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Abstract 

In this paper, the optimal adaptive leader-follower consensus of linear continuous time multi-agent systems 

is considered. The error dynamics of each player depends on its neighbors’ information. Detailed analysis of 

online optimal leader-follower consensus under known and unknown dynamics is presented. The introduced 

reinforcement learning-based algorithms learn online the approximate solution to algebraic Riccati 

equations. An optimal adaptive control technique is employed to iteratively solve the algebraic Riccati 

equation based on the online measured error state and input information for each agent without requiring the 

priori knowledge of the system matrices. The decoupling of the multi-agent system global error dynamics 

facilitates the employment of policy iteration and optimal adaptive control techniques to solve the leader-

follower consensus problem under known and unknown dynamics. Simulation results verify the 

effectiveness of the proposed methods. 

 

Keywords: Graph Theory, Leader-follower Consensus, Multi-agent Systems, Policy Iterations.  

1. Introduction 

In recent decades multi-agent systems (MASs) are 

applied as new methods for solving problems 

which cannot be solved by a single agent. MASs 

contain agents forming a network which exchange 

information through the network to satisfy a 

predefined objective. Information exchanging 

among agents can be divided to centralized and 

distributed approaches. Centralized approaches 

are mainly concentrated and discussed where all 

agents have to continuously communicate with a 

central agent. This kind of communication results 

in a heavy traffic, information loss and delay. 

Also, the central agent must be equipped with 

huge computational capabilities to receive all the 

agents’ information and provide them with a 

command in response. Recently these challenges 

deviates the stream of studies toward distributed 

techniques where agents only need to 

communicate with their local neighbors. 

A main problem in cooperative control of MASs 

is Consensus or synchronization. In consensus 

problems, it is desired to design simple control 

law for each agent, using local information, such 

that the system can achieve prescribed collective 

behaviors. In the field of control, consensus of 

MAS is categorized to cooperative regulation and 

cooperative tracking. In cooperative regulator 

problems, known as leaderless consensus, 

distributed controllers are designed for each agent, 

such that all agents are eventually driven to an 

unprescribed common value [1]. This value may 

be a constant, or may be time varying, but is 

generally a function of the initial states of the 

agents in the communication network [2]. 

Alternatively in a cooperative tracking problem, 

which is considered in this paper, there exists a 

leader agent. The leader agent acts as a command 

generator, which generates the desired reference 

trajectory. The leader ignores information from 

the follower agents and all other agents are 

required to follow the leader agent [3,4]. This 

problem is known as the leader-follower 

consensus [5], model reference consensus [6], or 

pinning control [7]. 

In MASs, the network structure and agents 

communications can be shown by graph theory 

tools.  

doi:10.5829/idosi.JAIDM.2015.03.01.11
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Multi player linear differential games rely on 

solving the coupled algebraic Riccati equations 

(AREs). The solution of each player coupled 

equations requires knowledge of the player’s 

neighbors strategies. Since AREs are nonlinear, it 

is difficult to solve them directly. To solve ARE, 

the following approaches have been proposed and 

extended: backwards integration of the 

Differential Riccati Equation, or Chandrasekhar 

equations [8]; eigenvector-based algorithms [9,10] 

and the numerically advantageous Schur-vector-

based modification [11]; matrix-sign-based 

algorithms [12-14]; Newton's method [15-18]. 

These methods are mostly offline procedures and 

are proven to converge to the desired solution of 

the ARE. They either operate on the Hamiltonian 

matrix associated with the ARE (eigenvector and 

matrix-sign-based algorithms) or require solving 

Lyapunov equations (Newton's method). In all 

methods, the system dynamics must be known and 

a preceding identification procedure is always 

necessary. 

Adaptive control [19,20] allows the design of 

online stabilizing controllers for uncertain 

dynamic systems. A conventional way to design 

an adaptive optimal control law is to identify the 

system parameters first and then solve the related 

algebraic Riccati equation. However, such 

adaptive systems are known to respond slowly to 

parameter variations from the plant. Optimal 

adaptive controllers can be obtained by designing 

adaptive controllers with the ability of learning 

online the solutions to optimal control problems.  

