
IJST (2015) 39A1: 69-78

Iranian Journal of Science & Technology

http://ijsts.shirazu.ac.ir

The block LSMR method: a novel efficient algorithm for solving

non-symmetric linear systems with multiple right-hand sides

F. Toutounian
1, 2

, M. Mojarrab
1, 3

*

1Department of Applied Mathematics, School of Mathematical Sciences, Ferdowsi University of Mashhad, Iran
2The Center of Excellence on Modeling and Control Systems, Ferdowsi University of Mashhad, Iran

3Department of Mathematics, University of Sistan and Bluchestan, Zahedan, Iran

E-mail: Maryam.Modjarrab@gmail.com

Abstract

It is well known that if the coefficient matrix in a linear system is large and sparse or sometimes not readily

available, then iterative solvers may become the only choice. The block solvers are an attractive class of iterative

solvers for solving linear systems with multiple right-hand sides. In general, the block solvers are more suitable

for dense systems with preconditioner. In this paper, we present a novel block LSMR (least squares minimal

residual) algorithm for solving non-symmetric linear systems with multiple right-hand sides. This algorithm is

based on the block bidiagonalization and LSMR algorithm and derived by minimizing the 2-norm of each column

of normal equation. Then, we give some properties of the new algorithm. In addition, the convergence of the

stated algorithm is studied. In practice, we also observe that the Frobenius norm of residual matrix decreases

monotonically. Finally, some numerical examples are presented to show the efficiency of the new method in

comparison with the traditional LSMR method.

Keywords: LSMR method; bidiagonalization; block methods; iterative methods; multiple right-hand sides

1. Introduction

Many applications require the solution of several

sparse systems of equations

Ax(i) = b(i), i = 1,2, … , s, (1)

with the same coefficient matrix and different right-

hand sides. When all the b(i)’s are available

simultaneously, Eq. (1) can be written as

AX = B, (2)

where A is an n × n nonsingular and nonsymmetric

real matrix, B and X are n × s rectangular matrices

whose columns are b(1), b(2), … , b(s) and

x(1), x(2), … , x(s), respectively. In practice, s is of

moderate size s ≪ n. Instead of applying an

iterative method to each linear system, it is more

efficient to use a method for all the systems

simultaneously. In the last years, generalizations of

the classical Krylov subspace methods have been

developed.

One class of solvers for solving the problem (2) is

the block solvers which are much more efficient

when the matrix A is relatively dense and

preconditioners are used. The first block solvers are

*Corresponding author
Received: 28 December 2013 / Accepted: 8 October 2014

block conjugate gradient (Bl-CG) algorithm and

block biconjugate gradient (Bl-BCG) algorithm

proposed in (Oleary, 1980). Variable Bl-CG

algorithms for symmetric positive definite problems

are implemented on parallel computers (Haase and

Reitzinger, 2005; Nikishin and Yeremin, 1995). If

the matrix is only symmetric, an adaptive block

Lanczos algorithm and a block version of Minres

method are devised in (Dai, 2000). For

nonsymmetric problems, the Bl-BCG algorithm

(Oleary, 1980; Simoncini, 1997), the block

generalized minimal residual (Bl-GMRES)

algorithm (Darnel et al., 2008; Gu and Cao, 2001;

Gutknecht, 2007; Liu and Zhong, 2008; Morgan,

2005; Robbe and Sadkane, 2006; Simoncini and

Gallopoulos, 1995; Simoncini and Gallopoulos,

1996; Vital, 1990), the block quasi minimum

residual (Bl-QMR) algorithm (Freund and

Malhotra, 1997), the block BiCGStab (Bl-

BICGSTAB) algorithm (Guennouni et al., 2003),

the block Lanczos method (Guennouni et al., 2004)

and the block least squares (Bl-LSQR) algorithm

(Karimi and Toutounian, 2006) have been

developed.
Another class is the global methods, which are

based on the use of a global projection process onto

a matrix Krylov subspace, including global FOM

and GMRES methods (Bellalij et al., 2008; Jbilou

et al., 1999), global conjugate gradient type

http://ijsts.shirazu.ac.ir/
mailto:Maryam.Modjarrab@gmail.com

IJST (2015) 39A1: 69-78 70

methods (Salkuyeh, 2006), global BCG and

BiCGStab methods (Jbilou et al., 1997; Jbilou et al.,

2005), global CGS algorithm (Zhang and Dai,

2008; Zhang et al., 2010), Gl-LSQR algorithm

(Toutounian and Karimi, 2006), Gl-BCR and Gl-

CRS algorithms (Zhang et al., 2011), global

Hessenberg and CMRH methods (Heyouni,

2001;Lin, 2005), global SCD algorithm (Gu and

Yang, 2007), and weighted global methods

(Heyouni and Essai, 2005). Global methods are

more suitable for sparse linear systems (Heyouni

and Essai, 2005).

The other class is the seed methods, which consist

of selecting a single system as the seed system and

generating the corresponding Krylov subspace and

then projecting all the residuals of the other linear

systems onto the same Krylov subspace to find new

approximate solutions as initial approximations.

References on this class include (Abdel-Rehim et

al., 2008; Chan and Wang, 1997; Joly, 1991; Saad,

1987; Simoncini and Gallopoulos, 1995; Smith et

al., 1989; Van Der Vorst, 1987).

In this paper, based on the block

bidiagonalization, we derive a simple recurrence

formula for generating a sequence of

approximations {Xk} such that the ∥ colj(A
TRk) ∥2

decreases monotonically, where Rk = B − AXk and

colj(A
TRk) represents the jth column of ATRk.

