded) image. Some treatments and overviews on image restoration can be found in [9,10].

In general, B is a large and ill-conditioned matrix. The Tikhonov regularization method [11] is used to solve the system
(7). Thus, we transform (7) into an equivalent system as follows:

min
f


∥Bf − g∥2

2 + µ2
∥Lf ∥2

2


, (8)

where µ is a penalty positive parameter and L is an auxiliary operator chosen as either the identity or low order differential
operator. The parameter µ depends on the level of noise and is small. In this paper, we consider that L is the identity
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matrix and we obtain the optimal value of the regularization parameterµ by routine gcv fromHansen’s regularization tools
package [12]. To solve (8) and obtain the minimum, we can transform the problem (8) into an equivalent normal equation

(BTB + µ2I)f = BTg, (9)

where I denotes the identity matrix. Similar to [13], the normal equation (9) can be translated into an equivalent blocked
system

I B
−BT µ2I


  

A


t
f




x

=


g
0




b

, (10)

where t = g − Bf . Now, we have

A =


I B

−BT µ2I


=


I 0
0 µ2I


+


0 B

−BT 0


=


I 0
0 µ2I


−


νI 0
0 νI


+


νI 0
0 νI


+


0 B

−BT 0


=


(1 − ν)I 0

0 (µ2
− ν)I


+


νI B

−BT νI


= Hν + Sν . (11)

Therefore, one can use the Algorithm 2.1 for the image restoration problem. To reach this goal, various innovations and
substitutions are needed.

Select an initial guess f (0) for system (7) and set t(0) = g − Bf (0). Therefore, the initial approximation solution for system
(10) and its corresponding residual are

x(0)
=


t(0)

f (0)


,

and

r (0)
= b − Ax(0)

=


g
0


−


I B

−BT µ2I

 
t(0)

f (0)


=


0

BT t(0) − µ2f (0)


=


r (0)
1
r (0)
2


.

Also, we have

b = b − Hνx(k,0)
=


9
0


−


(1 − ν)I 0

0 (µ2
− ν)I

 
t(k,0)

f (k,0)


=


g − (1 − ν)t(k,0)

−(µ2
− ν)f (k,0)


,

and

r (0)
= b − Sνx(k,0)

=


g − (1 − ν)t(k,0)

−(µ2
− ν)f (k,0)


−


νI B

−BT νI

 
t(k,0)

f (k,0)


=


0

BT t(k,0) − µ2f (k,0)


=

r (0)
1r (0)
2


,

z(0)
= STνr (0)

=


νI −B
BT νI

 
0r (0)
2


=


−Br (0)

2
νr (0)

2


=


z(0)
1
z(0)
2


p(0)

= z(0)
⇒


p(0)
1

p(0)
2


=


z(0)
1
z(0)
2


.

Furthermore, for j = 0, 1, 2, . . . , we have

w(j)
= Sνp(j)

=


νI B

−BT νI

 
p(j)
1

p(j)
2


=


νp(j)

1 + Bp(j)
2

−BTp(j)
1 + νp(j)

2


=


w

(j)
1

w
(j)
2


,

αj =
∥z(j)

∥
2
2

∥w(j)∥2
2

=
∥z(j)

1 ∥
2
2 + ∥z(j)

2 ∥
2
2

∥w
(j)
1 ∥

2
2 + ∥w

(j)
2 ∥

2
2

,

x(k,j+1)
= x(k,j)

+ αjp(j)
=


t(k,j) + αjp

(j)
1

f (k,j)
+ αjp

(j)
2


=


t(k,j+1)

f (k,j+1)


,

r (j+1)
=r (j)

− αjw
(j)

=

r (j)
1 − αjw

(j)
1r (j)

2 − αjw
(j)
2


=

r (j+1)
1r (j+1)
2


,
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z(j+1)
= STνr (j+1)

=


νI −B
BT νI

 r (j+1)
1r (j+1)
2


=


νr (j+1)

1 − Br (j+1)
2

BTr (j+1)
1 + νr (j+1)

2


=


z(j+1)
1
z(j+1)
2


,

βj =
∥z(j+1)

∥
2
2

∥z(j)∥2
2

=
∥z(j+1)

1 ∥
2
2 + ∥z(j+1)

2 ∥
2
2

∥z(j)
1 ∥

2
2 + ∥z(j)

2 ∥
2
2

,

p(j+1)
= z(j+1)

+ βjp(j)
=


z(j+1)
1 + βjp

(j)
1

z(j+1)
2 + βjp

(j)
2


=


p(j+1)
1

p(j+1)
2


.

