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Abstract 

It is well known that if the coefficient matrix in a linear system is large and sparse or sometimes not readily 

available, then iterative solvers may become the only choice. The block solvers are an attractive class of iterative 

solvers for solving linear systems with multiple right-hand sides. In general, the block solvers are more suitable 

for dense systems with preconditioner. In this paper, we present a novel block LSMR (least squares minimal 

residual) algorithm for solving non-symmetric linear systems with multiple right-hand sides. This algorithm is 

based on the block bidiagonalization and LSMR algorithm and derived by minimizing the 2-norm of each column 

of normal equation. Then, we give some properties of the new algorithm. In addition, the convergence of the 

stated algorithm is studied. In practice, we also observe that the Frobenius norm of residual matrix decreases 

monotonically. Finally, some numerical examples are presented to show the efficiency of the new method in 

comparison with the traditional LSMR method. 
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1. Introduction 

Many applications require the solution of several 

sparse systems of equations  
 

Ax(i) = b(i),    i = 1,2, … , s,                                  (1) 
 
with the same coefficient matrix and different right-

hand sides. When all the b(i)’s are available 

simultaneously, Eq. (1) can be written as  
 
AX = B,                                                                 (2) 
 
where A is an n × n nonsingular and nonsymmetric 

real matrix, B and X are n × s rectangular matrices 

whose columns are b(1), b(2), … , b(s) and 

x(1), x(2), … , x(s), respectively. In practice, s is of 

moderate size s ≪ n. Instead of applying an 

iterative method to each linear system, it is more 

efficient to use a method for all the systems 

simultaneously. In the last years, generalizations of 

the classical Krylov subspace methods have been 

developed. 

One class of solvers for solving the problem (2) is 

the block solvers which are much more efficient 

when the matrix A is relatively dense and 

preconditioners are used. The first block solvers are 

 
*Corresponding author 
Received: 28 December 2013 / Accepted: 8 October 2014 

block conjugate gradient (Bl-CG) algorithm and 

block biconjugate gradient (Bl-BCG) algorithm 

proposed in (Oleary, 1980). Variable Bl-CG 

algorithms for symmetric positive definite problems 

are implemented on parallel computers (Haase and 

Reitzinger, 2005; Nikishin and Yeremin, 1995). If 

the matrix is only symmetric, an adaptive block 

Lanczos algorithm and a block version of Minres 

method are devised in (Dai, 2000). For 

nonsymmetric problems, the Bl-BCG algorithm 

(Oleary, 1980; Simoncini, 1997), the block 

generalized minimal residual (Bl-GMRES) 

algorithm (Darnel et al., 2008; Gu and Cao, 2001; 

Gutknecht, 2007; Liu and Zhong, 2008; Morgan, 

2005; Robbe and Sadkane, 2006; Simoncini and 

Gallopoulos, 1995; Simoncini and Gallopoulos, 

1996; Vital, 1990), the block quasi minimum 

residual (Bl-QMR) algorithm (Freund and 

Malhotra, 1997), the block BiCGStab (Bl-

BICGSTAB) algorithm (Guennouni et al., 2003), 

the block Lanczos method (Guennouni et al., 2004) 

and the block least squares (Bl-LSQR) algorithm 

(Karimi and Toutounian, 2006) have been 

developed. 
Another class is the global methods, which are 

based on the use of a global projection process onto 

a matrix Krylov subspace, including global FOM 

and GMRES methods (Bellalij et al., 2008; Jbilou 

et al., 1999), global conjugate gradient type 

http://ijsts.shirazu.ac.ir/
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methods (Salkuyeh, 2006), global BCG and 

BiCGStab methods (Jbilou et al., 1997; Jbilou et al., 

2005), global CGS algorithm (Zhang and Dai, 

2008; Zhang et al., 2010), Gl-LSQR algorithm 

(Toutounian and Karimi, 2006), Gl-BCR and Gl-

CRS algorithms (Zhang et al., 2011), global 

Hessenberg and CMRH methods (Heyouni, 

2001;Lin, 2005), global SCD algorithm (Gu and 

Yang, 2007), and weighted global methods 

(Heyouni and Essai, 2005). Global methods are 

more suitable for sparse linear systems (Heyouni 

and Essai, 2005). 

The other class is the seed methods, which consist 

of selecting a single system as the seed system and 

generating the corresponding Krylov subspace and 

then projecting all the residuals of the other linear 

systems onto the same Krylov subspace to find new 

approximate solutions as initial approximations. 

References on this class include (Abdel-Rehim et 

al., 2008; Chan and Wang, 1997; Joly, 1991; Saad, 

1987; Simoncini and Gallopoulos, 1995; Smith et 

al., 1989; Van Der Vorst, 1987). 