Throughout this paper, the following notations

are used. For two n × s matrices X and Y, we define

the following inner product: 〈X, Y〉 = tr(XTY),

where tr(Z) denoted the trace of the square matrix

Z. The associated norm is the Frobenius norm

denoted by ∥⋅∥F. We will use the notation 〈⋅〉2 for

the usual inner product in ℝn and the associated

norm denoted by ∥⋅∥2. Finally, 0s and Is will denote

the zero and the identity matrices in ℝs×s.

The outline of this paper is as follows. In Section

2, we give a quick overview of LSMR method and

its properties. In Section 3, we present the block

version of the LSMR algorithm. In Section 4, the

convergence of the presented algorithm is

considered. In Section 5, some numerical

experiments on test matrices from the University of

Florida Sparse Matrix Collection (Davis, 2011) are

presented to show the efficiency of the method.

Finally, we make some concluding remarks in

Section 6.

2. The LSMR algorithm

In this section, we recall some fundamental

properties of LSMR algorithm (Chin-Lung Fong

and Saunders, 2011), which is an iterative method

for solving real linear systems of the form Ax = b,
where A is a nonsymmetric matrix of order n and

x, b ∈ ℝn.

LSMR algorithm uses an algorithm of Golub and

Kahan (Gloub and Kahan, 1965), which is stated as

procedure Bidiag 1 in (Paige and Saunders, 1982),

to reduce (b A)to the upper-diagonal

form (β1e1 Bk). The procedure Bidiag 1 can be

described as follows.

Bidiag 1. (Starting vector b; reduction to lower

bidiagonal form)

 β1u1 = b, α1v1 = ATu1,
βi+1ui+1 = Avi − αiui,

αi+1vi+1 = ATui+1 − βi+1vi,
}i = 1,2, …. (3)

The scalars αi ≥ 0 and βi ≥ 0 are chosen so that

∥ ui ∥2=∥ vi ∥2= 1. With the definition

Uk ≡ [u1, u2, … , uk],
Vk ≡ [v1, v2, … , vk],

Bk ≡

[

α1

β2 α2

⋱ ⋱
βk αk

βk+1]

,

Lk+1 = (Bkαk+1ek+1), Vk+1 = (Vk vk+1),

the recurrence relations (3) may be rewritten as

Uk+1(β1e1) = b,
AVk = Uk+1Bk,
ATUk+1 = VkBk

T + αk+1vk+1ek+1
T = Vk+1Lk+1

T .

ATAVk = ATUk+1Bk = Vk+1Lk+1
T Bk

= Vk+1 (
Bk

T

αk+1ek+1
T)Bk

= Vk+1 (
Bk

TBk

αk+1βk+1ek
T).

This is equivalent to what would be generated by

the symmetric Lanczos process with matrix ATA

and starting vector ATb.

Hence, by using the procedure Bidiag 1 the

LSMR method constructs an approximation

solution of the form xk = Vkyk which solves the

least-squares problem, minyk
∥ ATrk ∥ . The main

steps of the LSMR algorithm can be summarized as

follows.

Algorithm 1 LSMR algorithm

Set β1u1 = b, α1v1 = ATu1, α1 = α1, ζ1 = α1β1,

ρ0 = 1, ρ
0

= 1, c0 = 1, s0 = 0, h1 = v1, h0 = 0,

x0 = 0

For k = 1,2, …, until convergence Do:

 βk+1uk+1 = Avk − αkuk

 αk+1vk+1 = ATuk+1 − βk+1vk

 ρk = (αk
2
+ βk+1

2)
1

2

71 IJST (2015) 39A1: 69-78

 ck =
αk

ρk

 sk =
βk+1

ρk

 θk+1 = skαk+1

 αk+1 = ckαk+1

 θk = sk−1ρk

 ρ
k

= ((ck−1ρk)
2 + θk+1

2)
1

2

 ck =
ck−1ρk

ρ
k

 sk =
θk+1

ρ
k

 ζk = ckζk

 ζ
k+1

= −skζk

 hk = hk − (
θkρk

(ρk−1ρk−1
)
) hk−1

 xk = xk−1 + (
ζk

(ρkρk
)
) hk

 hk+1 = vk+1 − (
θk+1

ρk

) hk.

If |ζ
k+1

| is small enough then stop

End Do.

More details about the LSMR algorithm can be

found in (Chin-Lung Fong and Saunders, 2011).

3. The block LSMR method

In this section, we propose a new method for

solving the linear equation (2). This method is

based on the LSMR method. We use the block

Bidiag 1 (Karimi and Toutounian, 2006), based on

Bidiag 1, for reducing A to the block lower

bidiagonal form.

The block Bidiag 1 procedure constructs the sets

of the n × n block vectors V1, V2, … and

U1, U2, such that Vi
TVj = 0s, Ui

TUj = 0s, for i ≠ j,

and Vi
TVi = Is, Ui

TUi = Is; and they form the

orthonormal basis of ℝn×ks.

Block Bidiag 1. (Starting matrix B; reduction to

block lower bidiagonal form).