Therefore, the Algorithm 2.1 can be rewritten as the following algorithm:

Algorithm 3.1. The NS-CGNR algorithm for ill-posed problems and image restoration

1. t(0) = g − Bf (0)

2. r (0)
1 = 0 , r (0)

2 = BT t(0) − µ2f (0)

3. f (0,0)
= f (0) , t(0,0) = t(0)

4. For k = 0, 1, · · · , kmax Do
5. r (0)

1 = 0 ,r (0)
2 = BT t(k,0) − µ2f (k,0)

6. z(0)
1 = −Br (k,0)

2 , z(0)
2 = νr (k,0)

2

7. p(0)
1 = z(0)

1 , p(0)
2 = z(0)

2
8. For j = 0, 1, · · · , jmax Do
9. w

(j)
1 = νp(j)

1 + Bp(j)
2 , w(j)

2 = −BTp(j)
1 + νp(j)

2

10. αj =
||z(j)1 ||

2
2+||z(j)2 ||

2
2

||w
(j)
1 ||

2
2+||w

(j)
2 ||

2
2

11. t(k,j+1)
= t(k,j) + αjP

(j)
1 , f (k,j+1)

= f (k,j)
+ αjP

(j)
2

12. r (j+1)
1 =r (j)

1 − αjw
(j)
1 ,r (j+1)

2 =r (j)
2 − αjw

(j)
2

13. If (||r (j+1)
1 ||2 + ||r (j+1)

2 ||2) ≤ η(||r (0)
1 ||2 + ||r (0)

2 ||2) GoTo 17
14. z(j+1)

1 = νr (j+1)
1 − Br (j+1)

2 , z(j+1)
2 = BTr (j+1)

1 + νr (j+1)
2

15. βj =
||z(j+1)

1 ||
2
2+||z(j+1)

2 ||
2
2

||z(j)1 ||
2
2+||z(j)2 ||

2
2

16. p(j+1)
1 = z(j+1)

1 + βjp
(j)
1 , p(j+1)

2 = z(j+1)
2 + βjp

(j)
2

17. End Do
18. t(k+1)

= t(k,j+1) , f (k+1)
= f (k,j+1)

19. r (k+1)
2 = BT t(k+1)

− µ2f (k+1)

20. If ||r (k+1)
2 ||2 ≤ ε||r (0)

2 ||2 Stop
21. t(k+1,0)

= t(k+1) , f (k+1,0)
= f (k+1)

22. End Do

4. Numerical experiments

All numerical experiments presented in this section were computed in double precision with a number of MATLAB
codes. All iterations started from the zero vector for initial x(0) and terminated when the current iterate satisfied ∥r (k)

∥2 ≤

10−10
∥r (0)

∥2. Moreover, we use η = 10−3 for the inner error tolerance in the inner iterations. For each experiment, we
report the number of total outer iterations and total CPU time (in parentheses), and compare the NS-CGNRmethod with the
other methods. At first, we use the Algorithm 2.1 to solve an advection–diffusion equation in Example 4.1.

Example 4.1. Consider the constant coefficient advection–diffusion equation

− △u + β
∂u
∂x

= f , (12)

with β ≥ 0 on the unit square (0, 1) × (0, 1) and Dirichlet conditions prescribed on the boundary [8]. The domain is
discredited withmesh size h and solved by the finite differencemethod. The coefficient matrix A is considered as A = H+S.
The symmetric part H has 5 nonzero elements per row and the skew-Hermitian part S is a block diagonal matrix where
every block is given by

Sii =
β

2h
tridiag(−1, 0, 1), for i = 1, 2, . . . ,

1
h
.