In this paper, based on the block 

bidiagonalization, we derive a simple recurrence 

formula for generating a sequence of 

approximations {Xk} such that the ∥ colj(A
TRk) ∥2 

decreases monotonically, where Rk = B − AXk and 

colj(A
TRk) represents the jth column of ATRk. 

Throughout this paper, the following notations 

are used. For two n × s matrices X and Y, we define 

the following inner product: 〈X, Y〉 = tr(XTY), 

where tr(Z) denoted the trace of the square matrix 

Z. The associated norm is the Frobenius norm 

denoted by ∥⋅∥F. We will use the notation 〈⋅〉2 for 

the usual inner product in ℝn and the associated 

norm denoted by ∥⋅∥2. Finally, 0s and Is will denote 

the zero and the identity matrices in ℝs×s. 

The outline of this paper is as follows. In Section 

2, we give a quick overview of LSMR method and 

its properties. In Section 3, we present the block 

version of the LSMR algorithm. In Section 4, the 

convergence of the presented algorithm is 

considered. In Section 5, some numerical 

experiments on test matrices from the University of 

Florida Sparse Matrix Collection (Davis, 2011) are 

presented to show the efficiency of the method. 

Finally, we make some concluding remarks in 

Section 6. 

2. The LSMR algorithm 

In this section, we recall some fundamental 

properties of LSMR algorithm (Chin-Lung Fong 

and Saunders, 2011), which is an iterative method 

for solving real linear systems of the form Ax = b, 
where A is a nonsymmetric matrix of order n and 

x, b ∈ ℝn. 

LSMR algorithm uses an algorithm of Golub and 

Kahan (Gloub and Kahan, 1965), which is stated as 

procedure Bidiag 1 in (Paige and Saunders, 1982), 

to reduce (b A)to the upper-diagonal 

form  (β1e1 Bk). The procedure Bidiag 1 can be 

described as follows. 

 

Bidiag 1. (Starting vector b; reduction to lower 

bidiagonal form) 
 
 β1u1 = b,    α1v1 = ATu1, 
βi+1ui+1 = Avi − αiui,

αi+1vi+1 = ATui+1 − βi+1vi,
}i = 1,2, ….              (3) 

 
The scalars αi ≥ 0  and βi ≥ 0  are chosen so that 

∥ ui ∥2=∥ vi ∥2= 1. With the definition 
 
Uk ≡ [u1, u2, …  , uk], 
Vk ≡ [v1, v2, …  , vk], 

Bk ≡

[
 
 
 
 
α1

β2 α2

⋱ ⋱
βk αk

βk+1]
 
 
 
 

, 

Lk+1 = (Bkαk+1ek+1),    Vk+1 = (Vk vk+1), 
 
the recurrence relations (3) may be rewritten as  
 
Uk+1(β1e1) = b, 
AVk = Uk+1Bk, 
ATUk+1 = VkBk

T + αk+1vk+1ek+1
T = Vk+1Lk+1

T . 

ATAVk = ATUk+1Bk = Vk+1Lk+1
T Bk 

= Vk+1 (
Bk

T

αk+1ek+1
T )Bk 

= Vk+1 (
Bk

TBk

αk+1βk+1ek
T). 

 
This is equivalent to what would be generated by 

the symmetric Lanczos process with matrix ATA 

and starting vector ATb. 

Hence, by using the procedure Bidiag 1 the 

LSMR method constructs an approximation 

solution of the form xk   = Vkyk which solves the 

least-squares problem, minyk
∥ ATrk ∥  . The main 

steps of the LSMR algorithm can be summarized as 

follows. 

 

Algorithm 1 LSMR algorithm  

Set β1u1 = b, α1v1 = ATu1, α1 = α1, ζ1 = α1β1, 

ρ0 = 1, ρ
0

= 1, c0 = 1, s0 = 0, h1 = v1, h0 = 0, 

x0 = 0   

For k = 1,2, …, until convergence Do: 
 
       βk+1uk+1 = Avk − αkuk 

        αk+1vk+1 = ATuk+1 − βk+1vk  

        ρk = (αk
2
+ βk+1

2 )
1

2 
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         ck =
αk

ρk

 

         sk =
βk+1

ρk

 

      θk+1 = skαk+1 

       αk+1 = ckαk+1 

       θk = sk−1ρk 

       ρ
k

= ((ck−1ρk)
2 + θk+1

2 )
1

2 

       ck =
ck−1ρk

ρ
k

 

       sk =
θk+1

ρ
k

 

       ζk = ckζk
 

       ζ
k+1

= −skζk
 

       hk = hk − (
θkρk

(ρk−1ρk−1
)
) hk−1 

       xk = xk−1 + (
ζk

(ρkρk
)
) hk 

      hk+1 = vk+1 − (
θk+1

ρk

) hk. 

