

Maximizing service level in a β-robust job shop scheduling model

Seyed-Morteza Khatami1*, Mohammad Ranjbar1, Morteza Davari 2

1
Department of Industrial Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad,

Iran

2
Research group for Operations Management, KU Leuven, Belgium

sm_khatami@stu.um.ac.ir, m_ranjbar@um.ac.ir, morteza.davari@econ.kuleuven.be

Abstract

 In the realm of scheduling problems, different sources of uncertainty such as
probabilistic durations of jobs or stochastic breakdowns of machines can arise. Given
this, one highly desirable characteristic of an intelligent schedule is to bring better
punctuality with less efficiency-loss because a dominant factor in customer
appreciation is punctuality. It is also one of the most intangible topics for managers
when a due date is predetermined to deliver jobs. In this paper, we address the β-
robust job shop scheduling problem when the processing time of each operation is a
normal random variable. We intend to minimize the deviation of makespan from a
common due date for all jobs which corresponds to maximizing the service level,
defined as probability of the makespan not exceeding the given due date. We develop
a branch-and-bound algorithm to solve the problem. Using a set of generated
benchmark instances, the performance of the developed algorithm has been evaluated.

Keywords: Job shop; Stochastic scheduling; Branch-and-bound algorithm.

1-Introduction

 In the real production systems, "optimal" schedules, once deployed, are affected by irregularities
such as variability in the job durations or resource breakdowns and are far from optimal in practice.
Nevertheless, most of researches in the literature have been focused on deterministic models, which
ignore uncertain deviations.

 In this paper, we address a job shop scheduling problem with stochastic processing times, described
by normal random variables, and a common due date for all jobs that is appointed using negotiation
with the customer. We aim to find a β-robust schedule that maximizes the service level, which is the
probability of the makespan not exceeding the predetermined due date. In the remainder of this text,
we refer to this problem as the β-robust job shop scheduling problem (βRJSSP). We develop a
branch-and-bound (B&B) algorithm to solve the proposed problem optimally.

 *Corresponding author.
 ISSN: 1735-8272, Copyright c 2015 JISE. All rights reserved

Journal of Industrial and Systems Engineering
Vol. 8, No. 4
Autumn 2015

mailto:sm_khatami@stu.um.ac.ir�
mailto:m_ranjbar@um.ac.ir�

 The job shop scheduling problem (JSSP) is a classical NP-hard (Lenstra et al. 1977) combinatorial
problem which has been widely studied in the literature. Most of the researches have considered the
deterministic JSSP (DJSSP) while some of the recent works have been devoted to the stochastic JSSP
(SJSSP). But to the best of our knowledge, the βRJSSP has not been studied in the literature and is
introduced for the first time in this paper.

 Many studies have been published on DJSSP in which all parameters are known in advance. The
most classic and frequently studied problem in this field has been the DJSSP with objective of
makespan minimization, denoted as 𝐽𝑚||𝐶𝑚𝑎𝑥based upon the notation of Graham et al. (1979). Most
of the exact algorithms that have been proposed for the DJSSP have B&B procedures. In this filed, we
can cite the works of Carlierand Pinson (1989) and Applegate and Cook (1991). Also, numerous
heuristic and metaheuristic procedures have been proposed for the DJSSP. The well-known shifting
bottleneck heuristic procedure, developed by Adams et al. (1988), has been one of the most successful
heuristic procedure for the 𝐽𝑚||𝐶𝑚𝑎𝑥. Moreover, metaheuristic approaches such as genetic algorithm
of Spanos et al. (2014), tabu search algorithm of Zhang et al. (2008), and scatter search of Ranjbar
and Najafian Razavi (2012). Moreover, Pardalos et al. (2010) developed an algorithm based upon
utilizing the properties of backbone and big valley, have found very good results for the hard
instances of the DJSSP.

 Stochastic job shop scheduling problem (SJSSP) shows an important aspect of manufacturing
systems and is an extended version of the JSSP by introducing some stochastic processing conditions
such as stochastic processing times. The JSSP with uncertain arrival times, processing times, due date
and part priority was studied by Luh et al. (1999), who developed a solution methodology based on a
combined Lagrangian relaxation and a stochastic dynamic programming. Golenko-Ginzburg and
Gonik (2002) considered three sets of costs in SJSSP with stochastic processing times in normal,
exponential and uniform distributions and treated the problem as the identification of the earliest start
times in order to minimize the average cost of storage and tardiness from the delivery time.
Tavakkoli-Moghaddam et al. (2005) proposed a hybrid method based on neural network and
simulated annealing to the SJSSP.
 In the area of β-robust scheduling, Daniels and Carrillo (1997) and Wu et al. (2009) considered β-
robust scheduling problem in the single machine environment in which minimizing the risk that the
flow time exceeds a given threshold is the main goal. Also, Ranjbar et al. (2012a) introduced the β-
robust parallel machine scheduling problem in which a set of jobs with probabilistic (normal)
durations must be processed on a set of identical parallel machines with the goal of maximization of
the service level.

 There are numerous papers in the scheduling literature in which a common due date has been
considered for all jobs. In the single machine environment, we can refer to Lin et al. (2007) and Yin et
al. (2013). Also, in the parallel machine environment, we can mention following research works such
as Alidaee and Panwalkar (1993), and Tuong et al. (2010).

 Since DJSSP is NP-hard and the βRJSSP is a generalization of the DJSSP in which processing times
are stochastic and the objective function is more complicated, the βRJSSP is NP-hard as well.

 The contributions of this article are twofold: (1) we provide the first description of the βRJSSP and
present a non-linear formulation for it; (2) we develop an exact depth-first B&B algorithm to solve the
problem.

 The remainder of this paper is organized as follows. In Section 2, we provide a formal description of
the problem and present a non-linear binary formulation. Section 3 describes the B&B algorithm
while computational experiments are reported in Section 4. Finally, conclusions and suggestions for
future works are presented in Section 5.