The results for this example are given in Tables 1 and 2.
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Table 1
Results for Example 4.1 with h = 0.01.

logβ ∥S∥2/∥H∥2 NS-CGNR GMRES(20) IHSS

3 1.6001e+0 109(0.053) 24(0.125) 14(0.325)
4 1.6001e+1 32(0.091) 51(0.277) 18(0.511)
5 1.6001e+2 8(0.037) 300(1.372) 23(1.102)
6 1.6001e+3 8(0.028) 346(1.622) 35(1.568)

Table 2
Results for Example 4.1 with β = 105 .

h ∥S∥2/∥H∥2 NS-CGNR GMRES(20) IHSS

1/32 5.0018e+2 5(0.018) 21(0.047) 5(0.112)
1/64 2.5003e+2 6(0.034) 92(0.418) 5(0.093)
1/128 1.2500e+2 27(0.109) 391(1.953) 19(1.531)
1/256 6.2500e+1 66(0.624) 227(1.447) 48(1.839)
1/512 3.1250e+1 67(1.652) 140(1.738) 59(1.980)

Table 1 indicates the fact that as β increases, i.e., when the skew-Hermitian component becomes more and more
dominant, the NS-CGNR method is more efficient than the GMRES(20) method and the IHSS method (see [1]).

By focusing on the results presented in Tables 1 and 2, one can observe that when ∥S∥2 > ∥H∥2, the NS-CGNR method
is superior to the GMRES(20) method and the IHSS method in both terms of iteration numbers and CPU time.

Now, we use the Algorithm 3.1 to solve some ill-posed problems with noisy right hand sides. In all examples, to generate
a ‘‘noisy’’ right hand side g , we use MATLAB code g=g+1e-3*rand(size(g)).

Example 4.2. Consider test problem shaw from [12] with n = 100. It is discretization of a Fredholm integral equation of
the first kind b

a
K(s, t)f (t)dt = g(s), c ≤ s ≤ d, (13)

with [−
π
2 , π

2 ] as both integration intervals. The kernel K and the solution f are given by

K(s, t) = (cos(s) + cos(t))2

sin(u)

u

2

u = π(sin(s) + sin(t))

f (t) = a1 exp(−c1(t − t1)2) + a2 exp(−c2(t − t2)2).

The parameters a1, a2, etc., are constants that determine the shape of the solution f ; in this implementation we use a1 = 2,
a2 = 1, c1 = 6, c2 = 2, t1 = 0.8, t2 = −0.5 giving an f with two ‘‘humps’’ [12]. The integral equation (13) is a one
dimensional model of an image reconstruction problem from [14].

Fig. 1 presents the results of this problem, while comparing the exact solution against the solutions obtained from the
Algorithm 3.1 (NS-CGNR), the GMRES(20) method for system (7), the SVD method and the TSVD(k) method with k = 5
for system (7) and a CG-like method for regularized system (9), indicates the relative efficiency of NS-CGNR method over
other methods except TSVD(5) and the CG-like methods. The optimal value of the Tikhonov regularization parameter for
this example is µ = 3.5559e−03.

Example 4.3. Consider test problem baart from [12] with n = 100. It is discretization of a Fredholm integral equation (13)
of the first kind, with kernel K and right hand side g given by

K(s, t) = exp(s cos t), g(s) = 2
sin s
s

,

and with integration intervals s ∈ [0, π
2 ] and t ∈ [0, π]. The solution is given by f (t) = sin(t) [12].

We present the results of this problem in Fig. 2, as comparing the exact solution against the solutions obtained from the
Algorithm 3.1 (NS-CGNR), the GMRES(20) method for system (7), the SVD method and the TSVD(k) method with k = 5
for system (7) and a CG-like method for regularized system (9), shows the relative efficiency of NS-CGNR method over
other methods except the CG-like method. The optimal value of the Tikhonov regularization parameter for this example is
µ = 8.8831e−03.
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Fig. 1. Results for test problem shaw(100).