 

If |ζ
k+1

| is small enough then stop 

End Do. 

More details about the LSMR algorithm can be 

found in (Chin-Lung Fong and Saunders, 2011). 

3. The block LSMR method 

In this section, we propose a new method for 

solving the linear equation (2). This method is 

based on the LSMR method. We use the block 

Bidiag 1 (Karimi and Toutounian, 2006), based on 

Bidiag 1, for reducing A to the block lower 

bidiagonal form. 

The block Bidiag 1 procedure constructs the sets 

of the n × n block vectors V1, V2, …  and 

U1, U2,   such that Vi
TVj = 0s, Ui

TUj = 0s, for i ≠ j, 

and Vi
TVi = Is, Ui

TUi = Is; and they form the 

orthonormal basis of ℝn×ks. 

 

Block Bidiag 1. (Starting matrix B; reduction to 

block lower bidiagonal form).  
 

U1B1 = B,    V1A1 = ATU1, 
Ui+1Bi+1 = AVi − UiAi

T,

Vi+1Ai+1 = ATUi+1 − ViBi+1
T ,

}i = 1,2, … , k,         (4) 

 
where Ui, Vi ∈ ℝn×s; Bi, Ai ∈ ℝs×s, and 

U1B1, V1A1, Ui+1Bi+1, Vi+1Ai+1 are the QR 

decompositions of the matrices B, ATU1, AVi −

UiAi
T, ATUi+1 − ViBi+1

T , respectively. With the 

definitions  
 

Uk ≡ [U1, U2, …   , Uk], 

Vk ≡ [V1, V2, …   , Vk],   

Tk ≡

[
 
 
 
 
 
A1

T

B2 A2
T

⋱ ⋱
Bk Ak

T

Bk+1]
 
 
 
 
 

, 

 
the recurrence relations (4) may be rewritten as:  
 

Uk+1E1B1 = B, 

AVk = Uk+1Tk , 

ATUk+1 = VkTk
T + Vk+1Ak+1Ek+1

T , 
 
where Ei is the (k + 1)s × s matrix which is zero 

except for the ith s rows, which are the s × s 

identity matrix. We also have Vk

T
Vk = Iks and 

Uk+1

T
Uk+1 = I(k+1)s, where Il is the l × l identity 

matrix. We define  
 

Lk+1 ≡ [Tk Ek+1Ak+1
T ], 

 
then  
 

ATUk+1 = Vk+1Lk+1

T
,  

 

ATAVk = ATUk+1Tk = Vk+1Lk+1

T
Tk =

Vk+1 [
Tk

T

Ak+1Ek+1
T ] Tk  

= Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

].                                          (5) 

 
At iteration k we seek an approximate solutionXk 

of the form  
 

Xk = VkYk,                                                            (6) 
 

where Yk is an ks × s matrix. Let Bk ≡ AkBk for all 

k. Since  
 

ATRk = ATB − ATAXk 

= V1A1B1 − ATAVkYk, 
 
we have  
 

ATRk = V1B1 − Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

] Yk =

Vk+1(E1B1 − [
Tk

TTk

Bk+1Ek

T] Yk)                                   (7) 

 

where Ek is the ks × s matrix, which is zero except 

for kth s rows, which are the s × s identity matrix. 

Now, we use the QR decomposition (Golub and 

Van Loan, 1983), where a unitary matrix Qk+1 is 

determined so that  
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Qk+1Tk = [Rk

0
] , Rk =

[
 
 
 
 
ρ1 θ2

ρ2 θ3

⋱ ⋱
ρk−1 θk

ρk]
 
 
 
 

       (8) 

 
where ρl and θl are the s × s matrices. As (Karimi 

and Toutounian, 2006), the matrix Qk+1 is updated 

from the previous iteration by setting 
 

Qk+1 = [
I(k−1)s 0

0 Q(ak, bk, ck, dk)
] [

Qk 0
0 Is

], 

 
where  
 

Q(ak, bk, ck, dk) = [
ak bk

ck dk
] 

 
is an 2s × 2s unitary matrix written as four s × s 

blocks. The unitary matrix Q(ak, bk, ck, dk) is 

computed such that  
 

Q(ak, bk, ck, dk) [
ρ̂̂k 0

Bk+1 Ak+1
T ] = [

ρk θk+1

0 ρ̂̂k+1

].    (9) 

 
From (7), we have  
 

ATRk = Vk+1 (E1B1 − [
Tk

TTk

Bk+1Ek

T] Yk) 

= Vk+1(E1B1 − [
Rk

T
Rk

Bk+1Ek

T] Yk)                            (10) 

 

If we define Fk ≡ RkYk, we have  
 

ATRk = Vk+1(E1B1 − [
Rk

T

Bk+1Ek

T
Rk

−1] Fk) =

Vk+1(E1B1 − [
Rk

T

Ak+1Bk+1ρk
−1Ek

T] Fk).                  (11) 

 
On the other hand, from (9), we have θk+1 =

bkAk+1
T  and  

 

[
ρ̂̂k 0

Bk+1 Ak+1
T ] = QT(ak, bk, ck, dk) [

ρk θk+1

0 ρ̂̂k+1

]. 