2- Problem description and formulation

 The βRJSSP may be formulated as follows. Consider n jobs 𝐽1, 𝐽2, … , 𝐽𝑛and m different machines
𝑀1,𝑀2, … ,𝑀𝑚. For simplicity, we assume recirculation is not allowed. Thus, each job 𝐽𝑗consists of at
most m operations with predetermined order where 𝑂𝑖𝑗indicates the operation of job 𝐽𝑗 which must be
processed on machine𝑀𝑖. The processing time of operation 𝑂𝑖𝑗 is represented by a stochastic variable
𝑝𝑖𝑗 having normal probability distribution function�𝑝𝑖𝑗� and cumulative distribution
functionΦ, with expectation 𝐸�𝑝𝑖𝑗� = 𝜇𝑖𝑗 and variance 𝑉𝑎𝑟�𝑝𝑖𝑗� = 𝜎𝑖𝑗2 . We choose the
normal random variables for operations’ processing times because most of practical
situations can be modeled by this distribution (Pinedo, 2014). Also, if we relax the
normal distribution assumption from our assumptions, our results are approximately
valid yet based on the central theorem limit (Sarin et al., 2014).

 There is only one machine of each type which can process only one operation at a time. Such an
operation must be processed without preemption. Moreover, a job cannot be processed by two
machines at the same time. We assume that neither release dates nor due dates are imposed for any
individual job but, a due date δ is put forward by the customer for the completion of the entire job set.
Moreover, we suppose that the machines are always available and we define the service level 𝛱 as the
probability that the makespan does not exceed the due dateδ. According to these restrictions, we have
to find an order of all operations 𝑂𝑖𝑗 for each machine 𝑀𝑖 such that for the corresponding schedule the
service level is maximal.

 In order to model the βRJSSP, we use the disjunctive graph model, introduced by Roy and
Sussmann (1964). A disjunctive graph 𝐺(𝑁,𝐶,𝐷) is a mixed graph with node set N, a set C of
directed arcs (conjunctions) and a set D of undirected arcs (disjunctions). The set N of nodes
represents the set of all operations plus two dummy nodes (0,0) and (m+1,n+1). The start dummy
operation (0,0) is the direct predecessor of the first operation of each job while the end dummy
operation (m+1,n+1) is the direct successor of the last operation of each job.

 In the disjunctive graph G(N,C,D), each node (𝑖, 𝑗) indicates the event of starting operation 𝑂𝑖𝑗.
Thus, each arc emanated from node (𝑖, 𝑗) is weighted with the stochastic processing time 𝑝𝑖𝑗 while all
arcs emanated from dummy start node are weighted by zero. The set C of conjunctive arcs represent
the precedence relations between consecutive operations of the same job. Thus, we have a conjunctive
arc (𝑖, 𝑗) → �𝑖 ′, 𝑗� for each pairs of directly precedence related operations (𝑖, 𝑗) and �𝑖 ′, 𝑗� of jobs 𝐽𝑗.
The meaning of the conjunctive arc (𝑖, 𝑗) → �𝑖 ′, 𝑗� is that a feasible schedule must satisfy the condition
𝑋𝑖𝑗 + 𝑝𝑖𝑗 ≤ 𝑋𝑖′𝑗 where variable 𝑋𝑖𝑗 indicates the earliest start time of operation 𝑂𝑖𝑗.

 The set D of disjunctive arcs represents the different orders in which operations on the same
machine may be scheduled. It consists of undirected arcs between all pairs of operations which have
to be processed on the same machine, i.e. for any two operations(𝑖, 𝑗)and �𝑖, 𝑗 ′�, the set D contains an
undirected arc denoted by (𝑖, 𝑗) ↔ �𝑖, 𝑗 ′�. The meaning of the disjunctive arc (𝑖, 𝑗) ↔ �𝑖, 𝑗 ′� is that a
feasible schedule must either satisfy 𝑋𝑖𝑗 + 𝑝𝑖𝑗 ≤ 𝑋𝑖𝑗′or 𝑋𝑖𝑗′ + 𝑝𝑖𝑗 ≤ 𝑋𝑖𝑗 .

 The problem of finding a feasible schedule for the βRJSSP is equivalent to the problem of fixing a
direction for each disjunctive. A set 𝑆(𝐷)of fixed disjunctive arcs is called a selection if for each
disjunction a direction has been fixed. Each selection 𝑆(𝐷) is feasible iff the corresponding graph
G(N,C,S(D)) is acyclic. The Figure 1 indicates an example problem of the βRJSSP with n=4 jobs and
m=4 machines in which disjunctive arcs are shown by directed dash lines.

 The remaining job characteristics are shown in Table 1. This instance will also be used in Section 3
for further illustrations.

Table 1: Data of the example problem
Job Sequence of operations Mean of processing times Variance of processing times

𝐽1 𝑀2 −𝑀3 −𝑀4 −𝑀1 64− 97− 36− 61 23.2− 302.4− 119.2 − 28.1

𝐽2 𝑀3 −𝑀1 −𝑀2 −𝑀4 84− 15− 16− 55 398.1− 27.1− 5.1 − 56.5

𝐽3 𝑀1 −𝑀2 −𝑀3 −𝑀4 31− 39− 89− 63 43.9 − 13.7− 559.0− 76.2

𝐽4 𝑀1 −𝑀2 −𝑀4 −𝑀3 25− 16− 48− 85 57.1 − 18.3− 83.1− 274.8

 If we assume 𝐸�𝑋𝑖𝑗� = 𝜆𝑖𝑗 and 𝑉𝑎𝑟�𝑋𝑖𝑗� = 𝜃𝑖𝑗2 , it is obvious that 𝜆𝑖𝑗 and 𝜃𝑖𝑗2 are variables

depending on S(D). Now, we define the service level as 𝛱 = 𝑃𝑟�𝑋𝑚+1,𝑛+1 ≤ 𝛿� = Φ �𝛿−𝜆𝑚+1,𝑛+1
𝜃𝑚+1,𝑛+1

�

where stochastic variable 𝑋𝑚+1,𝑛+1 has normal distribution and 𝜆𝑚+1,𝑛+1 and 𝜃𝑚+1,𝑛+1 are calculated
based upon the program evaluation and review technique (PERT) developed by Malcolm et al.
(1959). In the PERT, it is assumed that for each node (𝑖, 𝑗), 𝜆𝑖𝑗and 𝜃𝑖𝑗2 are calculated using the
expected value and variance of processing times for the relevant operations and by working forward
through the network. In other words, if ℎ𝑖𝑗 indicates the longest path in the graph G(N,C,S(D)) from
start dummy node (0,0) to node(𝑖, 𝑗), then 𝜆𝑖𝑗�𝜃𝑖𝑗2 � equals to the summation of expected values
(variances) of operations belonging to ℎ𝑖𝑗.