U1B1 = B, V1A1 = ATU1,
Ui+1Bi+1 = AVi − UiAi

T,

Vi+1Ai+1 = ATUi+1 − ViBi+1
T ,

}i = 1,2, … , k, (4)

where Ui, Vi ∈ ℝn×s; Bi, Ai ∈ ℝs×s, and

U1B1, V1A1, Ui+1Bi+1, Vi+1Ai+1 are the QR

decompositions of the matrices B, ATU1, AVi −

UiAi
T, ATUi+1 − ViBi+1

T , respectively. With the

definitions

Uk ≡ [U1, U2, … , Uk],

Vk ≡ [V1, V2, … , Vk],

Tk ≡

[

A1

T

B2 A2
T

⋱ ⋱
Bk Ak

T

Bk+1]

,

the recurrence relations (4) may be rewritten as:

Uk+1E1B1 = B,

AVk = Uk+1Tk ,

ATUk+1 = VkTk
T + Vk+1Ak+1Ek+1

T ,

where Ei is the (k + 1)s × s matrix which is zero

except for the ith s rows, which are the s × s

identity matrix. We also have Vk

T
Vk = Iks and

Uk+1

T
Uk+1 = I(k+1)s, where Il is the l × l identity

matrix. We define

Lk+1 ≡ [Tk Ek+1Ak+1
T],

then

ATUk+1 = Vk+1Lk+1

T
,

ATAVk = ATUk+1Tk = Vk+1Lk+1

T
Tk =

Vk+1 [
Tk

T

Ak+1Ek+1
T] Tk

= Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

]. (5)

At iteration k we seek an approximate solutionXk

of the form

Xk = VkYk, (6)

where Yk is an ks × s matrix. Let Bk ≡ AkBk for all

k. Since

ATRk = ATB − ATAXk

= V1A1B1 − ATAVkYk,

we have

ATRk = V1B1 − Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

] Yk =

Vk+1(E1B1 − [
Tk

TTk

Bk+1Ek

T] Yk) (7)

where Ek is the ks × s matrix, which is zero except

for kth s rows, which are the s × s identity matrix.

Now, we use the QR decomposition (Golub and

Van Loan, 1983), where a unitary matrix Qk+1 is

determined so that

IJST (2015) 39A1: 69-78 72

Qk+1Tk = [Rk

0
] , Rk =

[

ρ1 θ2

ρ2 θ3

⋱ ⋱
ρk−1 θk

ρk]

 (8)

where ρl and θl are the s × s matrices. As (Karimi

and Toutounian, 2006), the matrix Qk+1 is updated

from the previous iteration by setting

Qk+1 = [
I(k−1)s 0

0 Q(ak, bk, ck, dk)
] [

Qk 0
0 Is

],

where

Q(ak, bk, ck, dk) = [
ak bk

ck dk
]

is an 2s × 2s unitary matrix written as four s × s

blocks. The unitary matrix Q(ak, bk, ck, dk) is

computed such that

Q(ak, bk, ck, dk) [
ρ̂̂k 0

Bk+1 Ak+1
T] = [

ρk θk+1

0 ρ̂̂k+1

]. (9)

From (7), we have

ATRk = Vk+1 (E1B1 − [
Tk

TTk

Bk+1Ek

T] Yk)

= Vk+1(E1B1 − [
Rk

T
Rk

Bk+1Ek

T] Yk) (10)

If we define Fk ≡ RkYk, we have

ATRk = Vk+1(E1B1 − [
Rk

T

Bk+1Ek

T
Rk

−1] Fk) =

Vk+1(E1B1 − [
Rk

T

Ak+1Bk+1ρk
−1Ek

T] Fk). (11)

On the other hand, from (9), we have θk+1 =

bkAk+1
T and

[
ρ̂̂k 0

Bk+1 Ak+1
T] = QT(ak, bk, ck, dk) [

ρk θk+1

0 ρ̂̂k+1

].

This implies that Bk+1 = bk
Tρk. So,

θk+1 = ρk
−TBk+1

T Ak+1
T (12)

and

ATRk = Vk+1(E1B1 − [
Rk

T

θk+1
T Ek

T] Fk). (13)

Then we perform a second QR factorization

Qk+1 [
Rk

T
E1B1

θk+1
T Ek

T
0

] = [
Rk zk

0 ζ
k+1

],

Rk =

[

 ρ1

θ2

ρ
2

θ3

⋱ ⋱

ρ
k−1

θk

ρ
k]

 (14)

where ρ
l
 and θl are the s × s matrices. The matrix

Qk+1 is updated from the previous iteration by

setting

Qk+1 = [
I(k−1)s 0

0 Q(ak, bk, ck, dk)
] [

Qk 0

0 Is
] (15)

where

Q(ak, bk, ck, dk) = [
ak bk

ck dk

]

is a 2s × 2s unitary matrix written as four s × s

blocks. The unitary matrix Q(ak, bk, ck, dk) is

computed such that

Q(ak, bk, ck, dk) [
ρ̃

k
0

θk+1
T ρk+1

T
] = [

ρ
k

θk+1

0 ρ̃
k+1

].

Combining what we have with (13) gives

ATRk = Vk+1Qk+1

T
([

zk

ζ
k+1

] − [Rk

0
] Fk). (16)

In the block LSMR algorithm we would like to

choose Yk ∈ ℝks×s and correspondingly Fk = RkYk

such that ‖colj(A
TRk)‖2

 is a minimum independent

for j = 1,2, … , s. Since Qk+1 is a unitary matrix and

Vk+1 is orthonormal, we get

min
Yk

‖colj(A
TRk)‖

= min
Fk

‖colj([
zk

ζ
k+1

] − [Rk

0
] Fk)‖. (17)

The subproblem is solved by choosing Fk from

RkFk = zk. Therefore,

ATRk = Vk+1Qk+1

T
[
0

ζ
k+1

], (18)

and the approximate solution is given by

Xk = VkRk

−1
Rk

−1

zk.