Reinforcement learning (RL) is a sub-area of 

machine learning involved with how to 

methodically modify the actions of an agent 

(player) based on observed responses from its 

environment [21]. RL is a class of methods, which 

provides online solution for optimal control 

problems by means of a reinforcement scalar 

signal measured from the environment, which 

indicates the level of control performance. This is 

because a number of RL algorithms [22-24] do 

not require knowledge or identification/learning 

of the system dynamics, and RL is strongly 

connected with direct and indirect optimal 

adaptive control methods.    

In this paper, the optimal adaptive control means 

the algorithms based on RL that provide online 

synthesis of optimal control policies. Also, the 

scalar value associated with the online adaptive 

controller acts as a reinforcement signal to 

optimally modify the adaptive controller in an 

online fashion. 

RL algorithms can be employed to solve optimal 

control problems, by means of function 

approximation structures that can learn the 

solution of ARE. Since function approximation 

structures are used to implement these online 

iterative learning algorithms, the employed 

methods can also be addressed as approximate 

dynamic programming (ADP) [24].  

Policy Iteration (PI), a computational RL 

technique [25], provides an effective means of 

online learning solutions to AREs. PI contains a 

class of algorithms with two steps, policy 

evaluation and policy improvement. In control 

theory, PI algorithm amounts to learning the 

solution to a nonlinear Lyapunov equation, and 

then updating the policy through minimizing a 

Hamiltonian function. Using PI technique, a 

nonlinear ARE is solved successively by breaking 

it into a sequence of linear equations that are 

easier to handle. However, PI has primarily been 

developed for discrete-time systems [24,25], 

recent research findings present Policy Iteration 

techniques for continuous-time systems  [26].  

ADP and RL methods have been used to solve 

multi player games for finite-state systems 

[27,28]. In [29-32], RL methods have been 

employed to learn online in real-time the solutions 

of optimal control problems for dynamic systems 

and differential games. 

The leader-follower consensus has been an active 

area of research. Jadbabaie et al. considered a 

leader-follower consensus problem and proved 

that if all the agents were jointly connected with 

their leader, their states would converge to that of 

the leader over the course of time [33]. To solve 

the leader-follower problem, Hong et al. proposed 

a distributed control law using local information 

[34] and Cheng et al. provided a rigorous proof 

for the consensus using an extension of LaSalle's 

invariance principle [35]. Cooperative leader 

follower attitude control of multiple rigid bodies 

was considered in [36]. Leader-follower formation 

control of nonholonomic mobile robots was 

studied in [37]. Peng et al. studied the leader-

follower consensus for an MAS with a varying-

velocity leader and time-varying delays [38]. The 

consensus problem in networks of dynamic agents 

with switching topology and time-delays was 

proposed in [39].  

In the progress of the research on leader-follower 

consensus of MASs, the mentioned methods were 

mostly offline and non-optimal and required the 

complete knowledge of the system dynamics.  

The optimal adaptive control contains the 

algorithms that provide online synthesis of 

optimal control policies [40]. For a single system, 

[26] introduced an online iterative PI method 

which does not require the knowledge of internal 
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system dynamics but does require the knowledge 

of input dynamics to solve the linear quadratic 

regulator (LQR) problem. Vrabie et al. showed 

that after each time the control policy is updated, 

and the information of state and input must be 

recollected for the next iteration [26]. Jiang et al. 

introduced a computational adaptive optimal 

control method for the LQR problem, which does 

not require either the internal or the input 

dynamics [41]. For MASs, [42] introduced an 

online synchronous PI for optimal leader-follower 

consensus of linear MASs with the known 

dynamics. Based on the previous studies, the 

online optimal leader-follower consensus of 

MASs under the unknown linear dynamics has 

remained an open problem. 

This paper presents an online optimal adaptive 

algorithm for continuous time leader-follower 

consensus of MASs under known and unknown 

dynamics. The main contribution of the paper is 

the introduction of a direct optimal adaptive 

algorithm (data-based approach) which converges 

to optimal control solution without using an 

explicit, a priori obtained, model of the matrices 

(drift and input matrices) of the linear system. We 

implement the decoupling of multi-agent global 

error dynamics which facilitates the employment 

of policy iteration and optimal adaptive control 

techniques to solve the leader-follower consensus 

problem under known and unknown dynamics. 

