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Abstract. A Supervisory Control and Data Acquisition (SCADA) system is an
Industrial Control System (ICS) which controls large scale industrial processes
including several sites over long distances and consists of some Remote Ter-
minal Units (RTUs) and a Master Terminal Unit (MTU). RTUs collect data from
sensors and control actuators situated at remote sites and send data to the MTU
through a network. Since RTUs operate in a harsh industrial environment, fault
tolerance is a key requirement particularly for safety-critical industrial processes.
Studies show that a significant number of transient faults due to a harsh envi-
ronment result in control flow errors in the RTU’s processors. A software error
detection technique has been proposed to detect control flow errors in several
RTUs. For experimental evaluation 30,000 faults injected on network; the
average performance and memory overheads are about 33.20 % and 36.79 %,
respectively and this technique detected more than 96.32 % of injected faults.

Keywords: SCADA � RTU � Transient fault � Fault tolerance � Fault
injection � Software-based error detection

1 Introduction

The most critical infrastructures, such as major electrical and mechanical system and
industrial networks are controlled by industrial control systems (ICSs). These systems
are typically employed to monitor and control the plants and industrial environments
such as oil and natural gas pipeline, water distribution, electrical power grids and
transportation [1]. In these applications, which are commonly safety-critical, a system
failure may lead to significant risks to the health and the safety of human’s life, serious
damages to the environment, or serious financial and economical issues [2].

A Supervisory Control and Data Acquisition (SCADA) system is an ICS which
controls large scale industrial processes included several sites over long distances [3].
A SCADA system is a distributed system typically comprised of a Master Terminal
Unit (MTU) and several Remote Terminal Units (RTUs). MTU gathers data from
RTUs, provides an operator interface to display information, and controls the remote
sites. RTU interfaces with field sensing devices, local control switchboxes, and valve
actuators. To transfer data between MTU and RTUs, a communication network based
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on the client/server over the communication protocols, such as TCP/IP or Ethernet/IP
protocols, is commonly used [4, 23].

RTUs operate in an industrial environment, which is commonly a harsh environ-
ment [5]. In a harsh environment, transient faults may occur in electronic devices (i.e.
microprocessors and microcontrollers, memory, internal bus) due to Electromagnetic
Interferences (EMI), Power Supply Disturbances (PSD), radiations and high operating
temperature [19] in RTUs. This fault resulting in an inversion of a bit state [24] (i.e.
single bit flip). Presented studies in [6] show that transient faults in the electronic
devices can cause control flow errors and data errors. Control flow errors refer to
deviations from the normal instruction execution flow of the software program and data
errors refer to alter the contents of memory variables or in a register. It has been shown
that about 33 %–77 % of transient faults are converted to control flow errors [6] and the
remaining are converted to data error. Monitoring the execution of program in RTU by
MTU is very important and a CFE error would prevent the program from performing
properly. Therefore, RTUs should be equipped with a technique in order to be able to
detect such errors, and Control Flow Checking (CFC) is one of the best techniques to
detect the occurrence of control flow errors.

Several CFC techniques have been presented since 1980s [6–17] that can be
divided into three categories of hardware-based, software-based, and hybrid.
Hardware-based techniques use an extra hardware such as a watchdog processor to
monitor state performance and state of the master processor [7]. Software-based
techniques employ software redundancy to detect deviations in software program
execution flow by signature monitoring mechanisms [8, 9]. These techniques have
software code and performance overheads. In comparison with hardware-based tech-
niques, software-based techniques are more flexible, less costly and being easily
updated and they have also a better maintenance facility [6]. In hybrid techniques, a
software technique would be merged with a hardware-based technique, in order to
make balance between overheads and costs and have advantages of both
software-based and hardware-based techniques.

In this study, a software control flow checking technique, called PLC-CFC, is
proposed in order to detect control flow errors in RTUs. This technique is employed to
monitor the program execution flows of some RTUs in a SCADA system and com-
poses of two parts. A software-based control flow checking technique has been
embedded in each RTU and the MTU processor, along with doing its tasks, is
employed to monitor the program execution flow of all RTUs. The ICS-CFC technique
can be applied in all industrial control systems which employ microcontrollers,
microprocessors, PLCs, or personal computers. As a case study, the proposed tech-
nique has been applied on a real ICS in Parin Beton Amood Company, manufacturing
“Autoclaved Aerated Concrete” in Mashhad, Iran. The mentioned ICS includes eight
personal computers as its RTUs and a main server as its MTU. The experimental results
showed that among a total of 30,000 injected faults on distributed network and the
presented technique detects more than 96.32 % of them.