Fig. 2. Results for test problem baart(100).

In the next two examples, we restore blurred and noisy images by some different methods. These methods are the NS-
CGNR (Algorithm3.1), theGMRES(20)method and the special HSS (SpHSS)method [13]which applies on (7), and the CG-like
method which applies on (9).
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Fig. 3. Results for boy image in the Example 4.4.

Example 4.4. In this example, the original image is a 100 × 100 boy image. The blurring matrix B is given by B =

I ⊗ (H + 10S) ∈ R1002×1002 , where I is the identity matrix and H = [hij] is a matrix of dimension 100 × 100 given by

hij =


1

σ
√
2π

exp


−
(i − j)2

2σ 2


, |i − j| ≤ r,

0 otherwise.

while S is a block diagonal matrix as in the Example 4.1 of dimension 100 × 100. We let σ = 1 and r = 5.

The original image and the blurred and noisy image are shown in the top left and top center of the Fig. 3, respectively.We
applied the NS-CGNRmethod (Algorithm3.1) and the othermethods to the blurred and noisy image and the restored images
are shown in the Fig. 3. The restored image by the NS-CGNR method was obtained in 4 outer iterations and the required
CPU-time was 0.11 s. The restored image by the GMRES(20) method was obtained in 1000 outer iterations and the required
CPU-time was 59.63 s. The restored image by the SpHSS method was shown after 5000 outer iterations and 367.71 s. The
restored image by the CG-like method was obtained in 9 outer iterations and the required CPU-time was 0.10 s. The optimal
value of the Tikhonov regularization parameter for this example is µ = 6.1037e−06.

Example 4.5. In this example, the original image is a 100 × 100 peppers image which is shown in the Fig. 4. The blurring
matrix B is given by B = I ⊗ K + I ⊗ rS ∈ R1002×1002 , where I is the identity matrix and K = [kij] is a matrix of dimension
100 × 100 given by

kij =

 1
2r − 1

, |i − j| ≤ r,

0 otherwise.
(14)

and S is a block diagonal matrix as in the Example 4.1 of dimension 100 × 100. We let r = 3 in this example.

The original image and the blurred and noisy image are shown in the top left and top center of Fig. 4, respectively. We
applied the NS-CGNRmethod (Algorithm3.1) and the othermethods to the blurred and noisy image and the restored images
are shown in the Fig. 4. The restored image by the NS-CGNR method was obtained in 6 outer iterations and the required
CPU-time was 0.13 s. The restored image by the GMRES(20) method was obtained in 1000 outer iterations and the required
CPU-timewas 55.1 3 s. The restored image by the SpHSSmethodwas shownafter 5000 outer iterations 314.86 s. The restored
image by the CG-like method was obtained in 24 outer iterations and the required CPU-time was 0.15 s. The optimal value
of the Tikhonov regularization parameter for this example is µ = 1.0987e−05.

5. Conclusion

A shifted nested iteration method is considered for a class of problems where the skew-Hermitian part of the matrix
is dominating. It has been demonstrated that a fixed-point iteration solved by inner iterations to a low inner accuracy
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Fig. 4. Results for peppers image in the Example 4.5.

can obtain a method which is more effective. A typical application of this method is for advection–diffusion equations.
As expected, the NS-CGNRmethod gets more accurate as the skew-Hermitian part of the matrix becomesmore dominating.
Furthermore, the results in the previous section, prove the method to be effective for ill-posed problems and image
restoration.

Acknowledgments

The authors are grateful to the anonymous referees for their comments which substantially improved the quality of this
paper. The work of the first author was supported in part by the Research Council of I.A.U. Aligoudarz Branch (Grant No.
6643334334).

Appendix

To prove Theorem 2.1, we need the following lemmas.

Lemma A.1 ([15]). If F is an n × n matrix with ∥F∥ < 1, then (I + F)−1 exists and satisfies

∥(I + F)−1
∥ ≤

1
1 − ∥F∥

.