The introduced method employs PI technique to 

iteratively solve the ARE of each agent using the 

online information of error state and input without 

requiring a primary knowledge of system 

matrices. For each agent, all iterations are 

implemented using repeatedly the same error state 

and input information on some fixed time 

intervals. In this paper, the employed online 

optimal adaptive computational tool is motivated 

with [41], where the method is generalized for 

leader-follower consensus in MASs. 

The paper is organized as follows. Section 2 

contains the results from Graph theory, also the 

problem formulation, node error dynamics and 

leader-follower error dynamics decoupling are 

clarified in this section. Section 3 introduces 

Policy iteration algorithm for leader-follower 

consensus under known dynamics. Optimal 

adaptive control design for leader-follower 

consensus under unknown dynamics is presented 

in section 4. Simulation results are discussed in 

Section 5. Finally the conclusions are drawn in 

section 6. 

 

 

 

2. Problem formulation and preliminaries  

2.1. Graphs 

Graph theory is a useful mathematical tool in 

multi-agent systems research where information 

exchange between agents and the leader is shown 

through a graph. The topology of a 

communication network can be expressed by 

either a directed or undirected graph, according to 

whether the information flow is unidirectional or 

bidirectional. The topology of information 

exchange between N agents is described by a 

graph ),( EVGr  , where  NV ,...,2,1  is the 

set of vertices representing N agents and 

VVE   is the set of edges of the graph. 

Eji ),(  means there is an edge from node i  to 

node j . We assume the graph is simple, e.g., no 

repeated edges and no self-loops. The topology of 

a graph is often represented by an adjacency 

matrix [ ] N N

G ijA a R    with 1ija   if 

Eij ),(  and 0ija otherwise. Note

iEii  ,),( , 0iia . The set of neighbors of a 

node i  is  EijjNi  ),(: , i.e. the set of 

nodes with arcs incoming to i . If node j  is a 

neighbor of node i , the node i  can get 

information from node j  not necessarily vice 

versa for directed graphs. In undirected graphs, 

neighbor is a mutual relation. Define the in-degree 

matrix as a diagonal matrix 
NN

i RddiagD  )(  

with 



iNj

iji ad the weighted in-degree of node i  

(i.e. ith  row sum of GA ). Define the graph 

Laplacian matrix as GL D A  , which has all 

row sums equal to zero. Apparently in 

bidirectional (undirected) graphs, L  is a 

symmetric matrix. A path is a sequence of 

connected edges in a graph. A graph is connected 

if there is a path between every pair of vertices.  

The leader is represented by vertex 0. Information 

is exchanged between the leader and the agents 

which are in the neighbors of the leader (See 

Figure 1.). 

 

Figure 1. Communication graph. 
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2.2. Synchronization and node error dynamics  

In cooperative tracking control of networked 

linear systems, we wish to achieve 

synchronization in the multi-agent system 

simultaneously optimizing some performance 

specifications on the agents. Consider an MAS 

consisting of N  agents and a leader, which are in 

communication through an undirected graph. The 

dynamics of each agent is 

iiii uBAxx                                                (1) 

where 
n

i Rx   is the measurable state of agent i , 

and 
m

i Ru   is the input of player i . In this 

section, we assume that A  and iB  are accurately 

known. The matrix iB  is full column rank. The 

leader labeled, as 0i  has linear dynamics as  

00 Axx                                                       (2) 

where 
nRx 0 is the measurable state of the 

leader. Obviously, the leader's dynamics is 

independent of others. We take the same internal 

dynamic matrix ( A ) for all the agents and the 

leader to be identical because this case has 

practical background such as group of birds, 

school of fishes etc. The following assumption is 

used throughout the paper. 

Assumption 1. The pair NiBA i ,...,2,1),,(   is 

stabilizable. 

The dynamics of each agent (node) can describe 

the motion of a robot, unmanned autonomous 

vehicle, or missile that satisfies a performance 

objective. 

Definition 1. The leader-follower consensus of 

system (1)-(2) is said to be achieved if, for each 

agent  Ni ,...,2,1 , there is a local state 

feedback iu  of  ij Njx :  such that the closed-

loop system satisfies 

Nitxtxi
t

,...,1,0)()(lim 0 


 for any initial 

condition Nixi ,...,1,0),0(  . 