This implies that Bk+1 = bk
Tρk. So,  

θk+1 = ρk
−TBk+1

T Ak+1
T                                          (12) 

 
and  
 

ATRk = Vk+1(E1B1 − [
Rk

T

θk+1
T Ek

T] Fk).                  (13) 

 
Then we perform a second QR factorization  

 

Qk+1 [
Rk

T
E1B1

θk+1
T Ek

T
0

] = [
Rk zk

0 ζ
k+1

],    

Rk =

[
 
 
 
 
 
 ρ1

θ2

ρ
2

θ3

⋱ ⋱

ρ
k−1

θk

ρ
k]
 
 
 
 
 
 

                         (14) 

 

where ρ
l
 and θl are the s × s matrices. The matrix 

Qk+1 is updated from the previous iteration by 

setting  
 

Qk+1 = [
I(k−1)s 0

0 Q(ak, bk, ck, dk)
] [

Qk 0

0 Is
]     (15) 

where  
 

Q(ak, bk, ck, dk) = [
ak bk

ck dk

] 

 
is a 2s × 2s unitary matrix written as four s × s 

blocks. The unitary matrix Q(ak, bk, ck, dk) is 

computed such that  
 

Q(ak, bk, ck, dk) [
ρ̃

k
0

θk+1
T ρk+1

T
] = [

ρ
k

θk+1

0 ρ̃
k+1

]. 

 
Combining what we have with (13) gives  

 

ATRk = Vk+1Qk+1

T
([

zk

ζ
k+1

] − [Rk

0
] Fk).               (16) 

 
In the block LSMR algorithm we would like to 

choose Yk ∈ ℝks×s and correspondingly Fk = RkYk 

such that ‖colj(A
TRk)‖2

 is a minimum independent 

for j = 1,2, … , s. Since Qk+1 is a unitary matrix and 

Vk+1 is orthonormal, we get  
 

min
Yk

‖colj(A
TRk)‖ 

= min
Fk

‖colj([
zk

ζ
k+1

] − [Rk

0
] Fk)‖.                       (17) 

 
The subproblem is solved by choosing Fk from 

RkFk = zk. Therefore,  
 

ATRk = Vk+1Qk+1

T
[
0

ζ
k+1

],                                   (18) 

 
and the approximate solution is given by  
 

Xk = VkRk

−1
Rk

−1

zk. 
 
Letting 
 

Pk ≡ VkRk

−1
Rk

−1

≡ [P1 P2 … Pk], 
 
then  
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Xk = Pkzk. 
 

The n × s matrix Pk, the last block column of Pk, 

can be computed from the previous Pk−1, Pk−2 and 

Vk, by the update  
 

Pk = (Vk − Pk−2θk−1θk 

−Pk−1(ρk−1
θk + θkρk))(ρk

ρk)
−1.                     (19) 

 
Also note that,  
 

zk = [
zk−1

ζk
] 

 
in which  
 

ζk = akζk
. 

 
Thus, Xk can be updated at each step, via the 

relation  
 
Xk = Xk−1 + Pkζk.                                               (20) 
 

The equation RESk = maxj‖colj(A
TRk)‖2

 is 

computed directly from the quantity ζ
k+1

 as  

RESk = max
j

‖colj(ζk+1
)‖

2
  . 

From (20), the residual Rk is given by  
 
Rk = Rk−1 − APkζk,                                            (21) 
 
where APk can be computed from the previous 

APk’s and AVk by the simple update  
 

APk = (AVk − APk−2θk−1θk − APk−1(ρk−1
θk +

θkρk))(ρk
ρk)

−1.  
 