The organization of this paper is as follows. Section 2, several related studies are
reviewed. In Sect. 3 the proposed technique explained. The experimental results of
different technique are given in Sect. 4. Finally Sect. 5 concluded the paper.
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2 Related Works

Control flow checking techniques are typically employed signature monitoring
mechanisms to check the execution flow of a program. Before the system’s run-time, an
abstract of the program for the correct program execution is extracted. Afterward,
several signatures, representing the chosen abstract, are assigned to the program.
During the run-time, signatures are again generated in real-time and are compared with
the stored, expected signatures. If a disagreement occurs, the occurrence of a control
flow error is detected and reported [10].

As mentioned before, control flow checking techniques can be divided into three
main types. In software-based techniques such as CFCSS [14, 15], ECCA [13], RSCFC
[16], I2BCFC [25], and SCFC [17], several redundant instructions are inserted into a
program to check the execution flow of the program. These techniques do not have any
hardware overhead. The main advantages of software-based techniques are low cost
and flexibility (easily changeable). However, these techniques impose significant
performance and memory overheads due to the redundant instructions. Moreover, since
the monitoring is done by inserted instructions into the program, these techniques
cannot detect the program crash failure.

In hardware-based techniques, to detect control flow errors a hardware device like
Watchdog timer [11] and Lock stepping [12], is utilized to check the execution flow of
a program or to trace memory accesses. In these techniques, the behavior of the main
processor is monitored using only redundant hardware devices. Therefore, these
techniques, commonly designed for a special purpose, cannot be easily changed or
updated, and have considerable costs due to redundant hardware. In the hybrid control
flow checking techniques, redundant instructions are inserted into a program. These
instructions produce some signatures and send them to a redundant hardware device as
an external monitor. In these techniques, the control flow checking is done partly in the
program (employing software-based techniques) and partly in the redundant hardware.
CFCBTE [18], SWTES [10], PECFC [24], are the samples of hybrid techniques. In the
SWTES technique, a hybrid-base technique using encoded signatures monitors the
behavior of a program and an on-chip microcontroller timer has been exploited as a
watchdog timer to detect the program crashes. This technique is experimentally eval-
uated on an ATMEL MCS51 microcontroller. The CFCBTE is a hybrid control flow
checking technique for the PowerPC processors. In this technique, beside redundant
software codes which are employed to compare signatures, three hardware-based
mechanisms, i.e., Machine Check Exception, watchdog timer, and Branch Trace
Exception, have been utilized.

To the best of our knowledge, almost all control flow checking techniques have
been proposed to protect a single processor from control flow errors; while, SCADA is
a distributed system composed of several RTUs and a MTU connected to a commu-
nication network. RTUs and MTU include a microcontroller, a microprocessor, a PLC,
or a personal computer as their main processor. To protect SCADA from control flow
errors it is necessary to employ a control flow checking technique. In this paper a
software control flow checking is proposed for industrial control systems.
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3 The Proposed Technique: ICS-CFC

As mentioned before, SCADA system is a distributed industrial control system com-
posed of several RTUs and a server as a MTU. RTUs interface with field sensors and
local control devices provide an operator interface to control remote sites. These units
execute their configuration and software control programs and send their control and
sensing data to MTU through a client/server communication network. The MTU
gathers data from RTUs to process and control the remote sites [5].

In the proposed control flow checking technique, called ICS-CFC technique,
monitoring of the program execution is being done partly on the MTU and partly on
each RTU. Employing this technique, the MTU ensures that the execution flow of the
programs in all RTUs is correct, by online monitoring the received signatures from
RTUs through the communication network. Local signature monitoring mechanism has
been implemented in RTUs to reduce the number of transmitted signatures through the
network.

3.1 ICS-CFC Technique Implementation in RTUs

To implement the local checking the control flow of an RTU’s program, three steps
should be taken as follows: Step 1: Partitioning the program into several basic blocks,
Step 2: Assigning a unique signature to each basic block, and Step 3: Inserting control
flow checking instructions to the program.