Letting

Pk ≡ VkRk

−1
Rk

−1

≡ [P1 P2 … Pk],

then

73 IJST (2015) 39A1: 69-78

Xk = Pkzk.

The n × s matrix Pk, the last block column of Pk,

can be computed from the previous Pk−1, Pk−2 and

Vk, by the update

Pk = (Vk − Pk−2θk−1θk

−Pk−1(ρk−1
θk + θkρk))(ρk

ρk)
−1. (19)

Also note that,

zk = [
zk−1

ζk
]

in which

ζk = akζk
.

Thus, Xk can be updated at each step, via the

relation

Xk = Xk−1 + Pkζk. (20)

The equation RESk = maxj‖colj(A
TRk)‖2

 is

computed directly from the quantity ζ
k+1

 as

RESk = max
j

‖colj(ζk+1
)‖

2
 .

From (20), the residual Rk is given by

Rk = Rk−1 − APkζk, (21)

where APk can be computed from the previous

APk’s and AVk by the simple update

APk = (AVk − APk−2θk−1θk − APk−1(ρk−1
θk +

θkρk))(ρk
ρk)

−1.

In addition, we show that the ∥ colj(Rk) ∥2 can be

estimated by a simple formula. We transform Rk

T

 to

block upper-bidiagonal form using a third QR

factorization: R̃k = Q̃kRk

T

 with Q̃k = P̃k−1 … P̃1. By

defining

F̃k = Q̃kFk, B̃k = [
Q̃k

Is
] Qk+1E1B1, (22)

we have

Rk = B − AXk

 = U1B1 − AVkYk

 = Uk+1(E1B1 − TkYk)

 = Uk+1 (E1B1 − Qk+1
T [

Rk

0s

] Yk)

 = Uk+1 (E1B1 − Qk+1
T [

Fk

0s
])

 = Uk+1 (Qk+1
T [

Q̃k
T

Is
] B̃k − Qk+1

T [
Q̃k

TF̃k

0s
])

 = Uk+1Qk+1
T [

Q̃k
T

Is
] (B̃k − [

F̃k

0s
]).

Since the columns of the matrices Qk+1, Q̃k+1,

and Uk+1 are orthonormal, we have

∥ colj(Rk) ∥2=∥ (B̃k − [
F̃k

0s
]) ej ∥2. (23)

The matrices B̃k and F̃k can be written in the form

B̃k = [β̃1

T β̃k−1
T β̇k

Tβ̈k+1
T]T, F̃k = [τ̃1

T … τ̃k−1
T τ̇k

T]T (24)

The following Lemma shows that we can

estimate ∥ colj(Rk) ∥2 from just the last two blocks

of B̃k and the last block of F̃k.

Lemma 1. In (23) and (24), β̃i = τ̃i for i =
1,2, … , k − 1.

Proof: Appendix A proves the lemma by induction.

The main steps of Bl-LSMR algorithm can be

summarized as follows.

Algorithm 2 Bl-LSMR algorithm

Set X0 = 0, ρ0 = Is, ρ
0

= Is, d0 = Is, d0 = Is,

θ0 = 0, θ1 = 0, θ1 = 0

U1B1 = B, V1A1 = ATU1, (QR decomposition of B

and ATU1)

Set B1 = A1B1, ρ̂̂1 = A1
T, ζ

1
= B1, P−1 = P0 = 0n×s

For i = 1,2, … until convergence, do:

Wi = AVi − UiAi
T

 Ui+1Bi+1 = Wi, (QR decomposition of Wi)

Si = ATUi+1 − ViBi+1
T

Vi+1Ai+1 = Si, (QR decomposition of Si)

Compute a unitary matrix Q(ai, bi, ci, di) such that

Q(ai, bi, ci, di) [
ρ̂̂i

Bi+1
] = [

ρi

0
]

θi+1 = biAi+1
T

ρ̂̂i+1 = diAi+1
T

ρ̃
i
= di−1ρi

T

Compute a unitary matrix Q(ai, bi, ci, di) such

that

Q(ai, bi, ci, di) [
ρ̃

i

θi+1
T

] = [
ρ

i

0
]

θi+1 = biρi+1
T

ζi = aiζi

ζ
i+1

= ciζi

 Pi = (Vi − Pi−2θi−1θi − Pi−1(ρi−1
θi + θiρi)) ρi

−1ρ
i

−1

IJST (2015) 39A1: 69-78 74

Xi = Xi−1 + Piζi

If max ∥ colj(ζi+1
) ∥2 is small enough then stop

End Do.

The algorithm is a generalization of the LSMR

algorithm. It reduces to the classical LSMR when

s = 1. The Bl-LSMR algorithm will breakdown at

step i, if ρ
i
 or ρi are singular. This happens when

the matrix [
ρ̂̂i

Bi+1
] or matrix [

ρ̃
i

θi+1
T

] is not full rank.

So the Bl-LSMR algorithm will not breakdown at

step i, if Bi+1 and θi+1 are nonsingular. We will not

treat the problem of breakdown in this paper and

we assume that the matrices Bi’s and θi+1’s

produced by the Bl-LSMR algorithm are

nonsingular.

4. The convergence of the Bl-LSMR algorithm

In this section, the convergence of the Bl-LSMR

algorithm is studied. In order to get this goal, we

first give the following lemma.