 It should be mentioned here that there are some weaknesses in the statistical reasoning of PERT but
we ignore them for simplification. For example, it supposes the stochastic independence of the nodes
as well as of their relations which is not completely fulfilled in the βRJSSP. Therefore, the objective
function value that we calculate is a heuristic approximation to the real service level.

5,5 0,0

2,1 4,1 3,1 1,1

3,2 2,2 1,2 4,2

1,3 3,3 2,3 4,3

1,4 4,4 2,4 3,4

Figure 1. The example problem

 In order to formulate the βRJSSP, in the following we introduce variable𝑌𝑖𝑗𝑗′ as follows.

𝑌𝑖𝑗′𝑗 = �
1 if disjunctice arc �𝑖, 𝑗 ′� ↔ (𝑖, 𝑗) is �ixed as �𝑖, 𝑗 ′� → (𝑖, 𝑗)

0 otherwise
�

The model will be as follows:

 (1) 𝑀𝑎𝑥𝛱 = 𝑃𝑟�𝑋𝑚+1,𝑛+1 ≤ 𝛿� = Φ�
𝛿 − 𝜆𝑚+1,𝑛+1

𝜃𝑚+1,𝑛+1
�

 Subject to:
(2) 𝑌𝑖𝑗𝑗′ + 𝑌𝑖𝑗′𝑗 = 1; ∀(𝑖, 𝑗′) ↔ (𝑖, 𝑗) ∈ 𝐷
(3) 𝜆𝑖𝑗 ≥ 𝜆𝑖′𝑗 + 𝜇𝑖′𝑗; ∀�𝑖 ′, 𝑗� → (𝑖, 𝑗) ∈ 𝐶
(4) 𝜆𝑖𝑗 ≥ �𝜆𝑖𝑗′ + 𝜇𝑖𝑗′� + 𝑀(𝑌𝑖𝑗′𝑗 − 1); ∀(𝑖, 𝑗′) ↔ (𝑖, 𝑗) ∈ 𝐷
(5) 𝜃𝑖𝑗2 ≥ 𝑀�𝜆𝑖′𝑗 + 𝜇𝑖′𝑗 − 𝜆𝑖𝑗� + 𝜃𝑖′𝑗

2 + 𝜎𝑖′𝑗
2 ; ∀�𝑖 ′, 𝑗� → (𝑖, 𝑗) ∈ 𝐶

(6) 𝜃𝑖𝑗2 ≥ 𝑀 ��𝜆𝑖𝑗′ + 𝜇𝑖𝑗′� + 𝑀(𝑌𝑖𝑗′𝑗 − 1) − 𝜆𝑖𝑗� + 𝜃𝑖𝑗′
2 + 𝜎𝑖𝑗′

2 ; ∀(𝑖, 𝑗′) ↔ (𝑖, 𝑗) ∈ 𝐷
(7) 𝜆0,0 = 0
(8) 𝜃0,0

2 = 0
(9) 𝜆𝑖𝑗 ∈ ℝ≥0; 𝑖=1,…,𝑚; 𝑗=1,…,𝑛

(10) 𝜃𝑖𝑗2 ∈ ℝ≥0; 𝑖=1,…,𝑚; 𝑗=1,…,𝑛
(11) 𝑌𝑖𝑗𝑗′ ∈ {0,1}; ∀(𝑖, 𝑗′) ↔ (𝑖, 𝑗) ∈ 𝐷

The objective function (1) maximizes the service levelΠ. The constraint (2) indicates that only one
direction should be fixed for each disjunctive arc (𝑖, 𝑗′) ↔ (𝑖, 𝑗). The constraints (3) and (4) impose
the calculation rule of 𝜆𝑖𝑗 for conjunctive and disjunctive arcs, respectively. Similarly, the constraints
(5) and (6) show how the variance is calculated in each node (𝑖, 𝑗) in which constraints (5) are
developed for conjunctive arcs while constraints (6) are established for disjunctive arcs. When there
are two or more paths with the maximum expected value and terminated to a single node, the path
with the maximum variance should be considered. In this model, for each node (𝑖, 𝑗), constraints (5)
and (6) impose lower bounds for 𝜃𝑖𝑗2 . Thus, we have 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 ≤ 𝜃𝑖𝑗2 ≤ ∞, but since
the objective function tries to minimize 𝜃𝑖𝑗2 , the model set 𝜃𝑖𝑗2 = 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑.
 Moreover, the initial values 𝜆0,0 and 𝜃0,0

2 are set to zero in constraints (7) and (8). The last three
constraints indicates the range of variables 𝜆𝑖𝑗, 𝜃𝑖𝑗2 and 𝑌𝑖𝑗𝑗′ where ℝ≥0 represents the set of non-
negative real numbers. It should be noticed that the objective function (1) is non-linear non-convex;
hence, this model cannot be solved using available commercial solvers.

3- A branch-and-bound algorithm
 In light of the NP-hardness of the βRJSSP, an exact algorithm with better than exponential time
complexity is unlikely to exist for the βRJSSP, and we will devise a depth-first B&B algorithm to
implicitly enumerates the solution space. We use the concept of "arc insertion" as described by Singer
and Pinedo (1998) to determine a solution for minimizing the total weighted tardiness in DJSSP.
 In our B&B algorithm, we first develop a heuristic procedure to generate an initial solution,
considered as a lower bound (LB) for the problem and it will be updated whenever a better solution is
found by the B&B algorithm. In order to avoid a complete enumeration procedure, we develop two
dominance rules.