Partitioning the Program Code. The RTU’s program code is first divided into
several basic blocks. The basic block is a maximal set of ordered instructions such that
its execution begins from the first instruction and terminates with the last instruction.
There is no jumping or branching instruction in a basic block except for the last one
[14]. A program can be represented by a directed graph, called Control Flow Graph
(CFG) [20]; nodes are the basic blocks and the arcs represent a control flow transfer
between the basic blocks. A simple program and its related CFG are shown in Fig. 1.

Assigning a Unique Signature. After indicating the basic blocks and extracting the
CFG of the program, a unique signature should be assigned to each basic block, called
Detection Signature (DS). The DS of each basic block demonstrates the successor
blocks of the current basic block. Bits related to successor blocks of the present block
equal 1. As shown in Fig. 2(a), the DS contains two fields. The first field (T) represents
the type of the signature. The value of the T field for a Detection Signature is 1. If the
number of basic blocks is N, then the second field of the DS (DSBN), which represents
the signature’s value, have N bits. This field contains the assigned signature of the
related basic block. If there are many basic blocks, then the number of signature bits
can be equaled Log2 N. For example, if N = 512, then the number of bits can be 9
lengths.

In addition to the Detection Signature (DS), two other types of signature are
employed in the ICS-CFC technique: Alive Signatures and Error Signatures. An Alive
Signature (AS) would be sent from RTUs to the MTU in certain periods of time. These
periods are determined by the MTU in the configuration time of RTUs. Receiving an

460 N. Rajabpour and Y. Sedaghat



AS from an RTU informs the MTU that the sender RTU has not been crashed. As
shown in Fig. 2(b) the signature has three fields. The first field (T) represents the type
of the signature. The value of the T field for an Alive Signature is 2. The second field
represents number of an RTU which has sent the signature. The third field shows the
time of sending the AS in the RTU.

An Error Signature (ES) is sent when a control flow error being detected in an RTU
by its local monitoring mechanism. Therefore, when an error occurs, Send() procedure
would be run and this would be send ES to a function called CFE-Handler. Then
programs control would be transferred to this function, which has two tasks. First,
finding the basic block in which errors occurred by checking the value of the fields in
ES. Second, sending an ES to MTU to handle error in RTU by checking the value of
ES fields, in case that RTU crashes or cannot execute the program. Meanwhile, the
technique has been designed in a way that if an error occurs in each basic block, it
would be detected in next basic block and detection latency [20] would be reduced.
Therefore, CFE-handler function needs ES signature fields.

As shown in Fig. 2(c), the ES has five fields. The first field (T) represents the type of
the signature. The value of the T field for an error signature is 3. The second field
(RN) represents number of an RTU which has been encountered a control flow error.
The third field (BN) and the fourth field (DSBN) represent number and assigned sig-
nature of a basic block, respectively, which a control flow error has occurred in it.
Assessing these fields, the MTU discovers that a control flow error has occurred in
which RTU and which basic block of that RTU’s program (current basic block in that
RTU). The last field (DScurr) represents the signature of the preceding basic block of the
current basic block in the faulty RTU.

Inserting Control Flow Checking Instructions. To check the control flow of an
RTU’s program, some control flow checking instructions are inserted in each basic
block of the program. In Fig. 3(a), the structure of a basic block after applying the
ICS-CFC technique has been presented.

The DSBN variable contains the signature of a basic block and is composed of N
bits, if the program has N basic blocks. In this variable, the ith (DSBN[i-1]) and jth

// basic block 1
int n;
int i, temp;
while (n > 1){
// basic block2
i = 0;
while (i < n - 1){

if (x[i] > x[i + 1]){
// basic block3
temp = x[i]; x[i] = x[i + 1];
x[i + 1] = temp;
}

// basic block4
i++;
}
// basic block5
n--;

}

Basic 
Block 1

Basic 
Block 2

Basic 
Block 4

Basic 
Block 5

Basic 
Block 3

Exit

Start

Fig. 1. A simple code and its related CFG of a bubble sort program
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(DSBN[j-1]) bits are set to 1, if the BBi and BBj are successors of the current basic
block. Another variable, called DScurr contains the signature of a basic block should be
executed before the current basic block and initialize to ‘0000…1’. This variable is
checked and updated in the middle of the current basic block. The BN is number of a
basic block and a variable called BNcurr is used to store number of a basic block should
be executed after the current basic block. This variable is updated at the end of each
basic block. In the ICS-CFC technique, if a basic block has more than one successor, a
unique number is assigned to each successor, called SN. The SN variable is set at the
end of a basic block with more than one successor basic block and is checked in the
middle of the executed successor basic block.