The design objective is to employ the following 

distributed control law for agent , 1,...,i i N  

0( ( ) ( ))
i

i i j i i i

j N

u K x x g x x


                  (3) 

where NiRK nm

i ,...,2,1,  
is a feedback 

matrix to be designed and ig  is defined to be 1 

when the leader is a neighbor of the agent i , and 0 

otherwise. Since the proposed feedback controller

iu , depends on both the states of its neighbors and 

the leader agent states, iu  is a distributed 

controller. In order to analyze the leader-follower 

consensus problem, we denote the error state 

between the agent i  and the leader as 0xxii 

. The dynamics of , 1,...,i i N   is 

( )
i

i i i i j i i i i

j N

A B K B g    


    .        (4) 

Considering  

),...,(,),...,,( 121 N

TT

N

TT ggdiagG    and by 

using the Lapalcian L of Graph Gr , we have  

 )])(([ niiN IHKBdiagAI          (5) 

where GLH   and   is the Kronecker 

product. )( ii KBdiag  is an NN   block 

diagonal matrix. The matrix H  corresponding to 

Graph topology has the following properties, 

which are proved in [43]: 

1. The matrix H  has nonnegative 

eigenvalues. 

2. The matrix H  is positive definite if 

and only if the graph Gr  is connected.  
 

Assumption 2. The graph Gr  is connected. 

The design objective for each agent i  is to find 

the feedback matrix iK which minimizes the 

following performance index for linear system 

(4),  

0
( ) ,

1,2,..., N

T T

i i i i iJ Q u Ru dt

i

 


 



                     (6) 

where
nnRQ  ,

mmRR  , 0TQ Q  ,

0 TRR , with ),( 2
1

QA  observable. 

Before we proceed to the design of online 

controllers, we need to decouple the global error 

dynamics (5), as discussed in the following. 

 

2.3. Decoupling of Leader-follower error 

dynamic 

Since H  is symmetric, there exists an orthogonal 

matrix 
NNRT   such that 

 N

T diagTHT  ,...,, 21  where 

 N ,...,, 21  are the eigenvalues of matrix H . 

Based on Assumption 2, Gr  is connected 

therefore H  is a positive definite matrix and 

Nii ,...,2,1,0  . Now let  )( nIT   

then (5) becomes  

 ))(()( niiN IKBdiagAI       (7) 

Since the obtained global error dynamics (7) is 

block diagonal, it can be easily decoupled for each 

agent i , where for each agent we have  

( ) , 1,2,..., Ni i i i iA B K i                  (8) 
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0
( ) ,

1,2,..., N

T T

i i i i iJ Q u Ru dt

i

 


 



                     (9) 

In order to find the optimal iK which guarantees 

the leader-follower consensus for every agent i , 

we can minimize (9) with respect to (8), which is 

easier in comparison with minimizing (6) with 

respect to (4).  

Based on linear optimal control theory, 

minimizing (9) with respect to (8) to find the 

feedback matrix iK  can be done by solving the 

following algebraic Riccati equation for each 

agent: 

1( ) ( ) 0

T

i i

T

i i i i i i

A P PA

P B R B P Q 

 

 
                 (10) 

Based on the mentioned assumptions, (10) has a 

unique symmetrical positive definite solution 
*

iP . 

Therefore, the optimal feedback gain matrix can 

be determined by 
*1*

i

T

iii PBRK  , due to the 

dependence of iK  to i , each feedback gain 

depends on the graph topology. Since ARE is 

nonlinear in iP , it is usually difficult to directly 

solve 
*

iP from (10), especially for large size 

matrices. Furthermore, solving (10) and obtaining 
*

iK  requires the knowledge of A  and iB  

matrices. 

  

3. Policy iteration algorithm for leader-follower 

consensus of continuous time linear systems 

under known dynamic 

One of the efficient algorithms to numerically 

approximate the solution of ARE is the Kleinman 

algorithm [17]. Here we employ the Kleinman 

algorithm to numerically solve the corresponding 

ARE for each agent. The Kleinman method 

performs as a PI algorithm as discussed in the 

following.  

Algorithm 1. (Policy iteration Kleinman 

Algorithm) 

Step 0: Let 
nm

i RK 0
be any initial stabilizing 

feedback gain. 