3-1- Definitions and properties

 In order to describe the rest of the paper, we first need to propose some definitions and properties as
follows.

Definition 1: For simplification, after this, we show each node (𝑖, 𝑗) by a single and unique index

𝑘 = 𝑚𝑗 + 𝑖. Thus, the example problem will be represented as shown in Figure 2.

Definition 2: For each operation k, we define the expected value of tail (head) 𝐸(𝑞𝑘)�𝐸(ℎ𝑘)� as a
lower bound for the expected value of the longest path between dummy end (start) node and node k.
Although our definitions for tail and head are a bit different from the ones developed by Brucker et al.
(1994), their developed procedures with complexity order 𝑂(|𝐶|) can be used here. We develop
equations (14) and (15) to calculate 𝐸(𝑞𝑘)and 𝐸(ℎ𝑘), respectively.

𝐸(𝑞𝑘) = 𝑚𝑎𝑥{𝜇𝑘 + 𝐸(𝑞𝑙); (𝑘 → 𝑙) ∈ 𝐶} (14)
𝐸(ℎ𝑘) = 𝑚𝑎𝑥{𝜇𝑙 + 𝐸(ℎ𝑙); (𝑙 → 𝑘) ∈ 𝐶} (15)
 In other words, 𝐸(ℎ𝑘) and 𝐸(𝑞𝑘) are lower bounds on the expected value of the earliest and the
latest start timeof operation k, respectively, in which 𝜇𝑘 is considered as the processing time of
operation k. Equations (14) and (15) require initialization which are given by 𝐸�𝑞𝑚(𝑛+1)+(𝑚+1)� =
𝐸(ℎ0) = 0. It should be noticed that 𝐸�ℎ𝑚(𝑛+1)+(𝑚+1)� = 𝐸(𝑞0) = 𝑚𝑎𝑥{𝐸(ℎ𝑘) + 𝐸(𝑞𝑘);𝑘 ∈ 𝑁}
indicates the expected value of the critical path length, determined based on critical path method
(CPM).

Definition 3: For each operation k, we define the variance of tail (head) 𝑉𝑎𝑟(𝑞𝑘)�𝑉𝑎𝑟(ℎ𝑘)� as the
summation of variances of operations which belong to the longest path between dummy end (start)
node and node k.

Definition 4: Schedule 𝑆𝑝(𝐷) indicates a partial selection of disjunctive arcs in which some
disjunctive arcs are unfixed such as 𝑘 ↔ 𝑙 and 𝛱𝑝 shows its corresponding objective value.

25 0

6 8 7 5

11 10 9 12

13 15 14 16

17 20 18 19

Figure 2. new representation of the example problem

3-2- A heuristic procedure for an initial solution

 We develop a heuristic procedure to generate an initial solution, leading to a lower bound (LB) that
can be computed in a very short running time. In this procedure, described in Algorithm1, the
graph 𝐺�𝑁,𝐶, 𝑆𝑝(𝐷)� in which 𝑆𝑝(𝐷) = ∅ is given as input. Assume P indicates the critical path in
this graph. Algorithm 1 is an iterative algorithm in which a direction is fixed for a disjunctive arc in
each iteration. It should be noticed that only directions are considered which make an acyclic graph.

Algorithm 1: The pseudo-code of the initial solution
1. Let graph 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷)) as input where with 𝑆𝑝(𝐷) = ∅ and critical path P.
2. For each direction 𝑘 → 𝑙 of disjunctive arcs 𝑘 ↔ 𝑙 ∈ 𝐷, if 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷)) is acyclic,
Do time calculation of PERT.
3. If P has not been changed, calculate 𝛱𝑘→𝑙 and let 𝑘 → 𝑙 in set 𝐴1.
4. End for
5. If 𝐴1 ≠ ∅, then add arc 𝑘∗ → 𝑙∗ ∈ 𝐴1 to 𝑆𝑝(𝐷) and remove it from 𝐴1where
𝛱𝑘∗→𝑙∗ = 𝑚𝑎𝑥{𝛱𝑘→𝑙;∀𝑘 → 𝑙 ∈ 𝐴1}; let 𝐴1 = ∅ and go to step 2.
6. For each direction 𝑘 → 𝑙 of disjunctive arcs 𝑘 ↔ 𝑙 ∈ 𝐷, if 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷)) is acyclic,
do time calculation of PERT, calculate 𝛱𝑘→𝑙 and let 𝑘 → 𝑙 in set 𝐴2.
7. End for
8. If 𝐴2 ≠ ∅, then add arc 𝑘∗ → 𝑙∗ ∈ 𝐴2 to 𝑆𝑝(𝐷) remove it from 𝐴2where
𝛱𝑘∗→𝑙∗ = 𝑚𝑎𝑥{𝛱𝑘→𝑙;∀𝑘 → 𝑙 ∈ 𝐴2}; let 𝐴1 = 𝐴2 = ∅ and go to step 2.
9. Stop.

In overall, Algorithm 1 is divided into two main phases including steps 2 to 5 and steps 6 to 8. In the
first phase, we select directions for disjunctive arcs that do not change the current critical path, shown
as set 𝐴1. In step 5, the best direction 𝑘∗ → 𝑙∗among all 𝑘 → 𝑙 ∈ 𝐴1 will be fixed where 𝛱𝑘∗→𝑙∗ =
𝑚𝑎𝑥{𝛱𝑘→𝑙;∀ 𝑘 → 𝑙 ∈ 𝐴1} and 𝛱𝑘∗→𝑙∗ indicates the objective value after fixing 𝑘∗ ↔ 𝑙∗as 𝑘∗ → 𝑙∗.
Steps 2 to 5 will be repeated for the new obtained network while for updated 𝐴1we have 𝐴1 ≠ ∅.
Next, we follow similar strategy but for all disjunctive arcs. In other words, in step 6, we calculate the
selection impact of each direction for each disjunctive arc on the objective value. Next, similar to step
5, the best direct is selected in step 8. For the new obtained network, the algorithm will be resumed
from step 2 and it will end when 𝐴2 = ∅.