In addition, we show that the ∥ colj(Rk) ∥2 can be 

estimated by a simple formula. We transform Rk

T

 to 

block upper-bidiagonal form using a third QR 

factorization: R̃k = Q̃kRk

T

 with Q̃k = P̃k−1 … P̃1. By 

defining  
 

F̃k = Q̃kFk,        B̃k = [
Q̃k

Is
] Qk+1E1B1,        (22) 

 

we have  
 
Rk = B − AXk 

      = U1B1 − AVkYk 

      = Uk+1(E1B1 − TkYk) 

      = Uk+1 (E1B1 − Qk+1
T [

Rk

0s

] Yk) 

      = Uk+1 (E1B1 − Qk+1
T [

Fk

0s
]) 

     = Uk+1 (Qk+1
T [

Q̃k
T

Is
] B̃k − Qk+1

T [
Q̃k

TF̃k

0s
]) 

     = Uk+1Qk+1
T [

Q̃k
T

Is
] (B̃k − [

F̃k

0s
]). 

 

Since the columns of the matrices Qk+1, Q̃k+1, 

and Uk+1 are orthonormal, we have  
 

∥ colj(Rk) ∥2=∥ (B̃k − [
F̃k

0s
]) ej ∥2.                    (23) 

 

The matrices B̃k and F̃k can be written in the form 
 
B̃k = [β̃1

T    β̃k−1
T β̇k

Tβ̈k+1
T ]T, F̃k = [τ̃1

T … τ̃k−1
T τ̇k

T]T       (24) 
 

The following Lemma shows that we can 

estimate ∥ colj(Rk) ∥2 from just the last two blocks 

of B̃k and the last block of F̃k. 

 

Lemma 1. In (23) and (24), β̃i = τ̃i for i =
1,2, … , k − 1.  

 

Proof: Appendix A proves the lemma by induction.  

 

The main steps of Bl-LSMR algorithm can be 

summarized as follows. 

Algorithm 2 Bl-LSMR algorithm 

Set X0 = 0, ρ0 = Is, ρ
0

= Is, d0 = Is, d0 = Is, 

θ0 = 0, θ1 = 0, θ1 = 0 

U1B1 = B, V1A1 = ATU1, (QR decomposition of B 

and ATU1) 

Set B1 = A1B1, ρ̂̂1 = A1
T, ζ

1
= B1, P−1 = P0 = 0n×s 

For i = 1,2, … until convergence, do: 
 

Wi = AVi − UiAi
T 

 

     Ui+1Bi+1 = Wi, (QR decomposition of Wi) 
 

Si = ATUi+1 − ViBi+1
T  

 

Vi+1Ai+1 = Si, (QR decomposition of Si)    

Compute a unitary matrix Q(ai, bi, ci, di) such that 
 

Q(ai, bi, ci, di) [
ρ̂̂i

Bi+1
] = [

ρi

0
] 

θi+1 = biAi+1
T  

ρ̂̂i+1 = diAi+1
T  

ρ̃
i
= di−1ρi

T 
 

Compute a unitary matrix Q(ai, bi, ci, di) such 

that  
 

Q(ai, bi, ci, di) [
ρ̃

i

θi+1
T

] = [
ρ

i

0
] 

θi+1 = biρi+1
T  

ζi = aiζi
 

ζ
i+1

= ciζi
 

  Pi = (Vi − Pi−2θi−1θi − Pi−1(ρi−1
θi +   θiρi)) ρi

−1ρ
i

−1
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Xi = Xi−1 + Piζi 
 

If max ∥ colj(ζi+1
) ∥2 is small enough then stop 

End Do.   

The algorithm is a generalization of the LSMR 

algorithm. It reduces to the classical LSMR when 

s = 1. The Bl-LSMR algorithm will breakdown at 

step i, if ρ
i
 or ρi are singular. This happens when 

the matrix [
ρ̂̂i

Bi+1
] or matrix [

ρ̃
i

θi+1
T

] is not full rank. 

So the Bl-LSMR algorithm will not breakdown at 

step i, if Bi+1 and θi+1 are nonsingular. We will not 

treat the problem of breakdown in this paper and 

we assume that the matrices Bi’s and θi+1’s 

produced by the Bl-LSMR algorithm are 

nonsingular.  

4. The convergence of the Bl-LSMR algorithm 

In this section, the convergence of the Bl-LSMR 

algorithm is studied. In order to get this goal, we 

first give the following lemma.  