Step 1: Let
k

iP  be the symmetric positive definite 

solution of Lyapunov equation (11) for the agent 

, 1,2,..., Ni i   

( ) ( )

0

k T k k k

i i i i i i i i

k T k

i i

A B K P P A B K

Q K RK

   

  
      (11) 

 Step 2:
1k

iK 
 with ,...2,1k  is defined 

recursively by 

1 1k T k
i i i iK R B P                                     (12) 

Step 3: 1k k   and go to step 1. 

On convergence. End. 
k

iii KBA   is Hurwitz and by iteratively solving 

the Lyapunov equation (11) which is linear in 
k

iP

and updating 
1k

iK 
 by (12) the solution to the 

nonlinear equation (10) is approximated as 
k

i

k

ii PPP  1*
 and 

*
lim i

k

i
k

KK 


. 

Theorem 1. Consider the MAS (1)-(2). Suppose 

Assumptions 1 and 2 are satisfied. Let 0iP  and 

iK  be the final solutions of the Kleinman’s 

algorithm for agent Nii ,...,2,1,  . Then under 

control law (3) all the agents follow the leader 

from any initial conditions. 

Proof: Consider the Lyapunov function candidate 

ii

T

ii PV  . The time derivative of this 

Lyapunov candidate along the trajectory of system 

(8) is 

2 1

2 1

[( ) ]

[ ( )]

[ 2 ]

[ ] 0

T T T T

i i i i i i i

T

i i i i i i

T T T

i i i i i i i i i

T T

i i i i i i i

V A K B P

P A B K

A P P A PB R B P

Q PB R B P

  

  

  

  





  

 

 

   

     (13) 

Thus for any 0i , 0 , 1,2,..., NiV i  . 

Therefore, system (8) is globally asymptotically 

stable which implies that all the agents follow the 

leader. 

 

4. Optimal adaptive control for leader-follower 

consensus under unknown dynamics 

To solve (11) without the knowledge of A , we 

have [40] 

( )

( ) ( ) ( ) ( ) ,

t t
T kT k

i i i i
t

T k T k

i i i i i i

Q u Ru d

t P t t t P t t

  

   



 

  


   (14) 

By online measurement of both i  and 
k

iu , 
k

iP  is 

uniquely determined under some persistence 

excitation (PE) condition though matrix iB  is still 

needed to calculate 1k
iK   in (12). 

To freely solve (11) and (12) without the 

knowledge of A  and iB , here the result of [41] is 

generalized for MAS leader-follower consensus. 

An online learning algorithm for the leader-

follower consensus problem is developed but does 

not rely on either A  or iB . 
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For each agent i , we assume a stabilizing 
0

iK  is 

known. Then we seek to find symmetric positive 

definite matrix 
k

iP  and feedback gain matrix 

nmk

i RK  1
 without requiring A  and iB  

matrices to be known.   

System (8) is rewritten as  

)( ii

k

iiiiki uKBA                          (15) 

where 
k

iiik KBAA  . Then using (14), along 

the solutions of (15), by (11) and (12) we have 

1

( ) ( ) ( ) ( )

2 ( )

T k T k

i i i i i i

t t
T k

i i i
t

t t
k T k

i i i i i
t

t t P t t t P t

Q d

u K RK d

   

  

  






     

 







(16) 

where 
k

i

Tk

i

k

i RKKQQ   . Note that in (16), the 

term (A A )T T k k

i k i i k iP P   depending on 

unknown matrices A  and iB  is replaced by

i

k

i

T

i Q  , which can be obtained by measuring 

i  online. Also, the term 
k

i

T

ii PB  containing iB  

is replaced by 
1k

iRK , in which 
1k

iK  is treated as 

another unknown matrix to be solved together 

with 
k

iP  [41].  

Therefore, (16) plays an important role in 

separating the system dynamics from the iterative 

process. As a result, the requirement of the system 

matrices in (11) and (12) can be replaced by the 

i  and input information iu  measured online. In 

other words, the information regarding the system 

dynamics ( A  and iB  matrices) is embedded in 

the error states and input which are measured 

online. 

We employ eKu iii  0 , with e  the 

exploration noise (for satisfying PE condition), as 

the input signal for learning in (15), without 

affecting the convergence of the learning process. 