 If Algorithm 1 is applied to the example problem, the order and selected direction for disjunctive
arcs are as follows:13 → 5, 17 → 5, 6 → 10, 18 → 10, 13 → 9, 17 → 9, 14 → 10, 20 → 8, 20 →
16, 20 → 4, 9 → 5, 6 → 18, 13 → 17, 14 → 18, 11 → 19, 12 → 6, 7 → 19, 15 → 19, 11 → 15, 6 →
14, 8 → 16, 11 → 7, 12 → 8, 7 → 15. Also, the initial solution equals to LB=0.73.

3-3- The branching scheme

 Usually, each B&B algorithm includes two main schemes, i.e. branching and bounding. In the
branching scheme, the search (branching) tree is constructed and different feasible schedules are
investigated while in the bounding scheme, the goal is to fathom the nodes using suitable and efficient
dominance rules. Our branching scheme works based upon the arc insertion scheme in which each
node in the branching tree represents a partial selection 𝑆𝑝(𝐷) of disjunctive arcs where the resulting
graph 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷)) is acyclic. Two offspring nodes are generated by branching on a disjunctive arc
𝑘 ↔ 𝑙 that is selected; one node for 𝑘 → 𝑙 and another node for→ 𝑘. Thus, in the worst case, the
complexity order of our B&B algorithm is 𝑂�2|𝐷|� where |𝐷| indicates number of disjunctive arcs.

 One important factor in our developed B&B algorithm is the sequence of the arcs insertion. As
shown by Ranjbar et al. (2012b), in a deterministic scheduling problem of a project network, the best
sequence is based upon non-increasing order of tails. Using a try and error approach, we found this
rule as the best rule for the sequence of arcs insertion in this research but we consider the expected
values of tails instead of tails (using non-decreasing smaller (larger) operation numbers as the first
(second) tie-breaker). For the example problem, the sequence of arcs insertion will be as follows:
6 ↔ 14, 6 ↔ 18, 13 ↔ 17, 7 ↔ 11, 7 ↔ 15, 14 ↔ 18, 6 ↔ 10, 11 ↔ 15, 9 ↔ 13, 5 ↔ 13,
7 ↔ 19, 10 ↔ 14, 9 ↔ 17, 11 ↔ 19, 15 ↔ 19, 5 ↔ 17, 8 ↔ 20, 10 ↔ 18, 16 ↔ 20,
12 ↔ 20, 8 ↔ 16, 8 ↔ 12, 5 ↔ 9 and 12 ↔ 16.

3-4- The bounding scheme

 In order to detect infeasible or low quality solutions, some dominance rules are corporate with our
B&B algorithm. To prevent the extension of infeasible solution including cycle, we use the strategy
developed by Ranjbar et al. (2012b). In order to detect whether there is any cycle in each node of the
search tree, they defined a path matrix 𝑃𝑀(𝑛𝑚+2)(𝑛𝑚+2) in which the 𝑃𝑀(𝑘, 𝑙) = 1, if there is a path
from node k to node l in the graph𝐺(𝑁,𝐶, 𝑆𝑝(𝐷))and 𝑃𝑀(𝑘, 𝑙) = 0, otherwise. Obviously, there is no
cycle in the initial graph 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷))in which 𝑆𝑝(𝐷) = ∅ and the following procedure monitor
and prohibit the cycle creation in each node of the search tree.
 For every two operations k ,l where𝑘 ↔ 𝑙 ∈ 𝐷, we can change disjunctive arc 𝑘 ↔ 𝑙 to arc 𝑘 → 𝑙 if
 PM(l, k) = 0. Now, if PM(l, k) = 0 and arc k → l is inserted to graph G, thePMis updated using the
following four rules: a) PM(k, l) = 1,b) 𝑃𝑀(𝑘, 𝑗) = 1; ∀𝑗 ∈ 𝑆𝑢𝑐(𝑙),c) 𝑃𝑀(𝑖, 𝑙) = 1; ∀𝑖 ∈
𝑃𝑟𝑒𝑑(𝑘)d)𝑃𝑀(𝑖, 𝑗) = 1;∀𝑖 ∈ 𝑃𝑟𝑒𝑑(𝑘),∀𝑗 ∈ 𝑆𝑢𝑐(𝑙). In these four rules, 𝑃𝑟𝑒𝑑(𝑘) and
𝑆𝑢𝑐(𝑘)indicate all (direct and indirect) predecessors and successors of operationk, respectively, in
graph 𝐺(𝑁,𝐶, 𝑆𝑝(𝐷)).Now, we can establish the dominance rule 1 as follows.

Dominance rule 1: Assume in a node of the search tree, disjunctive arc 𝑘 ↔ 𝑙 has to be fixed. If
𝑃𝑀(𝑙,𝑘) = 1, fathom the node of the search tree in which arc 𝑘 → 𝑙 is selected.

Proof: Straightforward.

 In addition of infeasible solutions, there are partial solutions in the search tree where all of their
offspring solutions will have objective values smaller than the best found solution so far. In order to
detect such solutions, we need to construct an upper bound (UB) in each node of the search tree. For
this purpose, consider the optimal graph 𝐺(𝑁,𝐶, 𝑆∗(𝐷)) and its corresponding optimal objective value
𝛱∗. Also, assume Γ𝑖 indicates the set of operations which must be processed by machine 𝑖; 𝑖 =
1, … ,𝑚 and 𝑁𝑖 ⊂ 𝑁indicates a set of nodes corresponding to operations which should be processed
by 𝑀𝑖. Suppose 𝛱𝑖∗ shows the objective function value calculated based upon optimal graph
𝐺(𝑁𝑖,𝐶, 𝑆∗(𝐷)). It is clear that 𝛱∗ ≤ 𝑚𝑖𝑛 {𝛱𝑖∗; 𝑖 = 1, … ,𝑚}. Thus, if we can calculate an upper
bound for each 𝛱𝑖∗, it is also a valid upper bound for 𝛱∗. Assume 𝛱𝑖

𝑝 represents the objective function
value calculated based upon operations 𝑘 ∈ Γ𝑖in graph (𝑁,𝐶, 𝑆𝑝(𝐷)) . In the Algorithm 2, we
develop an upper bound 𝑈𝐵𝑖for each 𝛱𝑖

𝑝 which is an upper bound for 𝛱𝑖∗ and 𝛱∗ as well.