 

Lemma 2. Let Pi, i = 1,2, … , k, be the n × s 

auxiliary matrices produced by the  Bl-LSMR 

algorithm and Rk be the residual matrix associated 

with the approximate solution Xk of the matrix 

equation (2). Then, we have  

 

(a)    Pi
TATAATAPj = {

Is,    i = j
0s,    i ≠ j

 

(b)    (ATRk−1)
TATAPk = ζk

T 

 

Proof: (a) It is enough to show that 
 

Pk

T
ATAATAPk = Iks, 

 

where Iks is a ks × ks identity matrix and Pk =
[P1, P2, … , Pk] is an n × ks matrix whose columns 

are defined by (19). By using Pk = VkRk

−1
Rk

−1

 and 

equation (5), we have  
 

ATAPk = ATAVkRk

−1
Rk

−1

 

= Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

] Rk

−1
Rk

−1

 

              

= Vk+1 [
Rk

T
Rk

Bk+1Ek

T
] Rk

−1
Rk

−1

                              (from(8)) 

              

= Vk+1 [
Rk

T

Ak+1Bk+1ρk
−1Ek

T] Rk

−1

                     (from(8)) 

              

= Vk+1 [
Rk

T

θk+1
T Ek

T] Rk

−1

                                   (from(12)) 

              

= Vk+1Qk+1

T
[Rk

0
] Rk

−1

                                  (from(14)) 

= Vk+1Qk+1

T
[
Iks

0
].                                                (25) 

 

Since Vk+1 is orthonormal and Qk+1 is a unitary 

matrix, we get  

Pk

T
ATAATAPk = Iks. 

(b) From (18), (25), and (15), we have  

  

(ATRk−1)
TATAPk = (VkQk

T
[
0

ζ
k

])TVk+1Qk+1

T
[
Iks

0
] Ek 

 

= [0 ζ
k

T
] QkVk

T
[Vk Vk+1] [

Qk

T
0

0 Is
] [

I(k−1)s 0

0 QT(ak, bk, ck, dk)
] [

0(k−1)s

Is
0s

] 

= [0 ζ
k

T
] [Iks 0s] [

0(k−1)s

ak
T

bk

T

] = ζ
k

T
ak

T
= ζk

T.  

 

Theorem 3. Let Xk be the approximate solution of 

(2), obtained from the  Bl-LSMR algorithm. Then  

∥ ATRk ∥F≤∥ ATRk−1 ∥F, 
where Rk = B − AXk.  

 

Proof: We have  

 

(ATRk)
T(ATRk) =

(ATRk−1 − ATAPkζk)
T(ATRk−1 − ATAPkζk)  

= (ATRk−1)
T(ATRk−1) − 2(ATRk−1)

TATAPkζk 

+ζk
TPk

TATAATAPkζk. 
 

By using Lemma 2, we get  
 

(ATRk)
T(ATRk) = (ATRk−1)

T(ATRk−1) − ζk
Tζk. 

 
Thus  

trace((ATRk)
T(ATRk)) 

= trace((ATRk−1)
T(ATRk−1)) − trace(ζk

Tζk), 
∥ ATRk ∥F

2=∥ ATRk−1 ∥F
2 −∥ ζk ∥F

2, 
∥ ATRk ∥F≤∥ ATRk−1 ∥F.  

5. Numerical examples 

In this section, we give some experimental results. 
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Our examples have been coded in Matlab with 

double precision. For all the experiments, the initial 

guess was X0 = 0 and B = rand(n, s), where 

function rand creates an n × s random matrix with 

coefficients uniformly distributed in [0,1]. No 

preconditioning has been used in any of the test 

problems. All the tests were stopped as soon as, 

∥ ATRk ∥F=∥ ζ
k+1

∥F≤ 10−10. 

We use some matrices from the University of 

Florida Sparse Matrix Collection (Davis [7]). These 

matrices with their properties are shown in Table 1. 

In Table 2, for s = 10,20,30, and 40, we give the 

ratio t(s)/t(1), where t(s) is the CPU time for Bl-

LSMR algorithm and t(1) is the CPU time obtained 

when applying LSMR for one right-hand side linear 

system. Note that the time obtained by LSMR for 

one right-hand side depends on which right-hand 

was used. So, in our experiments, t(1) is the 

average of the times needed for the s right-hand 

sides using LSMR. We note that Bl-LSMR is 

effective if the indicator t(s)/t(1) is less than s. 

Table 2 shows that the Bl-LSMR algorithm is 

effective and less expensive than the LSMR 

algorithm applied to each right-hand side. To show 

that the Frobenius norm of residual matrix 

decreases monotonically, we display the 

convergence history in Fig. 1 for the systems 

corresponding to the matrices of Table 2 and Bl-

LSMR algorithm, respectively. In this figure, the 

vertical axis and horizontal axis are the logarithm of 

the Frobenius norm of residual matrix and the 

number of iterations to convergence, respectively. 

We observe that for all matrices the Frobenius norm 

of residual matrix decreases monotonically. 