Given a stabilizing 
k

iK , a pair of matrices (
k

iP ,

1k

iK ), with 0
Tk

i

k

i PP , satisfying (11) and 

(12) can be uniquely determined without knowing 

A or iB , under certain condition (Equation (27)). 

We employ 2

)1(

ˆ




nn

i RP  and 2

)1( 


nn

i R

instead of 
nn

i RP   and 
n

i R  respectively 

where 

11 12 1

22 23 1, ( 1)

2

ˆ [ , 2 ,..., 2 ,

, 2 ,..., 2 , ]

i n

T

n n nn n n

P p p p

p p p p  



                (17) 

2

1 1 2 1

2 2

2 2 3 1 ( 1)

2

[ , ,..., ,

, ,..., , ]

i n

T

n n n n n

     

       



                   

(18) 

Furthermore, by using Kronecker product 

representation we have: 

)()( k

i

T

i

T

ii

k

i

T

i QvecQ                   (19) 

1

1 1

1

( )

[( )( )

( )( )] ( )

k T k

i i i i i

T k T kT k

i i i i i i i

T T kT

i i n i

T T k

i i n i

u K RK

u RK K RK

I K R

u I R vec K

 

  

 





 



 

 

  

 

              (20) 

Also, for positive integer l , we define matrices 

mnl

u

nl

nn
l

RIRIR
iiiiii






  ,,
2

2

)1(

 such 

that 

1 0 2 1

1 ( 1)

2

[ ( ) ( ), ( ) ( ),

..., ( ) ( )] ,

i i i i i i

T

i l i l n n
l

t t t t

t t

     

    


   


       (21) 

 

1 2

0 1

2

1

[ , ,

..., ] ,

i i

l

l

t t

i i i i
t t

t
T

i i l nt

I d d

d

       

  




  



 


         (22) 

1 2

0 1

1
( )

[ , ,

..., ]

i i

l

l

t t

u i i i i
t t

t
T

i i l mn
t

I u d u d

u d

    

 




  



 


         (23) 

where, lttt  ...0 10 . 

Inspired by [41], (16) implies the following matrix 

form of linear equations for any given stabilizing 

gain matrix 
k

iK  

k

ik

i

k

ik

i
Kvec

P















 )( 1



                               (24) 

where, 
]

2

)1(
[ mn

nn
l

k

i R





  and 
lk

i R  are 

defined as: 

[ ,

2 ( ) 2 ( )] ,

( )

i i

i i i i

i i

k

i

kT

n i u n

k k

i i

I I K R I I R

I vec Q

 

  

 

  

   

  

   (25) 

Notice that if 
k

i  has full column rank, (24) can 

be directly solved as follows: 
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k

i

Tk

i

k

i

Tk

i

k

k

Kvec

P













1

1

)(
)(



          (26) 

The steps of the proposed optimal adaptive 

control algorithm for practical online 

implementation are presented as follows: 

Algorithm 2 (Optimal adaptive learning 

algorithm): 

Step 1: For the agent i  employ eKu iii  0  

as the input on the time interval ],[ 0 ltt , where 

0

iK is stabilizing and e  is the exploration noise 

(to satisfy PE condition). Compute 
iiii

I  ,  and 

iiu
I until the rank condition in (27) below is 

satisfied. 

Let 0k . 

Step 2: Solve 
k

iP̂  and 
1k

iK  from (26). 

Step 3: Let kk 1 , and repeat Step 2 until 

 1k

i

k

i PP  for 1k , where the constant 

0  is a predefined small threshold. 

Step 4: Use i

k

i

T

ii

k

ii PBRKu  *1  as the 

approximated optimal control policy for each 

agent i . 

It must be noted that in the cases where the 

solution of (24) does not exist due to the 

numerical error in 
ii

I   and 
iiu

I  computations, 

the solution of (26) can be obtained by employing 

the least square solution of (24). 

Lemma 1. As proved in [41], the convergence is 

guaranteed, if , 1,2,...,k

i i N   has full column 

rank for all , 0,1,2,...k k  ; therefore, there 

exists an integer 00 l , such that, for all 0ll  , 

mn
nn

IIrank
iiii u 




2

)1(
]),([         (27) 

Theorem 2. Using an initial stabilizing control 

policy 
0

iK with exploration noise, once the online 

information of 
iiii

I  ,  and 
iiu

I matrices 

(satisfying the rank condition (27)) is computed, 

the iterative process of Algorithm 2 results in a 

sequence of  
0

k
i

k
P




  and  

1

k
i

k
K




 which 

respectively converges to the optimal values *
iP   

and *
iK . 