Algorithm 2: The pseudo-code of 𝑼𝑩𝒊
1. Let 𝑘1∗ = 𝑎𝑟𝑔 �𝑚𝑖𝑛𝑘∈Γ𝑖{𝐸(ℎ𝑘)}�and 𝑘2∗ = 𝑎𝑟𝑔�𝑚𝑖𝑛𝑘∈Γ𝑖{𝐸(𝑞𝑘) − 𝜇𝑘}�. Put 𝑘𝑖∗; 𝑖 = 1,2 in set
𝐻𝑖; 𝑖 = 1,2 (initialized as an empty set).
2. Let 𝑙1∗ = 𝑎𝑟𝑔�𝑚𝑖𝑛𝑙∈Γ𝑖{𝑉𝑎𝑟(ℎ𝑙)}�and 𝑙2∗ = 𝑎𝑟𝑔�𝑚𝑖𝑛𝑙∈Γ𝑖�𝑉𝑎𝑟(𝑞𝑙) − 𝜎𝑙2��. Put 𝑙𝑖∗; 𝑖 = 1,2 in set
𝑄𝑖; 𝑖 = 1,2 (initialized as an empty set).
3. If |𝐻1 ∩ 𝐻2| = 1 and |𝐻1| = |𝐻2| = 1, then for the common operation 𝑘𝑖∗, let 𝑚𝑒𝑎𝑛𝑖 =
𝑚𝑖𝑛(𝛼𝑖 ,𝛽𝑖) where 𝛼𝑖 and 𝛽𝑖 are calculated as follows:

𝛼𝑖 = 𝐸�ℎ𝑘𝑖∗� + � 𝜇𝑘
𝑘∈Γ𝑖

+ 𝑚𝑖𝑛𝑘≠𝑘𝑖∗∈Γ𝑖{𝐸(𝑞𝑘) − 𝜇𝑘}

𝛽𝑖 = 𝑚𝑖𝑛𝑘≠𝑘𝑖∗∈Γ𝑖{𝐸(ℎ𝑘)} + � 𝜇𝑘
𝑘∈Γ𝑖

+ �𝐸�𝑞𝑘𝑖∗� − 𝜇𝑘𝑖∗�

4. Else, calculate mean as follows:
𝑚𝑒𝑎𝑛𝑖 = 𝑚𝑖𝑛𝑘∈Γ𝑖{𝐸(ℎ𝑘)} + � 𝜇𝑘

𝑘∈Γ𝑖

+𝑚𝑖𝑛𝑘∈Γ𝑖{𝐸(𝑞𝑘) − 𝜇𝑘}

5. If |𝑄1 ∩ 𝑄2| = 1 and |𝑄1| = |𝑄2| = 1, then for the common operation 𝑙𝑖∗, let 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 =
𝑚𝑖𝑛(𝜔𝑖, 𝛾𝑖) where 𝜔𝑖 and 𝛾𝑖 are calculated as follows:

𝜔𝑖 = 𝑉𝑎𝑟�ℎ𝑙𝑖∗� + �𝜎𝑙2

𝑙∈Γ𝑖

+ 𝑚𝑖𝑛𝑙≠𝑙𝑖∗∈Γ𝑖�𝑉𝑎𝑟(𝑞𝑙) − 𝜎𝑙2�

𝛾𝑖 = 𝑚𝑖𝑛𝑙≠𝑙𝑖∗∈Γ𝑖{𝑉𝑎𝑟(ℎ𝑙)} + �𝜎𝑙2

𝑙∈Γ𝑖

+ �𝑉𝑎𝑟�𝑞𝑙𝑖∗� − 𝜎𝑙𝑖∗
2�

6. Else, calculate variance as follows:
𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖 = 𝑚𝑖𝑛𝑙∈Γ𝑖{𝑉𝑎𝑟(ℎ𝑙)} + �𝜎𝑙2

𝑙∈Γ𝑖

+ 𝑚𝑖𝑛𝑙∈Γ𝑖�𝑉𝑎𝑟(𝑞𝑙) − 𝜎𝑙2�

7. Calculate the upper bound of 𝛱𝑖
𝑝as 𝑈𝐵𝑖 = 𝛷 � 𝛿−𝑚𝑒𝑎𝑛𝑖

�𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖
�.

 In the above algorithm, the operator arg used in relation 𝑎𝑟𝑔 �𝑚𝑖𝑛𝑘∈Γ𝑖{… }� return the index
(operation) to the minimum value. If we consider only operations𝑘 ∈ Γ𝑖, 𝑚𝑒𝑎𝑛𝑖 is a lower bound on
the length of path including all of these operations. In order to find a better (larger) value for 𝑚𝑒𝑎𝑛𝑖,
we consider two situations, represented in steps 3 and 4, respectively. In step 3, we assume the
operation having the minimum 𝐸(ℎ𝑘), has also the minimum value of 𝐸(𝑞𝑘)− 𝜇𝑘. Thus, we consider
the impact of this operation on calculation of 𝑚𝑒𝑎𝑛𝑖 either in 𝐸(ℎ𝑘) or in 𝐸(𝑞𝑘)− 𝜇𝑘. This idea has
been implemented by definition of parameters 𝛼𝑖and 𝛽𝑖. Moreover, in order to find 𝑈𝐵𝑖, we must
establish a lower bound for variance of the path including all operations 𝑘 ∈ Γ𝑖. Similar to steps 3 and
4, we develop steps 5 and 6 and define parameters 𝜔𝑖 and 𝛾𝑖 to calculate 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑖.