 
Table 1. Test problems information 

 
Matrix\ 

Property 

Order Sym nnz id 

Rajat/ 
rajat03 

7602 no 32653 1187 

HB/ 

sherman4 

1104 no 3786 245 

FEMLAB/ 

ns3Da 

20414 no 1659799 925 

Simon/ appu 14000 no 1853104 811 
Bai/ pde2961 2961 no 14585 324 

 
Table 2. Effectiveness of BL-LSMR  

algorithm measured by t(s)/t(1) 

 
Matrix\S 10 20 30 40 

Rajat03 1.98 6.31 3.54 18.98 

Sherman4 0.15 0.16 0.18 0.45 
Ns3Da 2.15 4.50 7.00 10.25 

appu 0.93 5.96 0.98 15.10 

Pde2961 0.70 1.04 0.81 0.87 

6. Conclusion 

We have proposed in this paper a new block LSMR 

algorithm for solving nonsymmetric linear systems 

with multiple right-hand sides. To define this new 

algorithm, we used the block Bidiag 1 procedure 

(Karimi and Toutounian, 2006) and derived a 

simple recurrence formulas for generating the 

sequences of approximations {Xk} such that 

‖colj(A
TRk)‖2

 decreases monotonically. In practice 

we also observed that the Frobenius norm of 

residual matrix decreased monotonically. 

Experimental results showed that the proposed 

methods are effective and less expensive than the 

LSMR algorithm applied to each right-hand side. 
 

 
 
Fig. 1. Convergence history of the Bl-LSMR algorithm 

with s=10 

 

Appendix A. Proof of Lemma 1. 

Let Qk = P̂kP̂k−1 … P̂1, Qk = PkPk−1 …P1, and  
 

R̃k =

[
 
 
 
ρ̃1 θ̃2

⋱ ⋱
ρ̃k−1 θ̃k

ρ̇k]
 
 
 

                                         (26) 

 

Then, with β̈1 = B1, ρ̃̅=ρ1
T, ρ̇1 = ρ̅1

T, β̇1 = β̂1, 

ρ̂̂1 = A1
T, the effects of the rotations P̂k, Pk and P̃k−1 

can be summarized as 
 

[
ak bk

ck dk
] [

ρ̂̂k 0 β̈k

Bk+1 Ak+1
T 0

] 

= [
ρk θk+1 β̂k

0 ρ̂̂k+1 β̈k+1

],                                         (27) 

 

[
a̅k b̅k

c̅k d̅k

] [
ρ̃̅k 0

θk+1
T ρk+1

T ] = [
ρ̅k θ̅k+1

0 ρ̃̅k+1

],              (28) 

 

[
ãk−1 b̃k−1

c̃k−1 d̃k−1

] [
ρ̇k−1 0 β̇k−1

θ̅k
T ρ̅k

T β̂k

] =

[
ρ̃k−1 θ̃k β̃k−1

0 ρ̇k β̇k

],                                                (29) 

 

where ak, bk, ck, dk, a̅k, b̅k, c̅k and d̅k are defined in 

section 3. From (27), (28), and (29), with d0 = I we 

have 
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(i) ak = ρk
−Tρ̂̂k

T = ρk
−TAkdk−1

T , 

(ii) ck  = −ρ̂̂k+1
−T θk+1

T ak 

             = −dk
−TAk+1

−1 θk+1
T ρk

−TAkdk−1
T , 

(iii) a̅k = (ρ
k
− bkθk+1

T )ρ̃
k

−1
 

              = (ρ̅k − θ̅k+1ρk+1
−T θk+1

T )ρk
−Td̅k−1

−1 , 

(iv) c̅k = −dkθk+1
T ρ̃

k

−1
= −d̅kθk+1

T ρk
−Td̅k−1

−1 , 

(v)  ãk = (ρ̃k)
−Tρ̇k

T = (ρ̃k)
−Tρ̅kd̃k−1

T , 

(vi) b̃k = (ρ̃k)
−Tθ̅k+1,  

(vii) θ̃k = b̃k−1ρ̅k
T 

(viii) b̃k
Tãk = −d̃k

Tc̃k 

(ix) b̃k
Tb̃k = I − d̃k

Td̃k 
 

From the definitions of Fk, F̃k, R̃k, and zk, we 

have  
 

R̃k
TF̃k = RkFk = zk = [Iks0ks,s]Qk+1E1B1.         (30) 

 
So, the matrix F̃k can be computed by the block 

forward substitution from R̃k
TF̃k = [Iks0ks,s]Qk+1

E1B1. 

By defining c(k) = ckck−1 …c2c1 and c
(k)

=
ckck−1 …c2c1 and expanding (30) and (16), we have 
 

R̃k
TF̃k =

[
 
 
 
a1

a2c1

⋮

akc
(k−1)

]
 
 
 

B1,         

B̃k = [
Q̃k

Is
]

[
 
 
 
 
a1

a2c1

⋮
akc

(k−1)

c(k) ]
 
 
 
 

B1. 