Proof: See [41] for the similar proof. 

Several types of exploration noise, such as 

random noise [44,45], exponentially decreasing 

probing noise [32] and sum of sinusoids noise 

[41] are added to the input in reinforcement 

learning problems. The input signal should be 

persistently exciting; therefore, the generated 

signals from the system, which contains the 

information of the unknown system dynamics, are 

rich enough to lead us to the exact solution.  Here 

is a sum of sinusoids noise applied in the 

simulations to satisfy PE condition. 

Remark 1. In comparison with the previous 

research on MASs leader-follower consensus, 

which is mostly offline and requires the complete 

knowledge of the system dynamics, this paper has 

presented an online optimal adaptive controller for 

the leader-follower consensus, which does not 

require the knowledge of drift and input matrices 

of the linear agents. 

Remark 2. The main advantage of the proposed 

method is that the introduced optimal adaptive 

learning method is an online model-free ADP 

algorithm. 

Moreover, this technique iteratively solves the 

algebraic Riccati equation using the online 

information of state and input, without requiring 

the priori knowledge of the system matrices and 

all iterations can be conducted by using repeatedly 

the same state and input information (
i i

I  ,
i iuI ,

i i  ) on some fixed time intervals. However, the 

main burden in implementing the introduced 

optimal adaptive method (Algorithm 2) is the 

computation of 
2

i i

l nI R 

 and 
i i

l mn

uI R



matrices. The two matrices can be implemented 

using 
2n mn  integrators in the learning system 

to collect information of the error state and the 

input. 
 

5. Simulation  results  
In this section, we give an example to illustrate 

the validity of the proposed methods. Consider the 

graph structure shown in figure 1, similar to [42] 

focusing on the dynamic of each agent, which is 

as follows 

 

1 1 1 2 2 2

2 1 2 2 1 2
, ,

4 1 1 4 1 3
x x u x x u

        
          

          

3 3 3 4 4 4

2 1 2 2 1 1
, ,

4 1 2 4 1 1
x x u x x u

        
          

          

555
2

3

14

12
uxx 




















  

with target generator (leader) 00
14

12
xx 












 . 

The Laplacian L  and matrix G  are as follows:  
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



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00000
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00000

00000

,

21010
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The cost function of parameters for each agent, 

namely the Q and R matrices, is chosen to be 

identity matrices of appropriate dimensions. Since 

agents dynamics are already stable, the initial 

stabilizing feedback gains are considered as 

5,...,2,1],00[0  iKi . 

First we assume that A  and iB matrices are 

precisely known and we employ the Kleinman 

policy iteration (Algorithm 1) to reach leader-

follower consensus. Figure 2 shows the 

convergence of 54321 ,,,,   components 

trajectories to zero by time in 6 iterations, which 

confirm the synchronization of all agents to the 

leader.  

 

Figure 2. Agents , 1,...,5i i   trajectories under known 

dynamics. 

 

The error difference between the parameters of the 

solution , 1,2,3,4,5k
iP i   obtained iteratively and 

the optimal solution *
iP , obtained by directly 

solving the ARE, is in the range of 
410

. 

Now we assume that A  and iB matrices are 

unknown and we employ the optimal adaptive 

learning method (Algorithm 2). 

It must be mentioned that the precise knowledge 

of A  and iB  is not used in the design of optimal 

adaptive controllers. The initial values for the 

state variables of each agent are randomly selected 

near the origin. From st 0  to st 2  the 

following exploration noise is added to the agents’ 

inputs to meet the PE requirement, where 

100,...,2,1, iwi  is randomly selected from 

]500,500[ . 





100

1

)sin(01.0
i

itwe                                  (28) 

i  and iu  information of each agent is collected 

over each interval of 0.1 s. The policy iteration 

started at st 2 , and convergence is attained 

after 10 iterations, when the stopping criteria 

001.01  k

i

k

i PP  are satisfied for each 

5,4,3,2,1i . Figures 3 and 4 illustrate the 

convergence of 
k

iP  to 
*

iP  and 
k

iK  to 
*

iK  for 

5,4,3,2,1i  respectively during 10 iterations. 