Lemma 2. Let Pi, i = 1,2, … , k, be the n × s

auxiliary matrices produced by the Bl-LSMR

algorithm and Rk be the residual matrix associated

with the approximate solution Xk of the matrix

equation (2). Then, we have

(a) Pi
TATAATAPj = {

Is, i = j
0s, i ≠ j

(b) (ATRk−1)
TATAPk = ζk

T

Proof: (a) It is enough to show that

Pk

T
ATAATAPk = Iks,

where Iks is a ks × ks identity matrix and Pk =
[P1, P2, … , Pk] is an n × ks matrix whose columns

are defined by (19). By using Pk = VkRk

−1
Rk

−1

 and

equation (5), we have

ATAPk = ATAVkRk

−1
Rk

−1

= Vk+1 [
Tk

TTk

Ak+1Ek+1
T Tk

] Rk

−1
Rk

−1

= Vk+1 [
Rk

T
Rk

Bk+1Ek

T
] Rk

−1
Rk

−1

 (from(8))

= Vk+1 [
Rk

T

Ak+1Bk+1ρk
−1Ek

T] Rk

−1

 (from(8))

= Vk+1 [
Rk

T

θk+1
T Ek

T] Rk

−1

 (from(12))

= Vk+1Qk+1

T
[Rk

0
] Rk

−1

 (from(14))

= Vk+1Qk+1

T
[
Iks

0
]. (25)

Since Vk+1 is orthonormal and Qk+1 is a unitary

matrix, we get

Pk

T
ATAATAPk = Iks.

(b) From (18), (25), and (15), we have

(ATRk−1)
TATAPk = (VkQk

T
[
0

ζ
k

])TVk+1Qk+1

T
[
Iks

0
] Ek

= [0 ζ
k

T
] QkVk

T
[Vk Vk+1] [

Qk

T
0

0 Is
] [

I(k−1)s 0

0 QT(ak, bk, ck, dk)
] [

0(k−1)s

Is
0s

]

= [0 ζ
k

T
] [Iks 0s] [

0(k−1)s

ak
T

bk

T

] = ζ
k

T
ak

T
= ζk

T.

Theorem 3. Let Xk be the approximate solution of

(2), obtained from the Bl-LSMR algorithm. Then

∥ ATRk ∥F≤∥ ATRk−1 ∥F,
where Rk = B − AXk.

Proof: We have

(ATRk)
T(ATRk) =

(ATRk−1 − ATAPkζk)
T(ATRk−1 − ATAPkζk)

= (ATRk−1)
T(ATRk−1) − 2(ATRk−1)

TATAPkζk

+ζk
TPk

TATAATAPkζk.

By using Lemma 2, we get

(ATRk)
T(ATRk) = (ATRk−1)

T(ATRk−1) − ζk
Tζk.

Thus

trace((ATRk)
T(ATRk))

= trace((ATRk−1)
T(ATRk−1)) − trace(ζk

Tζk),
∥ ATRk ∥F

2=∥ ATRk−1 ∥F
2 −∥ ζk ∥F

2,
∥ ATRk ∥F≤∥ ATRk−1 ∥F.

5. Numerical examples

In this section, we give some experimental results.

75 IJST (2015) 39A1: 69-78

Our examples have been coded in Matlab with

double precision. For all the experiments, the initial

guess was X0 = 0 and B = rand(n, s), where

function rand creates an n × s random matrix with

coefficients uniformly distributed in [0,1]. No

preconditioning has been used in any of the test

problems. All the tests were stopped as soon as,

∥ ATRk ∥F=∥ ζ
k+1

∥F≤ 10−10.

We use some matrices from the University of

Florida Sparse Matrix Collection (Davis [7]). These

matrices with their properties are shown in Table 1.

In Table 2, for s = 10,20,30, and 40, we give the

ratio t(s)/t(1), where t(s) is the CPU time for Bl-

LSMR algorithm and t(1) is the CPU time obtained

when applying LSMR for one right-hand side linear

system. Note that the time obtained by LSMR for

one right-hand side depends on which right-hand

was used. So, in our experiments, t(1) is the

average of the times needed for the s right-hand

sides using LSMR. We note that Bl-LSMR is

effective if the indicator t(s)/t(1) is less than s.

Table 2 shows that the Bl-LSMR algorithm is

effective and less expensive than the LSMR

algorithm applied to each right-hand side. To show

that the Frobenius norm of residual matrix

decreases monotonically, we display the

convergence history in Fig. 1 for the systems

corresponding to the matrices of Table 2 and Bl-

LSMR algorithm, respectively. In this figure, the

vertical axis and horizontal axis are the logarithm of

the Frobenius norm of residual matrix and the

number of iterations to convergence, respectively.

We observe that for all matrices the Frobenius norm

of residual matrix decreases monotonically.

Table 1. Test problems information

Matrix\

Property

Order Sym nnz id

Rajat/
rajat03

7602 no 32653 1187

HB/

sherman4

1104 no 3786 245

FEMLAB/

ns3Da

20414 no 1659799 925

Simon/ appu 14000 no 1853104 811
Bai/ pde2961 2961 no 14585 324

Table 2. Effectiveness of BL-LSMR

algorithm measured by t(s)/t(1)

Matrix\S 10 20 30 40

Rajat03 1.98 6.31 3.54 18.98

Sherman4 0.15 0.16 0.18 0.45
Ns3Da 2.15 4.50 7.00 10.25

appu 0.93 5.96 0.98 15.10

Pde2961 0.70 1.04 0.81 0.87

6. Conclusion

We have proposed in this paper a new block LSMR

algorithm for solving nonsymmetric linear systems

with multiple right-hand sides. To define this new

algorithm, we used the block Bidiag 1 procedure

(Karimi and Toutounian, 2006) and derived a

simple recurrence formulas for generating the

sequences of approximations {Xk} such that

‖colj(A
TRk)‖2

 decreases monotonically. In practice

we also observed that the Frobenius norm of

residual matrix decreased monotonically.

Experimental results showed that the proposed

methods are effective and less expensive than the

LSMR algorithm applied to each right-hand side.

Fig. 1. Convergence history of the Bl-LSMR algorithm

with s=10

Appendix A. Proof of Lemma 1.

Let Qk = P̂kP̂k−1 … P̂1, Qk = PkPk−1 …P1, and

R̃k =

[

ρ̃1 θ̃2

⋱ ⋱
ρ̃k−1 θ̃k

ρ̇k]

 (26)

Then, with β̈1 = B1, ρ̃̅=ρ1
T, ρ̇1 = ρ̅1

T, β̇1 = β̂1,

ρ̂̂1 = A1
T, the effects of the rotations P̂k, Pk and P̃k−1

can be summarized as

[
ak bk

ck dk
] [

ρ̂̂k 0 β̈k

Bk+1 Ak+1
T 0

]

= [
ρk θk+1 β̂k

0 ρ̂̂k+1 β̈k+1

], (27)

[
a̅k b̅k

c̅k d̅k

] [
ρ̃̅k 0

θk+1
T ρk+1

T] = [
ρ̅k θ̅k+1

0 ρ̃̅k+1

], (28)

[
ãk−1 b̃k−1

c̃k−1 d̃k−1

] [
ρ̇k−1 0 β̇k−1

θ̅k
T ρ̅k

T β̂k

] =

[
ρ̃k−1 θ̃k β̃k−1

0 ρ̇k β̇k

], (29)

where ak, bk, ck, dk, a̅k, b̅k, c̅k and d̅k are defined in

section 3. From (27), (28), and (29), with d0 = I we

have

IJST (2015) 39A1: 69-78 76

(i) ak = ρk
−Tρ̂̂k

T = ρk
−TAkdk−1

T ,

(ii) ck = −ρ̂̂k+1
−T θk+1

T ak

 = −dk
−TAk+1

−1 θk+1
T ρk

−TAkdk−1
T ,

(iii) a̅k = (ρ
k
− bkθk+1

T)ρ̃
k

−1

 = (ρ̅k − θ̅k+1ρk+1
−T θk+1

T)ρk
−Td̅k−1

−1 ,

(iv) c̅k = −dkθk+1
T ρ̃

k

−1
= −d̅kθk+1

T ρk
−Td̅k−1

−1 ,

(v) ãk = (ρ̃k)
−Tρ̇k

T = (ρ̃k)
−Tρ̅kd̃k−1

T ,

(vi) b̃k = (ρ̃k)
−Tθ̅k+1,

(vii) θ̃k = b̃k−1ρ̅k
T

(viii) b̃k
Tãk = −d̃k

Tc̃k

(ix) b̃k
Tb̃k = I − d̃k

Td̃k

From the definitions of Fk, F̃k, R̃k, and zk, we

have

R̃k
TF̃k = RkFk = zk = [Iks0ks,s]Qk+1E1B1. (30)

So, the matrix F̃k can be computed by the block

forward substitution from R̃k
TF̃k = [Iks0ks,s]Qk+1

E1B1.

By defining c(k) = ckck−1 …c2c1 and c
(k)

=
ckck−1 …c2c1 and expanding (30) and (16), we have

R̃k
TF̃k =

[

a1

a2c1

⋮

akc
(k−1)

]

B1,

B̃k = [
Q̃k

Is
]

[

a1

a2c1

⋮
akc

(k−1)

c(k)]

B1.

These imply that

τ̃1 = (ρ̃1
T)−1a1B1 (A.1)

τ̃k−1 = (ρ̃k−1
T)−1(ak−1c

(k−2)
B1 − θ̃k−1

T τ̃k−2) (A.2)

τ̇k = (ρ̇k
T)−1(akc

(k−1)
B1 − θ̃k

Tτ̃k−1) (A.3)

β̇1 = β̂1 = a1B1 (A.4)

β̇k = c̃k−1β̇k−1 + d̃k−1akc
(k−1)B1 (A.5)

β̃k = ãkβ̇k + b̃kak+1c
(k)B1 (A.6)

Now, by induction, we show that τ̃i = β̃i for all i.
When i = 1, (A.6) and (A.4) give

β̃1 = (ã1a1 + b̃1a2c1)B1

 = (ρ̃1
T)−1(ρ̅1a1 + θ̅2a2c1)B1 (from(v)and(vi))

 = (ρ̃1
T)−1(ρ̅1ρ1

−TA1

 −θ̅2ρ2
−Tθ2

Tρ1
−TA1)B1 (from(i)and(ii))

= (ρ̃1
T)−1(ρ̅1 − θ̅2ρ2

−Tθ2
T)ρ1

−TA1
= (ρ̃1

T)−1a̅1B̅1 (from(iii))

 = τ̃1.

From (i), (ii), and (iv) we have

(ρ̅kak + θ̅k+1ak+1ck)c
(k−1) = (ρ̅kρk

−TAkdk−1
T −

θ̅k+1ρk+1
−T θk+1

T ρk
−TAkdk−1

T)c(k−1)

= (ρ̅k − θ̅k+1ρk+1
−T θk+1

T)ρk
−TAkdk−1

T c(k−1)

= a̅kd̅k−1Akdk−1
T c(k−1)

= (−1)k−1a̅kd̅k−1Akdk−1
T (dk−1

−T Ak
−1θk

Tρk−1
−T Ak−1dk−2

T)

 … (d1
−TA2

−1θ2
Tρ1

−TA1)

= (−1)k−1a̅k(d̅k−1θk
Tρk−1

−T d̅k−2
−1)(d̅k−2θk−1

T ρk−2
−T d̅k−3

−1)

 … (d̅1θ2
Tρ1

−T)A1

= a̅kc̅
(k−1)A1. (A.7)

Suppose τ̃k−1 = β̃k−1. Applying this induction

hypothesis on τ̃k = (ρ̃k
T)−1(a̅kc̅

(k−1)B̅1 − θ̃k
Tτ̃k−1)

gives

τ̃k = (ρ̃k
T)−1(a̅kc̅

(k−1)B1 − θ̃k
Tβ̃k−1)

 = (ρ̃k
T)−1(a̅kc̅

(k−1)B1 − θ̃k
T(ãk−1β̇k−1

 +b̃k−1akc
(k−1)B1)) (from(A. 6))

= (ρ̃k
T)−1a̅kc̅

(k−1)B1 − (ρ̃k
T)−1ρ̅kb̃k−1

T (ãk−1β̇k−1

 +b̃k−1akc
(k−1)B1) (from(vii))

 = (ρ̃k
T)−1a̅kc̅

(k−1)B1

 +(ρ̃k
T)−1ρ̅k(d̃k−1

T c̃k−1β̇k−1 + (d̃k−1
T d̃k−1

 −I)akc
(k−1)B1) (from(viii)and(ix))

 = (ρ̃k
T)−1a̅kc̅

(k−1)B1 + ãkc̃k−1β̇k−1

 +ãkd̃k−1akc
(k−1)B1

 −(ρ̃k
T)−1ρ̅kakc

(k−1)B1 (from(v))

 = ãkβ̇k + (ρ̃k
T)−1(a̅kc̅

(k−1)B1

 −ρ̅kakc
(k−1)B1) (from(A. 5))

 = ãkβ̇k

 +(ρ̃k
T)−1(θ̅k+1ak+1ckc

(k−1)) (from(A. 7))

 = ãkβ̇k + b̃kak+1c
(k)B1 (from(vi))

 = β̃k.

Therefore by induction, we know that τ̃i = β̃i for

i = 1,2, … k − 1. From (24), we see that at iteration

k, the first k − 1 blocks of B̃k and F̃k are equal.

References

Abdel-Rehim, A. M., Morgan, R. B., & Wilcox, W.

(2008). Improved seed methods for symmetric positive

definite linear equations with multiple right-hand sides.

http://arxiv.org/abs/0810.0330 {math-ph}.

Bellalij, M., Jbilou, K., & Sadok, H. (2008). New

convergence results on the global GMRES method for

diagonalizable matrices. Journal of Computational and

Applied Mathematics, 219, 350–358.

Chan, T. F., & Wang, W. (1997). Analysis of projection

methods for solving linear systems with multiple right-

hand sides. SIAM Journal on Scientific Computing, 18,

1698–1721.

Chin-Lung Fong, D., & Saunders, M. (2011). LSMR: An

iterative algorithm for sparse least-squares problems.

SIAM Journal on Scientific Computing, 33, 2950–

2971.

Dai, H. (2000). Two algorithms for symmetric linear

systems with multiple right-hand sides. Numerical

Mathematics a Journal of Chinese Universities, 9, 91–

110.

77 IJST (2015) 39A1: 69-78

Darnell, D., Morgan, R. B., & Wilcox, W. (2008).

Deflated GMRES for systems with multiple shifts and

multiple right-hand sides. Linear Algebra and its

Applications, 429, 2415–2434.

Davis, T. A. (2011). University of Florida Sparse Matrix

Collection, http://www.cise.ufl.edu/research/sparse/

matrices.

Freund, R., & Malhotra, M. (1997). A Block-QMR

algorithm for non-hermitian linear systems with

multiple right-hand sides. Linear Algebra and its

Applications, 254, 119–157.

Golub, G. H., & Van Loan, C. F. (1983). Matrix

Computations, Johns Hopkins University Press,

Baltimore, MD.

Golub, G. H., & Kahan, W. (1965). Algorithm LSQR is

based on the Lanczos process and bidiagonalization

procedure. SIAM Journal on Numerical Analysis, 2,

205–224.

Gu, G., & Cao, Z. (2001). A block GMRES method

augmented with eigenvectors. Applied Mathematics

and Computation, 121, 271–289.

Gu, C., & Yang, Z. (2007). Global SCD algorithm for

real positive definite linear systems with multiple

right-hand sides. Applied Mathematics and

Computation,189, 59–67.

Guennouni, A. El., Jbilou, K., & Sadok, H. (2003). A

block version of BICGSTAB for linear systems with

multiple right-hand sides. Electronic Transactions on

Numerical Analysis, 16, 129–142.

Guennouni, A. El., Jbilou, K., & Sadok, H. (2004). The

block Lanczos method for linear systems with multiple

right-hand sides. Applied Numerical Mathematics, 51,

243–256.

Gutknecht, M. H. (2007). Block Krylov space methods for

linear systems with multiple right-hand sides: an

introduction, in: A.H. Siddiqi, I.S. Duff, O. Christensen

(Eds.), Modern Mathematical Models, Methods and

Algorithms for Real Word Systems (pp. 420–447).

Anamaya Publishers, New Delhi, India.

Haase, G., & Reitzinger, S. (2005). Cache issues of

algebraic multigrid methods for linear systems with

multiple right-hand sides. SIAM Journal on Scientific

Computing, 27, 1–18.

Heyouni, M. (2001). The global Hessenberg and global

CMRH methods for linear systems with multiple right-

hand sides. Numerical Algorithms, 26, 317–332.

Heyouni, M., & Essai, A. (2005). Matrix Krylov

subspace methods for linear systems with multiple

right-hand sides. Numerical Algorithms, 40, 137–156.

Jbilou, K., Messaoudi, A., & Sadok, H. (1999). Global

FOM and GMRES algorithms for matrix equations.

Applied Numerical Mathematics, 31, 49–63.

Jbilou, K., & Sadok, H. (1997). Global Lanczos-based

methods with applications. Technical Report LMA 42,

Universiti du Littoral, Calais, France.

Jbilou, K., Sadok, H., & Tinzefte, A. (2005). Oblique

projection methods for linear systems with multiple

right-hand sides. Electronic Transactions on

Numerical Analysis, 20, 119–138.

Joly, P. (1991). Resolution de Systems Lineaires Avec

Plusieurs Second Members par la Methode du

Gradient Conjugue. Tech. Rep. R-91012, Publications

du Laboratire d’Analyse Numerique, Universite Pierre

et Marie Curie, Paris.

Karimi, S., & Toutounian, F. (2006). The block least

squares method for solving nonsymmetric linear

systems with multiple right-hand sides. Applied

Mathematics and Computation, 177, 852–862.

Lin, Y. (2005). Implicitly restarted global FOM and

GMRES for nonsymmetric matrix equations and

Sylvester equations. Applied Mathematics and

Computations, 167, 1004–1025.

Liu, H. -L., & Zhong, B. -J. (2008). Simpler block

GMRES for nonsymmetric systems with multiple

right-hand sides. Electronic Transactions Numerical

Analysis, 30, 1–9.

Morgan, R. B. (2005). Restarted block- GMRES with

deflation of eignvalues. Applied Numerical

Mathematics, 54, 222–236.

Nikishin, A., & Yeremin, A. (1995). Variable block CG

algorithms for solving large sparse symmetric positive

definite linear systems on parallel computers I: general

iterative scheme. SIAM Journal of Matrix Analysis, 16,

1135–1153.

Oleary, D. (1980). The block conjugate gradient

algorithm and related methods. Linear Algebra and its

Applications, 29, 293–322.

Paige, C. C., & Saunders, M. A. (1982). LSQR: an

algorithm for sparse linear equations and sparse least

squares. ACM Transactions on Mathematics Software,

8, 43–71.

Paige, C. C., & Saunders, M. A. (1975). Solution of

sparse indefinite systems of linear equations. SIAM

Journal on Numerical Analysis,12, 617–629.

Robbe, M., & Sadkane, M. (2006). Exact and inexact

breakdowns in the block GMRES method. Linear

Algebra and its Applications, 419, 265–285.

Saad, Y. (1987). On the Lanczos method for solving

symmetric linear systems with several right-hand sides.

Mathematics and Computation, 48, 651–662.

Salkuyeh, D. K. (2006). CG-type algorithms to solve

symmetric matrix equations. Applied Mathematics and

Computations,172, 985–999.

Simoncini, V. (1997). A stabilized QMR version of block

BICG. SIAM Journal on Matrix Analysis and

Applications, 18, 419–434.

Simoncini, V., & Gallopoulos, E. (1995). An iterative

method for nonsymmetric systems with multiple right-

hand sides. SIAM Journal on Scientific Computing,16,

917–933.

Simoncini, V., & Gallopoulos, E. (1996). Convergence

properties of block GMRES and matrix polynomials.

Linear Algebra and its Applications, 247, 97–119.

Smith, C., Peterson ,A., & Mittra, R. (1989). A conjugate

gradient algorithm for treatment of multiple incident

electromagnetic fields. IEEE Transactions Antennas

and Propagation, 37, 1490–1493.

Toutounian, F., & Karimi, S. (2006). Global least squares

method (Gl-LSQR) for solving general linear systems

with several right-hand sides. Applied Mathematics

and Computations, 178, 452–460.

Van Der Vorst, H. (1987). An iterative solution method

for solving f(A) = b, using Krylov subspace

information obtained for the symmetric positive

definite matrix A. Journal of Computational and

Applied Mathematics, 18, 249–263.

Vital, B. (1990). Etude de quelques methodes de

resolution de problemes linears de grande taille sur

IJST (2015) 39A1: 69-78 78

multiprocesseur. Ph.D. Thesis, University de Rennes.

Zhang, J., & Dai, H. (2008). Global CGS algorithm for

linear systems with multiple right-hand sides.

Numerical Mathematics a Journal of Chinese

Universities, 30, 390–399.

Zhang, J., Dai, H., & Zhao, J. (2010). Generalized global

conjugate gradient squared algorithm. Applied

Mathematics and Computation, 216, 3694–3706.

Zhang, J., Dai, H., & Zhao, J. (2011). A new family of

global methods for linear systems with multiple right-

hand sides. Jornal of Computational Applied

Mathematics, 236, 1562–1575.