As shown in Fig. 3(a), in the beginning of each basic block, the flow upon its
entrance into the basic block is checked by comparing the BNcurr with BN. If a
mismatch is detected, due to an illegal jump to the beginning of the current basic block,
an ES is sent to the CFE-Handler function.

In the middle of each basic block, DScurr is checked. If the execution flow of the
program is correct, nth bit of DScurr (DScurr[BN-1]) in basic block BBn should be ‘1’. In
this situation, DScurr is updated with the value of DSBN. Otherwise, if that bit was ‘0’, a
control flow error is detected and an ES sent to the CFE-Handler function. In addition
to this check, the value of SN should be assessed in the middle of each basic block by
check() procedure. If the current basic block is one of the more successors of its
predecessor basic block, SN value should be compared with successor number of the
current basic block. If there a mismatch is detected, a control flow error is detected and
an ES sent to the CFE-Handler function.

At the end of each basic block, BNcurr is updated with number of next basic block
which should be executed after the current basic block. Moreover, if the current basic
block has more than one successor blocks, SN is also updated with number of suc-
cessor basic blocks by set() procedure, which should be run after the current basic
block. In order to reduce detection latency, it is possible to insert the instructions,
which have been added at the beginning, to the end as well. So, the error detection
would be occurred in the basic block and send() procedure would be run.

The ICS-CFC technique divides a basic block into two parts. Analyses show that
this technique can detect almost all illegal branches to a basic block from another basic
block, even for branches from the first part of a basic block to its second part. Despite
the software-based techniques, the proposed technique is able to detect the program
crash, employing by the MTU.

Figure 3(b) illustrates the control flow graph of the bubble sort benchmark (pre-
sented in Fig. 1), after applying the ICS-CFC technique on it.

T DSBN (a)

T RN Sending Time (b)

T RN BN DSBN DScurr (c)

Fig. 2. The structures of three types of signatures in the ICS-CFC technique
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3.2 ICS-CFC Technique Implementation in the MTU

As mentioned before, an Alive Signature (AS) is sent to the MTU by each RTU in a
certain period of time. Receiving an AS from an RTU shows that the RTU has not been
crashed. In the configuration time of an ICS, the MTU configures and programs each
RTU. In this technique, at the configuration time, the time period of sending AS is set
for each RTU and a profile for each of them is created in the MTU.

After receiving a signature from an RTU, the MTU recognizes the type of the
signature. If the received signature is an AS, the MTU checks the “sending time” field
of the signature and compares it with the “sending time” of the last received AS stored
in the RTU’s profile. The MTU detects a control flow error in that RTU, if the time
between two received Alive Signatures is more than the predetermined time period,
which is also stored in that RTU’s profile. Inserting “sending time” into an Alive
Signature ensures that network latencies cannot affect the correctness of the technique.
In this situation, the network latency can only cause to detect a control flow error, later.

Moreover, if a received signature from an RTU is an ES, the content of the sig-
nature show that a control flow error has been occurred in which basic block of the

IF (BNcurr< >BN), Send (ES)

Instruction 1

…..

Instruction n/2

IF (DScurr[BN-1]=0 & Check(SN)), Send(ES) 

DScurr=DSBN

Instruction n/2+1

…..

Instruction n

Update BNcurr & Set(SN)

DSBN=00010

BN=1

DSBN=01100

DSBN=11100

DSBN=01000

DSBN=00010

BN=2

BN=3

BN=4

BN=5

BB1

BB2

BB3 BB4

BB5

IF (BNcurr<>1) Send(ES)
Instruction1

Instruction n/2
IF (DScurr[0]=0) Send(ES)

DScurr=00010
Instruction n/2+1

Instruction n
 BNcurr=2

IF (BNcurr<>2) Send(ES)
Instruction1

Instruction n/2
IF (DScurr[1]=0) Send(ES)

DScurr=01100
Instruction n/2+1

Instruction n
BNcurr=3 or 4  &  Set(SN)

IF (BNcurr<>3) Send(ES)
Instruction1

Instruction n/2
IF (DScurr[2]=0 & Check(SN)) Send(ES)  

DScurr=01000
Instruction n/2+1

Instruction n
BNcurr=4

IF (BNcurr<>4) Send(ES)
Instruction1

Instruction n/2
IF (DScurr[3]=0 & Check(SN))  Send(ES)

DScurr=11100
Instruction n/2+1

Instruction n
BNcurr=3 or 4 or 5  &  Set(SN)

IF (BNcurr<>5) Send(ES)
Instruction1

Instruction n/2
IF (DScurr[4]=0 & Check(SN)) Send(ES)

DScurr=00010
Instruction n/2+1

Instruction n
BNcurr=2

(a) (b)

Fig. 3. The structures of basic blocks in the proposed technique
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RTU’s program. Employing this feature, the MTU can display the information to its
human operator to select the best strategy to encounter the problem.

3.3 Overhead Analysis of the ICS-CFC Technique

When error detecting technique implemented on main program, there are different
parameters which impose overheads on a system. Thus, to improve the proposed
technique, the trade-off between parameters should be considered. In this section, the
overhead of the ICS-CFC technique on SCADA system will be presented.

The ICS-CFC technique proposed in a client/server communication network.
Therefore, network traffic is an overhead, because only Alive Signatures are sent over
the network in the error free conditions. Moreover, the time period of sending these
signatures is adjustable due to the network’s properties. In addition to Alive Signatures,
Error Signatures are only sent over the network when an error occurs in an RTU. In
addition, since the sending time of an Alive Signature is stored in the signature, the
network latency cannot affect the correctness of the technique. This latency can cause
the MTU to detect an RTU’s program crash with some delays. Furthermore, if new
RTUs being added to network, then the number of Alive Signature will increase and
lead to network latency. Thus, regarding SCADA structure and number on RTUs and
Alive Signature sending time it would be possible to make a trade off.

The proposed technique has some memory and performance overheads due to
inserted instructions into the main program. Some instructions which have been added
at the beginning, in the middle or at the end of each basic block; But, the error detecting
capability will increase and detect latency will decrease. Therefore, these instructions
being customized and make a trade-off between parameters.

Compared with the other typical control flow checking techniques, the ICS-CFC
technique does not impose any hardware redundancy. In this technique, the existed
MTU is also employed as a hardware monitor. And for monitoring there is no need to
add a watchdog for each RTU and therefore it would cause cost decrease in system.

4 Experimental Results

In this section, the setup environment is explained and the experimental results are
given. In order to analyze proposed technique, first the fault models determined, then
the technique applied to two following environment: (1) A distributed local network
compose of some PC, (2) A real ICS network compose of some industrial PLCs. Thus,
based on fault models, the faults in these two environments injected and results
evaluated accordingly.

4.1 The Models of Fault

A fault can occur in a system memory, system bus and Internal CPU in RTUs. The
errors which may occur due to these faults can be modeled as CPU Crash, Data errors
and CFE. CPU Crash happens when the processor does not work and can be detected
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by MTU, which is used in proposed technique. Data error is detectable by some
techniques like assertion. CFE may occur either in memory content or processor
internal registers.

Fault injection approach is used that has three kinds: (1) Random Branch Insertion:
replacing a non-control instruction with a control instruction. (2) Random Branch
Deletion: deleting some branches of the program randomly. (3) Random Branch
Modification: the target address of a control instruction is being modified.

By use of the mentioned fault models, the behavior of a CFE in memory can be
exactly modeled. These models are not capable to represent the CFE behavior due to an
error occurred in processor internal registers. In these cases, the behavior of such errors
can be modeled by manipulating Programs Counter (PC) and Status Register (SR). The
control flow errors will be produced and also the efficiency of different techniques can
be compared with each other by applying above mentioned fault models. The faults are
randomly injected to the assembly code of benchmarks. By changing registers and
program counter of the program, control flow errors would occur in the program. Thus,
the efficiency of different techniques can be evaluated.

4.2 ICS-CFC Technique Execution in a Local Network

To evaluate the proposed technique, the ICS-CFC technique was applied to a local
network composed of eight personal computers as RTUs connected to a main server as
a MTU through a client/server communication network. Each RTU had an Intel Core i5
as its CPU, 4 GB RAM, and Windows 7 as its operating system. MTU had an Intel
Core i7 as its CPU, 8 GB RAM, and Windows server 2008 as its operating system. The
communication protocol was the TCP/IP and the Microsoft Visual Studio 2008 was
employed to implement the benchmark programs. To communicate between RTUs and
MTU over network and send signature, socket programming was employed [21]. Four
benchmark programs, i.e. Bubble Sort (BS), Matrix Multiplication (MM), Quick Sort
(QS), and Linked List Insertion (LLI), which are typical benchmarks employed in
previous researches, were implemented on each RTU and ICS-CFC technique was
applied to them.

For experimental evaluation the ICS-CFC technique was applied to a personal
computer as an RTU and 30,000 faults were injected, based on fault models, into the
mentioned benchmarks. Seven versions are considered for each benchmark. First is the
original code (the code of the benchmark), to which other six techniques being applied.
For each version, the fault injection randomly executed, based on fault models.
According to the effects of the injected faults in the RTU’s program, five different cases
occur: (1) Correct Result (CR): injected fault does not change the final result of the
program and no control flow error is detected. (2) Wrong Result (WR): fault results in a
wrong output and is not detected by the ICS-CFC technique. (3) Time Out (TO):
injected fault caused the program execution time to change and it does not finish in a
specified time. This type of errors is detected by the MTU in the ICS-CFC technique.
(4) Os Exception (OS): These faults cause the operating system exception. Generally,
this percentage of faults is regarded as being detected by the operating system.
(5) Single Detection (SD): injected fault results in a control flow error and is detected
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by techniques in the RTU. The fault injection results into the four benchmarks for some
software techniques running on the RTU have been presented in Table 1.

As presented in Table 1, among all 30,000 injected faults, 27.37 % faults lead to
correct output results. Among all the remaining injected faults, only 02.67 % injected
faults, which result in wrong output results, were not detected by the ICS-CFC tech-
nique. Therefore, the fault coverage of the proposed technique is about 96.32 %.

Table 1 presents average fault coverage for some techniques and also shows the
memory and the performance overheads in average for the above mentioned tech-
niques. The performance overhead of the ICS-CFC technique, due to execution of the
redundant instructions, is about 33.20 %. The memory overhead of the proposed
technique, due to insertion of redundant instructions into basic blocks of a program and
signature variables, is about 36.79 %.

Moreover, the new parameter Evaluation Result (ER), which has been defined,
would cover fault coverage, memory and performance overheads concurrently. This
technique should be able to balance these parameters with each other. The ER is
defined as follows:

ER ¼ Fault Coverage
Memory Overhead � Performance Overhead

� 100 ð1Þ

Table 1 shows ER for some techniques, in which ICS-CFC has greater ER than
other techniques and is more appropriated for employing in safety-critical systems.

The ICS-CFC technique does not have any hardware redundancy, compared to
other typical hybrid-based control flow checking techniques. The existed MTU is also
employed as a hardware monitor. It should be noted that in ICS-CFC technique, RTUs
send the signatures to the MTU over the network without any effect on the performance
of the RTUs.

4.3 Case Study: Execution ICS-CFC Technique in a Real ICS

The mentioned benchmarks are small and limited and their confidence level is too low
and just used for different techniques comparison. Therefore, in order to clarify

Table 1. Experimental evaluation average results of CFCSS [14, 15], ECCA [13], RSCFC [16],
I2BCFC [25], SCFC [17], and ICS-CFC

Techniques CR % WR % TO % OS % SD % Memory
overhead %

Performance
overhead %

Fault
coverage %

Evaluation
result %

No CFC 38.10 42.20 07.01 12.69 00.00 00.00 00.00 31.83 31.83
CFCSS 40.48 12.01 08.30 08.59 30.62 31.30 25.00 79.82 43.49
ECCA 38.96 09.50 06.50 10.15 34.89 33.00 27.80 84.43 44.51
RSCFC 37.11 11.02 06.20 11.13 34.54 35.00 28.10 82.48 42.71
I2BCFC 32.37 06.05 08.15 07.70 45.73 35.80 31.00 91.05 45.51
SCFC 31.95 05.36 08.35 05.40 48.94 36.10 32.50 92.12 45.56
ICS-CFC 27.37 02.67 07.50 04.15 58.31 36.79 33.20 96.32 47.42
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technique better, it has been tested precisely and which high confidence level in case
study [22]. So, it has been implemented on some big benchmarks and program’s
robustness in industrial environment.

The ICS-CFC technique applied to a real ICS distributed network comprise of three
Steam Boiler (Steam boiler is basically a closed vessel into which water is heated until
the water is converted into steam at required pressure) devices and three RO (Reverse
osmosis is a process in which dissolved inorganic solids like salts are removed from a
solution like water) devices and an HP server. There have been 3 PLC modules set up
above mentioned machines, and are being monitored by HP server through the wireless
network. SIMATIC S7 software installed on the server and some benchmarks, with
STEP7 programming language, implemented on PLCs. Benchmarks specifications
have been shown in Table 2.

For experimental evaluation the ICS-CFC technique was applied to PLCs and
30,000 faults were injected into the mentioned benchmarks. Two versions are con-
sidered for each benchmark. The first is the original code, to which ICS-CFC technique
is being applied. Table 3 shows the experimental results of the original program and
ICS-CFC programs, respectively. For each version, according to the effects of the
injected faults in the PLC’s programs, five different cases occur: Correct Result, Wrong
Result, Time Out, Os Exception and Single Detection. The occurrence percentages of
these cases are shown in Table 3.

Table 2 presents the memory and the performance overhead of 6 benchmarks. The
average memory overhead of the ICS-CFC technique, due to insertion of redundant

Table 2. Benchmark programs used in the experiments

Benchmarks Devices PLC models #Basic blocks Memory overhead Performance
overhead

SB200E Steam Boiler1 SIMATIC ET200 39 13.00 % 28.34 %
SB300S Steam Boiler2 SIMATIC S7-300 41 15.67 % 27.10 %
SB400S Steam Boiler3 SIMATIC S7-400 42 14.10 % 25.85 %
R200E RO1 SIMATIC ET200 26 15.25 % 26.09 %
R300S RO2 SIMATIC S7-300 29 16.30 % 24.10 %
R400S RO3 SIMATIC S7-400 33 16.45 % 23.50 %

Table 3. Experimental evaluation average results of NO-CFC and ICS-CFC

Benchmarks No CFC ICS-CFC
CR % WR % TO % OS % SD % CR % WR % TO % OS % SD %

R400S 14.20 64.45 11.60 09.75 0.00 11.00 04.30 08.90 07.60 68.20
R300S 13.80 64.15 12.09 09.96 0.00 12.30 05.90 09.10 07.90 64.80
R200E 15.00 63.80 10.67 10.53 0.00 12.80 05.20 09.90 08.50 63.60
SB400S 12.90 65.10 12.90 09.10 0.00 09.10 06.30 10.80 07.10 66.70
SB300S 13.80 62.90 11.45 11.85 0.00 10.10 05.28 08.60 06.98 69.04
SB200E 11.65 59.20 09.60 19.55 0.00 08.30 06.10 08.90 07.20 69.50
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instructions into basic blocks of a program and signature variables, is about 15.13 %.
The average performance overhead of the technique, due to execution of the redundant
instructions, is about 28.83 %.

5 Conclusions

Industrial Control Systems (ICS) are essential factors to ensure execution of an
industrial process safe and successfully. SCADA system, a type of an ICS, is a widely
distributed system primarily used to remotely control and monitor of industrial pro-
cesses from a central location. SCADA covers the transfer of data between a server as
MTU and a number of remote sites as RTUs. Since an RTU works in a harsh envi-
ronment, fault tolerance is one of the most significant among many challenges in
industrial networks. In this paper, a hybrid control flow checking technique, called
ICS-CFC, was proposed in order to detect control flow errors in RTUs. This technique
is employed to monitor the program execution flows of several RTUs in a SCADA
system as a distributed system. The proposed technique can be applied to all ICSs
which employ microcontrollers, microprocessors, PLCs, or personal computers as their
RTUs. To evaluate the fault coverage of ICS-CFC technique, 30,000 faults were
injected on distributed system. Among all injected faults, the ICS-CFC technique
detects more than 96.32 % of faults resulted.
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Industrial Control System.
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