 

Figure 3. Convergence of 
k

iP  to 
*

iP  during learning 

iterations. 

  

 

Figure 4. Convergence of 
k

iK  to 
*

iK  during learning 

iterations.  

 

The controller ii

T

iiii PBRKu  *1*   is used 

as the actual control input for each agent 

, 1,2,...,5i i   starting from st 2  to the end of 

the simulation. The convergence of 

54321 ,,,,   components to zero is depicted 

in figure 5 where the synchronization of all agents 

to the leader is guaranteed.  

As mentioned in table 1, the Kleinman PI method 

after 6 iterations results in leader-follower 

consensus in 6 seconds under known dynamics. 

The introduced optimal adaptive PI learns the 

optimal policy and guarantees the leader-follower 

consensus in 12 seconds after 10 iterations under 

unknown dynamics. Clearly, the introduced 

optimal adaptive method for unknown dynamics 
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requires more time and iterations in comparison 

with the method for known dynamics to converge 

to the optimal control policies.  
 

 

Figure 5. Agents , 1,...,5i i   trajectories under 

unknown dynamics. 

 

Table 1. Online PI methods comparison under known and 

unknown dynamics. 

Online 

method i Convergence 

time to zero 

A  and 

iB
matrices 

Number of 

iterations 

Kleinman PI 6 seconds Known  6 

Optimal 

Adaptive PI 

12 seconds Unknown  10 

 

As illustrated in the simulation results by 

employing PI technique and optimal adaptive 

learning algorithm, all agents synchronize to the 

leader. 
 

6. Conclusions 

In this paper, the online optimal leader-follower 

consensus problem for linear continuous time 

systems under known and unknown dynamics is 

considered. The multi-agent global error dynamic 

is decoupled to simplify the employment of policy 

iteration and optimal adaptive control techniques 

for leader-follower consensus under known and 

unknown dynamics respectively. The online 

optimal adaptive control solves the algebraic 

Riccati equation iteratively using system error 

state and input information collected online for 

each agent, without knowing the system matrices. 

Graph theory is employed to show the network 

topology of the multi-agent system, where the 

connectivity of the network graph is assumed as a 

key condition to ensure leader-follower 

consensus. Simulation results indicate the 

capabilities of the introduced algorithms. 
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 نشریه هوش مصنوعی و داده کاوی
 

 

 های چندعاملی خطی با دینامیک معین و نامعینسیستم تطبیقی هبر بهینهر-اجماع پیرو

 

  *محمدباقر نقیبی سیستان و فرزانه تاتاری

  .گروه مهندسی برق، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

 01/50/4500؛ پذیرش50/50/4502 ارسال

 ه:چکید

خطکای هکر عامکه بکه      های چندعاملی زمان پیوسته خطی مورد بررسی قرار گرفته است. دینامیک  تطبیقی سیستم بهینه رهبر-مقاله اجماع پیرودر این 

. های معین و نکامعین در ایکن مقالکه ارایکه اکد  اسکت      رهبر بهینه برخط تحت دینامی -یروهای آن بستگی دارد. تحلیه دقیق اجماع پاطلاعات همسایه

 تطبیقی بکرای حکه   بهینه . تکنی  کنترلپردازندبر مبنای یادگیری تقویتی، می حه تقریبی معادلات جبری ریکاتیبه یادگیری ، های ارایه اد الگوریتم

 دانک  اولیکه  اد  است که نیاز بکه   طراحی ،اطلاعات ورودی برخطگیری اد  و خطای انداز  حالت معادله جبری ریکاتی بر اساس اطلاعات تکرار اوند 

ری الگوریتم تکرار سیاسکت و  باعث سهولت در به کارگی ،دینامی  خطای همه جایی سیستم چندعاملی ندارد. جداسازی هادینامی  عامههای از ماتریس

  گردد.  معین و نامعین میبر تحت دینامیره-تطبیقی برای حه مسئله اجماع پیرو بهینه های کنترلتکنی 

 .عاملی، تکرار سیاستچندهای رهبر، سیستم-ری بازی، اجماع پیروتئو :کلمات کلیدی

 

 

 

 

 