 After calculating 𝑈𝐵𝑖 for all 𝑖 = 1, … ,𝑚 in each node of the search tree, we determine upper bound
of the main problem as 𝑈𝐵 = 𝑚𝑖𝑛{𝑈𝐵𝑖; 𝑖 = 1, … ,𝑚}. Now, we establish dominance rule 2.

Dominance rule 2: In each node of the search tree, if 𝑈𝐵 < 𝐿𝐵or 𝛱𝑝 < 𝐿𝐵, then fathom the node.

Proof: Straightforward.

4- Computational results

4-1- Computational setup

 All the procedures were coded in Visual C++ 2013; all computational experiments were performed
on a computer with Intel® Core™ i7-4790k CPU @ 4.00 GHz processor, 32 GB of internal memory

and a 64-bit operating system. In order to evaluate the performance of the developed B&B algorithm,
four values for the number of jobs, 𝑛 = 10, 20, 30 and 40 and three values for the number of
machines, 𝑚 = 3, 4 and 5, have been considered. For each operation k, the value of 𝜇𝑘 is drawn from
a uniform distribution 𝑈[5,99] and the value of 𝜎𝑘2 is drawn from a uniform distribution on interval
��0,0.1𝜇𝑗2��. The uniform distribution for 𝜎𝑘2 is chosen so as to obtain non-negative processing times in
virtually all cases. Five instances are generated for each combination of n and m, leading to 60 test
instances in total. The due date is set to the makespan obtained from the well-known shifting
bottleneck method (Adams et al., 1988) in which 𝜇𝑘 is considered as the deterministic processing time
of operation k.

4-2- Summary results

 In this section, the total run time of the B&B algorithm, referred as 𝑇Total, is reported in Table 2.
Each cell of this table indicates the average 𝑇Total over five instances for the corresponding n and m.
Also, in the last row and last column, the average 𝑇Total is presented for each value of n and m. All
times are expressed in seconds.

Table 2. Average of 𝑇Total for different values of n and m
m n 10 20 30 40 Avg.

3 0.01 0.70 0.83 83.21 21.19
4 0.11 1.12 95.80 755.62 213.16
5 0.17 6.82 337.30 2181.11 631.35

Avg. 0.10 2.88 144.64 1006.65 288.5

 As expected, we observe an increase in 𝑇Total B&B algorithm when the number of jobs or machines
is increased. The average of 𝑇Total over all test instances has been around 288.5 seconds.

4-3-Results with time limits

 In order to evaluate the performance of our developed B&B algorithm in short running times, we
executed it for five time limits (TL), i.e. 𝑇𝐿 = 1, 10, 100 and 1000 seconds. For each time limit, we
consider the average percentage of deviation (APD) of the best obtained solutions from the best found
solutions so far and the number of best solutions found (#best). The results of Table 3 indicate that the
performance of the B&B algorithm is improved by increasing the time limit.

Table 3. Performance of the B&B algorithm in limited times

TL= 1 10 100 1000

APD 19.5 15.3 7.1 3.7

#best 35 42 48 51

4-4- Performance of the heuristic procedure

 The performance of the heuristic procedure, developed for the initial solution, is evaluated in Table
4. Each cell of this table contains the APD between the solutions produced by the heuristic procedure
and the best found solutions so far. The total APD is almost 55% which shows the efficiency of this
procedure. Maybe it is expected that deviation will be increased with increasing number of jobs and
machines but there are some exceptions in the reported results in Table 4 which is due to the non-
optimal solutions. The running times for all test instances by the heuristic procedure are almost zero.

Table 4. Performance of the heuristic procedure
m n 10 20 30 40

3 45.1 66.1 18.7 39.2
4 75.8 44.2 57.4 52.9
5 77.8 53.6 60.4 68.9

4-5- Comparative results

 If we have a linear objective function instead of 𝛱, we will be able to run the binary model,
developed in section 2, using CPLEX and compare its performance with the B&B algorithm. For this
purpose, we consider𝑀𝑎𝑥 𝛱′ = −𝜆𝑚+1,𝑛+1 − 𝜃𝑚+1,𝑛+1

2 instead of𝑀𝑎𝑥 𝛱in the objective function.
We should confess that 𝛱′ is not a proper linear approximation for 𝛱 and there are some errors in this
conversion, but we do this just to run the developed model using CPLEX. Also, we simply change the
other components of the B&B algorithm based on the new objective function 𝛱′. Moreover, it is
obvious that when we consider 𝛱′ instead of 𝛱, the dominance rule 2 will not cut the optimal
solutions.

 Based upon the a fore mentioned assumption and considering previous test instances, we run the
developed binary model using CPLEX 12.3 and compare its results with the results obtained from
B&B algorithm in Table 5. Each cell of this table indicates 𝑇𝑇𝑜𝑡𝑎𝑙 based on seconds.

Table 5. Comparative results of B&B algorithm and CPLEX

 B&B CPLEX

m n 10 20 30 40 10 20 30 40

3 0.00 0.53 0.64 71.94 0.01 0.92 1.02 118.01

4 0.08 0.86 74.27 643.12 0.12 1.24 150.49 909.72

5 0.11 5.07 274.19 1945.63 0.18 8.83 449.37 3218.97

 The results of Table 6 reveal that B&B outperforms the CPLEX such that the average 𝑇𝑇𝑜𝑡𝑎𝑙 over all
test instances for B&B and CPLEX are 251.37 seconds and 404.91 seconds, respectively.

4-6- Impact of the dominance rules

 In order to evaluate the impact of the dominance rules, we run our B&B algorithm in which these
rules are excluded. We define algorithms 𝐵&𝐵−(1,2),𝐵&𝐵−(1)and 𝐵&𝐵−(2) respectively as the B&B
algorithm in which both dominance rules, dominance rule 1 and dominance rule 2 are excluded. . By
considering four already mentioned time limits, Table 6 indicates the results in terms of APD.