 
These imply that  
 

τ̃1 = (ρ̃1
T)−1a1B1                                               (A.1) 

τ̃k−1 = (ρ̃k−1
T )−1(ak−1c

(k−2)
B1 − θ̃k−1

T τ̃k−2)   (A.2) 

τ̇k = (ρ̇k
T)−1(akc

(k−1)
B1 − θ̃k

Tτ̃k−1)                 (A.3) 

β̇1 = β̂1 = a1B1                                                (A.4) 

β̇k = c̃k−1β̇k−1 + d̃k−1akc
(k−1)B1                    (A.5) 

β̃k = ãkβ̇k + b̃kak+1c
(k)B1                               (A.6) 

 

Now, by induction, we show that τ̃i = β̃i for all i. 
When i = 1, (A.6) and (A.4) give  
 

β̃1 = (ã1a1 + b̃1a2c1)B1 

     = (ρ̃1
T)−1(ρ̅1a1 + θ̅2a2c1)B1   (from(v)and(vi)) 

     = (ρ̃1
T)−1(ρ̅1ρ1

−TA1 

    −θ̅2ρ2
−Tθ2

Tρ1
−TA1)B1                 (from(i)and(ii)) 

= (ρ̃1
T)−1(ρ̅1 − θ̅2ρ2

−Tθ2
T)ρ1

−TA1         
= (ρ̃1

T)−1a̅1B̅1                                 (from(iii)) 

     = τ̃1.                            
 
From (i), (ii), and (iv) we have  
 

(ρ̅kak + θ̅k+1ak+1ck)c
(k−1) = (ρ̅kρk

−TAkdk−1
T −

θ̅k+1ρk+1
−T θk+1

T ρk
−TAkdk−1

T )c(k−1)    

= (ρ̅k − θ̅k+1ρk+1
−T θk+1

T )ρk
−TAkdk−1

T c(k−1) 

= a̅kd̅k−1Akdk−1
T c(k−1) 

= (−1)k−1a̅kd̅k−1Akdk−1
T (dk−1

−T Ak
−1θk

Tρk−1
−T Ak−1dk−2

T ) 

    … (d1
−TA2

−1θ2
Tρ1

−TA1) 

= (−1)k−1a̅k(d̅k−1θk
Tρk−1

−T d̅k−2
−1 )(d̅k−2θk−1

T ρk−2
−T d̅k−3

−1 ) 

    … (d̅1θ2
Tρ1

−T)A1 

= a̅kc̅
(k−1)A1.                                                    (A.7)  

 

Suppose τ̃k−1 = β̃k−1. Applying this induction 

hypothesis on τ̃k = (ρ̃k
T)−1(a̅kc̅

(k−1)B̅1 − θ̃k
Tτ̃k−1) 

gives  
 

τ̃k = (ρ̃k
T)−1(a̅kc̅

(k−1)B1 − θ̃k
Tβ̃k−1) 

     = (ρ̃k
T)−1(a̅kc̅

(k−1)B1 − θ̃k
T(ãk−1β̇k−1 

       +b̃k−1akc
(k−1)B1))                            (from(A. 6)) 

= (ρ̃k
T)−1a̅kc̅

(k−1)B1 − (ρ̃k
T)−1ρ̅kb̃k−1

T (ãk−1β̇k−1 

       +b̃k−1akc
(k−1)B1)                                (from(vii)) 

   = (ρ̃k
T)−1a̅kc̅

(k−1)B1 

      +(ρ̃k
T)−1ρ̅k(d̃k−1

T c̃k−1β̇k−1 + (d̃k−1
T d̃k−1 

     −I)akc
(k−1)B1)                      (from(viii)and(ix)) 

    = (ρ̃k
T)−1a̅kc̅

(k−1)B1 + ãkc̃k−1β̇k−1 

      +ãkd̃k−1akc
(k−1)B1 

      −(ρ̃k
T)−1ρ̅kakc

(k−1)B1                            (from(v)) 

    = ãkβ̇k + (ρ̃k
T)−1(a̅kc̅

(k−1)B1 

      −ρ̅kakc
(k−1)B1)                                    (from(A. 5)) 

    = ãkβ̇k 

      +(ρ̃k
T)−1(θ̅k+1ak+1ckc

(k−1))             (from(A. 7)) 

    = ãkβ̇k + b̃kak+1c
(k)B1                          (from(vi)) 

    = β̃k. 
 

Therefore by induction, we know that τ̃i = β̃i for 

i = 1,2, … k − 1. From (24), we see that at iteration 

k, the first k − 1 blocks of B̃k and F̃k are equal.  
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