Lemma A.2 ([7]). Let A ∈ Cn×n be a Hermitian positive definite matrix, and assume that the system of linear equations (1) is
solved by the conjugate gradient method. If x(0)

∈ Cn is the starting vector, x(k)
∈ Cn the kth iterate, and x∗

∈ Cn the exact
solution of the linear system of Eqs. (1), then

∥x(k)
− x∗

∥A ≤ 2
√

κ(A) − 1
√

κ(A) + 1

k

∥x(0)
− x∗

∥A.

Evidently, by making use of Lemma A.2, we can obtain the following corollary:

Corollary A.3. Let A ∈ Cn×n, and assume that the system of linear equations (1) is solved by the CGNR method. If x(0)
∈ Cn is

the starting vector, x(k)
∈ Cn the kth iterate, and x∗

∈ Cn the exact solution of the system of linear equations (1), then

∥x(k)
− x∗

∥AHA ≤ 2


κ(A) − 1
κ(A) + 1

k

∥x(0)
− x∗

∥AHA.

Now, we can prove Theorem 2.1 as follows:
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Proof of Theorem 2.1. Let x(∗,l) be the exact solution of the system of linear equations (4). Then it satisfies

x(∗,l)
= S−1

ν b − S−1
ν Hνx(l−1).

On the other hand, since x∗ is the exact solution of the system of linear equations (1), it obeys

x∗
= S−1

ν b − S−1
ν Hνx∗.

Let µ(Sν) = (κ(Sν) − 1)/(κ(Sν) + 1). Then according to Lemma A.2, we have

∥x(l)
− x(∗,l)

∥SHν Sν ≤ 2µ(Sν)
kl∥x(l−1)

− x(∗,l)
∥SHν Sν

= 2µ(Sν)
kl∥x(l−1)

− (S−1
ν b − S−1

ν Hνx(l−1))∥SHν Sν

= 2µ(Sν)
kl∥(I + S−1

ν Hν)x(l−1)
− (I + S−1

ν Hν)x∗
∥SHν Sν

= 2µ(Sν)
kl∥(I + S−1

ν Hν)(x(l−1)
− x∗)∥SHν Sν

≤ 2µ(Sν)
kl(1 + ∥S−1

ν Hν∥SHν Sν )∥x
(l−1)

− x∗
∥SHν Sν

= 2µ(Sν)
kl(1 + ϱ)∥x(l−1)

− x∗
∥SHν Sν .

Furthermore, we can obtain

∥x(l)
− x∗

∥SHν Sν = ∥(x(l)
− x(∗,l)) − (x(∗,l)

− x∗)∥SHν Sν

≤ ∥x(l)
− x(∗,l)

∥SHν Sν + ∥x(∗,l)
− x∗

∥SHν Sν

≤ 2µ(Sν)
kl(1 + ϱ)∥x(l−1)

− x∗
∥SHν Sν + ∥S−1

ν Hν(x(l−1)
− x∗)∥SHν Sν

≤ 2µ(Sν)
kl(1 + ϱ)∥x(l−1)

− x∗
∥SHν Sν + ϱ∥x(l−1)

− x∗
∥SHν Sν

= (2µ(Sν)
kl(1 + ϱ) + ϱ)∥x(l−1)

− x∗
∥SHν Sν

= γ (l)
∥x(l−1)

− x∗
∥SHν Sν .

This proves the validity of (a). We now turn to the proof of (b). Since

∥b − Ax(l)
∥SHν Sν = ∥A(x(l)

− x∗)∥SHν Sν ≤ ∥A∥SHν Sν ∥x
(l)

− x∗
∥SHν Sν ,

making use of (a), we have

∥b − Ax(l)
∥SHν Sν ≤ γ (l)

∥A∥SHν Sν ∥x
(l−1)

− x∗
∥SHν Sν

≤ γ (l)
∥A∥SHν Sν ∥A

−1(b − Ax(l−1))∥SHν Sν

≤ γ (l)
∥A∥SHν Sν ∥A

−1
∥SHν Sν ∥b − Ax(l−1)

∥SHν Sν .

We easily obtain

∥A∥SHν Sν = ∥Hν + Sν∥SHν Sν

= ∥Sν(S−1
ν Hν + I)∥SHν Sν

≤ ∥Sν∥SHν Sν (1 + ∥S−1
ν Hν∥SHν Sν ),

and since ∥S−1
ν Hν∥SHν Sν < 1, by Lemma A.1, we can obtain

∥A−1
∥SHν Sν = ∥(Hν + Sν)

−1
∥SHν Sν

= ∥(S−1
ν Hν + I)−1S−1

ν ∥SHν Sν

≤ ∥S−1
ν ∥SHν Sν ∥(S

−1
ν Hν + I)−1

∥SHν Sν

≤
∥S−1

ν ∥SHν Sν

1 − ∥S−1
ν Hν∥SHν Sν

.

On the other hand, we have ∥Sν∥SHν Sν = ∥Sν∥2 and ∥S−1
ν ∥SHν Sν = ∥S−1

ν ∥2. Therefore, we have:

∥A∥SHν Sν ≤ ∥Sν∥2(1 + ∥S−1
ν Hν∥SHν Sν ) and ∥A−1

∥SHν Sν ≤
∥S−1

ν ∥2

1 − ∥S−1
ν Hν∥SHν Sν

.
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Therefore, it follows that

∥b − Ax(l)
∥SHν Sν ≤ γ (l)

∥Sν∥2(1 + ∥S−1
ν Hν∥SHν Sν )∥S

−1
ν ∥2

1 − ∥S−1
ν Hν∥SHν Sν

∥b − Ax(l−1)
∥SHν Sν

= γ (l)κ(Sν)
1 + ∥S−1

ν Hν∥SHν Sν

1 − ∥S−1
ν Hν∥SHν Sν

∥b − Ax(l−1)
∥SHν Sν

= γ (l)
∥b − Ax(l−1)

∥SHν Sν .

This shows the validity of (b).
It is obvious that, for γ ∈ (ϱ, ϱ1) with ϱ1 = min{1, 2 + 3ϱ}, γ (l)

≤ γ (l = 1, 2, . . .) holds under condition

kl ≥

ln


γ−ϱ

2(1+ϱ)


ln


κ(Sν )−1
κ(Sν )+1

 , l = 1, 2, . . . ,

and the estimates

∥x(l)
− x∗

∥SHν Sν ≤ γ (l)
∥x(l−1)

− x∗
∥SHν Sν ≤ Π l

k=0γ
(k)

∥x(0)
− x∗

∥SHν Sν

≤ γ l+1
∥x(0)

− x∗
∥SHν Sν → 0, l → ∞,

hold in accordance with (a). Therefore, the sequence {x(l)
}
∞

l=0 converges to the solution x∗ of the system of linear equations
(1).

In addition, for ϱ ∈ (0, r), where r is the positive root of quadratic equation κ(Sν)ϱ
2

+ (κ(Sν) + 1)ϱ − 1 = 0 and
0 < r < 1, we have 0 < (1 + ϱ)ϱκ(Sν)/(1 − ϱ) < 1. So, for

γ ∈


(1 + ϱ)ϱ

(1 − ϱ)
κ(Sν), 1


,

γ (l)
≤ γ (l = 1, 2, 3, . . .) holds under condition

kl ≥

ln


(1−ϱ)γ−ϱ(1+ϱ)κ(Sν )

2(1+ϱ)2κ(Sν )


ln


κ(Sν )−1
κ(Sν )+1

 , l = 1, 2, 3, . . . ,

and the estimates

∥b − Ax(l)
∥SHν Sν ≤ γ (l)

∥b − Ax(l−1)
∥SHν Sν ≤ Π l

k=0γ (k)
∥b − Ax(0)

∥SHν Sν

≤ γ l+1
∥b − Ax(0)

∥SHν Sν → 0, l → ∞,

hold in accordance with (b). �
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