Table 6. Impact of the dominance rules
 Time limits
 1 10 100 1000

B&𝐵 19.5 15.3 7.1 3.7
𝐵&𝐵−(1,2) 64.3 51.0 28.7 15.74
𝐵&𝐵−(1) 41.8 33.3 18.6 10.0
𝐵&𝐵−(2) 29.4 23.3 12.8 7.6

 Comparing the results of B&𝐵with B&𝐵−(1.2),𝐵&𝐵−(1) and 𝐵&𝐵−(2), we find that the average APD
over all time limits is respectively around 3.5, 2.3 and 1.6 times worse than B&𝐵. These results also
indicate that dominance rule1 that cut infeasible solutions has more impact on the efficiency of the
developed B&B algorithm.

5- Conclusions and outlook on future work

 In this paper, the β-robust job shop scheduling problem was studied, which aims to maximize
service level in a job shop environment. A branch-and-bound algorithm accompanied with a set of
dominance rules was developed to solve the problem. It is able to solve problem with size of 40
activities in reasonable times.

 As future research opportunities, we suggest finding efficient dominance rules which do not cut
optimal solutions. Also, developing more capable dominance rules can increase the efficiency of
algorithm. The development of other exact, heuristic or meta-heuristic procedures for the βRJSSP
may also be interesting research topics.

References

Adams J, Balas E and Zawack D (1988). The shifting bottleneck procedure for job-shop scheduling.
Management Science 34: 391-401.

Alidaee B and Panwalkar SS (1993). Single stage minimumabsolute lateness problem with a common
due date on non-identicalmachines. Journal of the Operational ResearchSociety 44: 29–36.

Applegate D and Cook W (1991). A computational study of job-shop scheduling. ORSA Journal of
Computing 3: 149-156.

Brucker P, Jurisch B and Kramer A (1994). The job-shop problem and immediate selection. Annals of
Operations Research 50: 73-114.

Carlier J and Pinson E (1989). An algorithm for solving the job-shop problem. Management Science
35: 164-176.

Daniels RL and Carrillo JE (1997). Beta-Robust scheduling for single-machine systems with
uncertain processing times. IIE Transactions 29: 977-985.

Golenko-Ginzburg D and Gonik A (2002). Optimal job-shop scheduling with random operations and
cost objectives. International Journal of Production Economics 76: 147-154.

Graham RL, Lawler EL, Lenstra JK and RinnooyKan AHG (1979). Optimization and approximation
in deterministic sequencing and scheduling theory: a survey. Annals of Discrete Mathematics 5: 287-
326.

Lenstra JK, RinnooyKan AHG and Brucker P (1977). Complexity of machine scheduling problems.
In: P.L. Hammer, E.L. Johnson, B.H. Korte& G.L. Nemhauser, Studies in integer programming (Vol.
1, pp. 343-362). North-Holland, Amsterdam: Annals of Discrete Mathematics.

Lin S W, Chou S Y and Ying K C (2007). A sequential exchange approach for minimizing earliness–
tardiness penalties of single-machine scheduling with a common due date. European Journal of
Operational Research 177: 1294-1301.

Luh PB, Cheng D and Thakur LS (1999). An effective approach for job shop scheduling with
uncertain processing requirements. IEEE Transactions on Robotics and Automation 15: 328–339.

http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S0377221705009380�
http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S0377221705009380�

Malcolm DG, Roseboom JH, Clark CE ,Fazar W (1959). Application of a Technique for Research and
Development Program Evaluation. Operations Research 7(5): 646-669.

Pardalos P, Shylo O, Vazacopoulos A (2010). Solving job shop scheduling problems utilizing the
properties of backbone and “big valley”. Computational Optimization and Applications 47: 61-76.

Pinedo ML (2014). Scheduling: theory, algorithms, and systems. Springer.

Ranjbar M and NajafianRazavi M (2012). A hybrid metaheuristic for concurrent layout and
scheduling problem in a job shop environment. Advanced Manufacturing Technology 62: 1249-1260.

Ranjbar M, Davari M and Leus R (2012a). Two branch-and-bound algorithms for the robust parallel
machine scheduling problem. Computers & Operations Research 39: 1652-1660.

Ranjbar M, Khalilzadeh M, Kianfar F, Etminani K (2012b). An optimal procedure for minimizing
total weighted resource tardiness penalty costs in the resource-constrained project scheduling
problem. Computers & Industrial Engineering 62: 264-270.

Roy B and Sussmann B (1964). Les problemesd'ordonnancement avec contraintesdisjonctives. In:
Note D. S. 9. Paris: SEMA.

Sarin SC, Nagarajan B, Liao L (2014). Stochastic scheduling: expectation-variance analysis of a
schedule. Cambridge University Press.

Singer M and Pinedo M (1998). A computational study of branch and bound techniques for
minimizing the total weighted tardiness in job shops. IIE Transactions 30: 109-118.

Spanos AC, Ponis ST, Tatsiopoulos IP, Christou IT and Rokou E (2014). A new hybrid parallel
genetic algorithm for the job-shop scheduling problem. International Transaction in Operational
Research 21: 479-499.

Tavakkoli-Moghaddam R, Jolai F, Vaziri F, Ahmed PK and Azaron A (2005). A hybrid method for
solving stochastic job shop scheduling problem. Applied Mathematics and Computation 170: 185-
206.

Tuong NH, Soukhal A, Billaut JC (2010). A new dynamic programming formulation for scheduling
independent tasks with common due date on parallel machines. European Journal of Operational
Research 202: 646-653.

Wu CW, Brown KN and Beck CJ (2009). Scheduling with uncertain durations: modeling beta-robust
scheduling with constraints. Computers & Operations Research 36: 2348-2356.

Yin Y, Cheng TCE, Cheng SR, Wu CC (2013). Single-machine batch delivery scheduling with an
assignable common due date and controllable processing times. Computers & Industrial Engineering
65: 652-662.

Zhang CY, Li PG, Rao YQ and Guan ZL (2008). A very fast TS/SA algorithm for the job shop
scheduling problem. Computers & Operations Research 35: 282-294.

http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S037722170900486X�
http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S037722170900486X�
http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S0360835213001460�
http://www.sciencedirect.com.ezproxy.saintleo.edu/science/article/pii/S0360835213001460�

