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Abstract—In this paper, a supply function equilibrium (SFE)
model is used to study the impacts of ramp rate limits on gen-
erating firms’ opportunities in oligopolistic electricity markets.
Ramp rate limits are added to the SFE model. Ramp rate limits
couple the SFE models of different hours. A heuristic algorithm
is presented to solve the coupled SFE models. Existence and
uniqueness of solutions are discussed. By applying the presented
algorithm to a test system, the impacts of ramp rate limits on the
strategic behavior of generating firms are studied.

Index Terms—Electricity market, oligopolistic opportunities,
ramp rate limits, supply function equilibrium (SFE).

I. INTRODUCTION

IN the past few decades, electric power systems have been
restructured with the hope of providing a nondiscriminatory

environment for competition. However, due to lack of condi-
tions of perfect competition in the electricity markets, such
as limited numbers of suppliers and transmission constraints,
competition is weak in electricity markets [1].

A market is at its Nash equilibrium if no firm is better off by
changing its strategy unilaterally [2].

In [1], supply function equilibrium (SFE) is modeled by a
set of coupled bilevel optimizations. Each bilevel optimization
consists of ISO’s social welfare maximization as inner problem
and a generating firm’s profit maximization as outer problem.
Bidding strategies of generating units at market equilibrium
have been used for several studies, such as the impact of
large-scale wind generation on the electricity market [3], co-
ordinating generation and transmission planning [4], and in-
fluence of emission allowance trading on electricity markets
[5], [6]. In [7], the presented SFE model in [1] is simpli-
fied by ignoring transmission constraints, and an analytical
closed solution is presented for pay-as-bid electricity markets.
Existence and uniqueness of equilibrium in both constrained
and unconstrained electricity markets are discussed. In [7],
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uncertainty in demand is taken into account in SFE models,
and a chance constrained technique is used to convert the
stochastic problem to a deterministic problem. Similarly in [3],
transmission constraints are ignored, and an analytical closed
solution is presented for uniform electricity markets. The exis-
tence and uniqueness of equilibrium in both constrained and un-
constrained electricity markets are discussed. A scenario-based
technique is employed to consider wind generation uncertainty
in the SFE model. The impacts of large-scale wind gener-
ation on electricity markets are studied using the presented
model in [3].

Ramp rate limits may considerably affect economics of
power generators. Hence, ramp rate limits have been widely
considered in unit commitment studies. In [8], an algorithm
for solving unit commitment problems in electricity markets
considering the ramp rate limits is proposed. A price-based
unit commitment considering ramp rate limits is presented in
[9]. The influence of the generator’s ramp rate constraints on
their Cournot equilibrium strategy formulation is investigated
in [10]. In [10], the impacts of ramp rate constraints on the
existence and uniqueness of equilibrium are not studied. The
generation allocation problem in competitive electricity mar-
kets considering ramp rate limits is studied using game theory
and dynamic programming methods in [11]. The impacts of
ramp rate limits on bidding strategies of generating firms are
ignored in [11].

In this paper, the impacts of ramp rate limits on oligopolistic
opportunities in electricity markets are studied. To do so, it is
required to model the strategic behavior of generating firms.
SFE models are the tool to model firms’ behaviors. SFE models
have been repeatedly used in electricity market modeling liter-
ature as an alternative to Cournot or Bertrand models because
it is proved to be a more realistic model for these particular
applications (e.g., see [12] for further discussions).

The main contributions of this paper are the following:
1) presenting a multiperiod SFE model considering ramp rate
limits and 2) proposing a heuristic algorithm to compute the
SFE. The significance of the contributions is that the presented
model can answer the following questions for an electricity
market: 1) How and to what extent do ramp rate limits affect
the oligopolistic opportunities of generating firms?; 2) are low
ramp generators, such as nuclear power plants, able to compete
with other generating firms in an electricity market?; and 3) is
it reasonable to ignore ramp rate limits in computing market
equilibrium?

This paper is organized as follows. In Section II, the required
background is reviewed. In Section III, the SFE is modeled by
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considering ramp rate limits, and an algorithm for computing
market equilibrium is presented. The presented approach is
applied to a test system in Section IV, where the impacts
of ramp rate limits on oligopolistic opportunities are studied.
Concluding remarks are provided in Section V.

II. SFE MODEL: BACKGROUND REVIEW

In this paper, market equilibria under different ramp rate
limits are compared in order to determine how they impact
market outcomes. In particular, we use the SFE for this study.
This research is based on the SFE model presented in [1] and
[3]. In order to take ramp-up/ramp-down rates into account,
a multiperiod 24-h day-ahead market model is used in this
paper. Assume that the cost of generating Q

(t)
Si by unit i at

hour t is g(Q(t)
Si ) = aiQ

(t)
Si + 0.5biQ

(t)2

Si and the utility of con-

suming Q
(t)
Dj by consumer j at hour t is f(Q(t)

Dj) = c
(t)
j Q

(t)
Dj −

0.5d
(t)
j Q

(t)2

Dj . Note that, since fuel cost is constant in short term,
the coefficients of cost functions of generators are time invari-
ant. However, since loads change considerably during a day, the
coefficients of utility functions of consumers are time variant.
The marginal cost function of unit i at hour t or its true bid
function is MC

(t)
i = Bidtrue(t)i = ai + biQ

(t)
Si . Each unit bids

a supply function for each hour t into the day-ahead market.
It is assumed that firms only manipulate the intercept of their
true bid functions, i.e., they present the bid function Bid(t)

i =

α
(t)
i + biQ

(t)
Si for each hour t. There are several reasons for this

assumption that has been argued in [1]. Therefore, the bid of
unit i at hour t is specified with α

(t)
i . The equilibrium point of

hour t is specified with [α
∗(t)
1 α

∗(t)
2 . . . α

∗(t)
ng ]T , where ng is the

number of generating units. To compute the market equilibrium
using the SFE model, a set of coupled bilevel optimization
problems should be solved [1], [3]. The f th upper (outer) level
problem is the profit maximization problem of the f th Gencos.
The lower (inner) level problem of each upper level problem is
the ISO’s optimization problem. The objective of ISO is to max-
imize the social welfare subject to meet the demand, generation,
and transmission constraints. If the transmission network is
strong enough, transmission constraints can be ignored. Hence,
the optimization of ISO is modeled as follows:

Max JISO =
∑
t∈T

(∑
i∈D

(
c
(t)
i Q

(t)
Di −

1

2
d
(t)
i Q

(t)2

Di

)

−
∑
i∈S

(
α
(t)
i Q

(t)
Si +

1

2
biQ

(t)2

Si

))
(1)

s.t. :∑
i∈S

Q
(t)
Si −

∑
i∈D

Q
(t)
Di = 0 ∀t ∈ T (2)

Qmin
Si ≤ Q

(t)
Si ≤ Qmax

Si ∀i ∈ S, ∀t ∈ T (3)

−Drri.Q
max
Si ≤ Q

(t)
Si −Q

(t−1)
Si ≤ Urri.Q

max
Si

∀i ∈ S, ∀t ∈ T (4)

where JISO is the social welfare, Qmin
Si and Qmax

Si are the
capacity limits of unit i, S is the set of generation units, D is the
set of consumers, T is the set of hours in the understudy period,
and Urri and Drri are the ramp-up and ramp-down rate limits
of unit i in per unit per hour, respectively. The optimization
problem of firm f , ∀f ∈ F , where F is the set of generating
firms, can be modeled as follows:

Maxπf =
∑
t∈T

⎛
⎝∑

i∈Sf

λ(t)Q
(t)
Si −aiQ

(t)
Si −

1

2
biQ

(t)2

Si

⎞
⎠ (5)

s.t. :

ISO’s optimization problem (1)−(4) (6)

where πf is the profit of Genco f in the study horizon, Sf

is the set of generating units of Genco f , and λ(t) is the
market clearing price at hour t. The first term of (5) is the
revenue of firm f , and the second and third terms stand for its
generation cost. In order to determine the optimal strategy of
Genco f , Karush–Kuhn–Tucker (KKT) optimality conditions
of optimization (1)–(4) are added to the optimization of firm
f [(5) and (6)] as constraints. This problem is a mathematical
programming with equilibrium constraints (MPEC). There is
an MPEC problem for each Genco. To compute the SFE, the
MPEC problems of all firms should be solved together. This
problem is an equilibrium problem with equilibrium constraints
(EPEC). The existence and uniqueness of market equilibrium
can be discussed by analyzing EPEC.

In this paper, unconstrained electricity market means an
electricity market with only meeting demand constraint, and
constrained electricity market means an electricity market with
meeting demand constraint, generation constraints, and ramp
rate constraints, i.e., constraints (2)–(4). Transmission con-
straints are ignored in this paper. In a specified operating point,
the unit with none of its generation and ramp rate limits active
is referred to as unbound unit, and the unit with one of its
generation or ramp rate limits active is referred to as bound unit.
The ramp-down (up) rate limit of unit m is said to be active at
hour t if it reaches its limit when its generation power decreases
(increases) from hour t− 1 to t.

In the following sections, the objective is to find the multi-
period SFE considering ramp rate limits. A number of lemmas
and theorems are presented in the following section. Although
the presented lemmas and theorems are the contributions of this
paper, the associated proofs are presented in the Appendix.

III. CONSTRAINED MARKET MODEL

In this section, the optimal strategies of generating firms
and SFE considering ramp rate limits are discussed. First, an
equilibrium model is presented by assuming that the bound gen-
erating units at SFE are unknown. Then, the model is modified
by assuming that some of the bound generating units at SFE are
known. Finally, an algorithm for computing multiperiod SFE
considering ramp rate limits is presented.
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A. Equilibrium Model

Lemma 1: The optimal strategy of firm f in the uniform-
price electricity market model of (1)–(5) is obtained from the
following optimization:

Max πf =
∑
t∈T

((
α(t) + μ(t) + ε(t) − ε(t+1)

)Tr

×Q
(t)
f

(
α(t) + μ(t) + ε(t) − ε(t+1)

)

+
(
α(t) + μ(t) + ε(t) − ε(t+1)

)Tr

R
(t)
f

+

((
α(t) + μ(t) + ε(t) − ε(t+1)

)Tr

×R
′(t)
f + S

′(t)
f

)
Q

(t)
D + S

′′(t)
f Q

(t)2

D

)
(7)

s.t. :

V(t)Q
(t)
D +U(t)(α(t) + μ(t) + ε(t) − ε(t+1))

≤ Qmax
S ⊥ μ(t)max ≥ 0, ∀t ∈ T (8)

V(t)Q
(t)
D +U(t)

(
α(t) + μ(t) + ε(t) − ε(t+1)

)
≥ Qmin

S ⊥ μ(t)min ≥ 0, ∀t ∈ T (9)

V(t)Q
(t)
D −V(t−1)Q

(t−1)
D +U(t)

(
α(t) + μ(t)

+ε(t) − ε(t+1)
)
−U(t−1)

(
α(t−1) + μ(t−1) + ε(t−1) − ε(t)

)
≤ UrrQmax

S ⊥ ε(t)max ≥ 0, ∀t ∈ T − {initial time} (10)

−V(t)Q
(t)
D +V(t−1)Q

(t−1)
D −U(t)

(
α(t) + μ(t)

+ε(t) − ε(t+1)
)
+U(t−1)

(
α(t−1) + μ(t−1) + ε(t−1) − ε(t)

)
≤ DrrQmax

S ⊥ ε(t)min ≥ 0, ∀t ∈ T − {initial time} (11)

V(t)Q
(t)
D +U(t)

(
α(t) + μ(t) + ε(t) − ε(t+1)

)
−Q

(0)
S

≤ UrrQmax
S ,⊥ ε(t)max ≥ 0, ∀t ∈ {initial time} (12)

−V(t)Q
(t)
D −U(t)

(
α(t) + μ(t) + ε(t) − ε(t+1)

)
+Q

(0)
S

≤ DrrQmax
S ⊥ ε(t)min ≥ 0, ∀t ∈ {initial time} (13)

where subscript f indicates firm f , μ(t)max and μ(t)min are
dual variables of max and min generation limits at hour t,
μ(t) = μ(t)max − μ(t)min, ε(t)max and ε(t)min are dual vari-
ables of ramp-up and ramp-down rate limits at hour t, ε(t) =
ε(t)max − ε(t)min, and Tr denotes transpose. The elements of
matrices Q

(t)
f and U(t); vectors V(t), R

(t)
f , and R

′(t)
f ; and

scalars S′(t)
f and S

′′(t)
f depend on ai ∀i ∈ Sf and bi ∀i ∈ S and

are given in (7)–(13). Q(0)
S is the vector of generation powers at

hour t = 0. �

Equation (7) models the profit of firm f considering gen-
eration and ramp rate limits. Equations (8) and (9) model
max and min generation constraints, respectively. Equations
(12) and (13) model ramp-up and ramp-down limits for initial
hour, and (10) and (11) model ramp-up and ramp-down limits
for other hours, respectively. The problem (7)–(13) is an MPEC
problem. If firm f would like to determine its optimal strategy,
it should estimate the bids of other firms and solve the MPEC
problem (7)–(13). To compute the SFE, the MPEC problems
of all firms should be solved together. To this end, the KKT
optimality conditions of all firm’s optimizations must be solved
together. Writing the KKT optimality conditions of (7)–(13)
for all firms and arranging them yield the equilibrium model
as follows:

H(t)
(
α(t) + μ(t) + ε(t) − ε(t+1)

)
+R(t) +R′(t)Q

(t)
D

−U(t)
(
μ(t) + ε(t) − ε(t+1)

)
= 0, ∀t ∈ T

(14)

constraints (8) to (13) (15)

where

H
(t)
ij =

Bf

B(t)2bibj
∀i ∈ Sf , ∀j ∈ S, i 	= j, ∀f ∈ F , ∀t ∈ T

H
(t)
ii =

Bf

B(t)2b2i
− 1

bi
∀i ∈ Sf , ∀f ∈ F , ∀t ∈ T (16)

and vectors R(t) and R′(t) are defined as
R(t) = [R

(t)Tr

aa R
(t)Tr

bb
. . .R

(t)Tr

zz ]Tr and R′(t) =

[R
′(t)Tr

aa R
′(t)Tr

bb
. . .R

′(t)Tr

zz ]Tr, where subscripts a, b,. . ., and z
represent the first, second, . . ., and last firms, respectively.

Note that (14) and (15) for t and t+ 1 are coupled via ramp
rate constraints. Hence, (14) and (15) for t = 1 to t = T are
coupled. Therefore, solving (14) and (15) for all t considers the
whole load profile and tries to meet the demand in all hours
considering the generation and ramp rate constraints. If the
generation and ramp rate constraints (15) are ignored, then the
problem of computing the SFE is converted to a linear algebra
problem [3]. The profit of each unit of firm f is a second-order
function of bids. If a generating unit of firm f reaches one of
its limits, its generation power becomes constant, and its profit
becomes a linear function of bids. Hence, the maximum profit
of firm f cannot be computed using differentiation. In this case,
in order to compute the SFE, generation and ramp rate limits are
considered heuristically as follows.

Consider a uniform electricity market. Suppose it has equi-
librium. For the sake of simplicity, assume that only the min
generation (max generation, ramp-down rate, or ramp-up rate)
limit of unit m of firm f is active at hour t of the SFE.
This means that generator m is willing to decrease (increase,
decrease, or increase) its power at hour t to maximize the
profit of firm f . However, unit m cannot decrease (increase,
decrease, or increase) its power at hour t due to its generation
limit. The profit of unit m at hour t depends on Q

(t)
Sm and λ(t).

As soon as unit m reaches its generation or ramp rate limit,
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Q
(t)
Sm becomes constant, Q(t)

Sm = Qmin
Sm (Q

(t)
Sm = Qmax

Sm , Q
(t)
Sm =

Q
(t−1)
Sm −DrrmQmax

Sm , orQ(t)
Sm = Q

(t−1)
Sm + UrrmQmax

Sm )), and
λ(t) depends only on the bids of other units. Hence, unit
m is not able to participate in setting the electricity price
at hour t. In this case, the game continues among the other
generators. This is how ramp rate limits in particular impact
market operation and oligopolistic opportunities. Suppose that
the game converges to an equilibrium point. If at this point the
min generation (max generation, ramp-down rate, or ramp-up
rate) limit of unit m is still active, unit m cannot increase the
profit of firm f by changing its bid. Therefore, the profit of
firm f is at its max, and this point is the market equilibrium.
If at this point the min generation (max generation, ramp-down
rate, or ramp-up rate) limit of unit m gets inactive, the market
does not have equilibrium by contradiction. Note that first it
was assumed that the min generation (max generation, ramp-
down rate, or ramp-up rate) limit of unit m is inactive at hour t
of equilibrium, but its limit got active at hour t of equilibrium.
Then, it was assumed that the min generation (max generation,
ramp-down rate, or ramp-up rate) limit of unit m is active at
hour t of equilibrium but its generation limit got inactive at hour
t of equilibrium.

Thus, the equilibrium point of the constrained markets is
defined as follows:

Equilibrium :
{
α
(t)
i |dπf/dα

(t)
i =0∀f ∈ F and ∀i ∈ U (t)

f

and ∀t ∈ T
}
∪
{
α
(t)
j |Q(t)

Sj = Qmin
Sj or Q(t)

Sj = Qmax
Sj or

Q
(t)
Sj = Q

(t−1)
Sj −DrrjQ

max
Sj or Q(t)

Sj = Q
(t−1)
Sj

+UrrjQ
max
Sj ∀j ∈ C(t)

f and ∀t ∈ T
}

(17)

where C(t)
f is the set of bound units of firm f at hour t and U (t)

f is
the set of unbound units of firm f at hour t. The aforementioned
definition tells us how to compute equilibrium if we know
which constraints are active at equilibrium.

In order to compute the SFE using the heuristic algorithm
discussed previously, we need to know the active generation
and ramp rate limits at equilibrium. By solving (14) and (15),
the bids of all units and dual variables of all generation and
ramp rate constraints for every hour t in T are computed. The
positive dual variables of hour t show the active generation and
ramp rate limits at hour t of equilibrium. Here, the ramp rate
limit at hour t means the ramp rate limit from hour t− 1 to t.
Since the profit of firm f at hour t is only a function of bids
of its unbound generating units, the equilibrium model must be
modified after identifying the active limits at equilibrium. In the
next section, the modified equilibrium model is presented.

B. Modified Equilibrium Model

Lemma 2: The profit of firm f around the market equilib-
rium is a second-order function of α(t)

i ∀i ∈ U (t). If the set of
active generation and ramp rate limits of each hour at the market

equilibrium is known, the profit of firm f around the market
equilibrium can be written as follows:

πf =
∑
t∈T

α̌(t)Tr

Q̌
(t)
f α̌(t) + α̌(t)Tr

R̈
(t)
f

+
(
α̌(t)Tr

Ř
′(t)
f + S̈

′(t)
f

)
Q̌

(t)
D + Š

′′(t)
f Q̌

(t)2

D + C̈
(t)
f

(18)

R̈
(t)
f = Ř

(t)
f + V̌(t)

⎛
⎜⎝ ∑

j∈C(t)

f

Q
(t)
Sj

⎞
⎟⎠ , S̈

′(t)
f

= Š
′(t)
f +

1

B̌(t)

⎛
⎜⎝ ∑

j∈C(t)

f

Q
(t)
Sj

⎞
⎟⎠

C̈
(t)
f = −

∑
j∈C(t)

f

(
ajQ

(t)
Sj +

1

2
bjQ

(t)2

Sj

)
∀t ∈ T (19)

where α̌(t) is the vector of the bid of all unbound units at
hour t, Q̌(t)

D = Q
(t)
D −

∑
j∈O(t) Q

(t)
Sj , where O(t) is the set of all

omitted units at hour t, and coefficients B̌(t), V̌(t), Q̌(t)
f , Ř(t)

f ,

Ř
′(t)
f , Š′(t)

f , and Š
′′(t)
f are computed like B(t), V(t), Q(t)

f , R(t)
f ,

R
′(t)
f , S′(t)

f , and S
′′(t)
f , respectively, assuming that each firm has

only its unbound units. If the max (min) generation limit of unit

j is activated at hour t, Q
(t)
Sj is equal to Qmax

Sj (Qmin
Sj ). If the

ramp-up (down) rate limit of unit j is activated at hour t, Q
(t)
Sj

is equal to Q
(t−1)
Sj + UrrjQ

max
Sj (Q

(t−1)
Sj −DrrjQ

max
Sj ).

To compute the SFE, the MPEC problems of all firms should
be solved together. In order to compute the SFE, assuming that
all active generation and ramp rate limits of every hour of the
study time horizon are known, the KKT optimality conditions
of all firm’s profit maximization problem(18) must be solved
together. Writing the KKT optimality conditions of (18) for all
firms and arranging them yield

Ȟ(t)α̌(t) = −R̈(t) − Ř′(t)Q̌
(t)
D , ∀t ∈ T (20)

Ȟ(t) and Ř′(t) are computed like H(t) and R′(t), respec-
tively, assuming that each firm has only its unbound units

and R̈(t) = [R̈
(t)Tr

aa R̈
(t)Tr

bb
. . . R̈

(t)Tr

zz ]Tr. By solving the linear
algebra equation given in (20) for every t in T , the bids of
unbound units at equilibrium are computed. If only some of
the active generation and ramp rate limits of some hours of the
study time horizon are unknown, the MPEC model given in
(7)–(13) can be modified by omitting the known bound units.
Here, omission of bound units means fixing their output power
at the power of their active limits, subtracting the power of each
active limit from the load of the related hour, and writing the
firms’ profits at hour t versus the bids of the unbound units
at hour t. In this case, the profit function of firm f changes
from (7) to (18) considering that only the known bound units
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are omitted. Moreover, only the generation and ramp rate limits
of bound units are omitted from the constraints (8)–(13) in this
case. Writing the KKT conditions of the modified MPECs for
all firms leads to the modified equilibrium model as follows:

Ȟ(t)
(
α̌(t) + μ̌(t) + ε̌(t) − ε̌(t+1)

)
+ R̈(t) + Ř′(t)Q̌

(t)
D

− Ǔ(t)
(
μ̌(t) + ε̌(t) − ε̌(t+1)

)
= 0, ∀t ∈ T

(21)

modified constraints (8) to (13) (22)

where modified constraints (8)–(13) are the same as constraints
(8)–(13) with a check symbol over each variable and parameter.
α̌(t), μ̌(t) = μ̌(t)max − μ̌(t)min, and ε̌(t) = ε̌(t)max − ε̌(t)min

are the vectors of bids and dual variables of the remaining
units at hour t, respectively. Matrix Ǔ(t) is computed like U(t),
assuming that, at every hour t, the system has only the unbound
units of hour t.

If the active constraints at equilibrium are known, the equi-
librium can be computed from (20). However, the active con-
straints at equilibrium are unknown before being computed.
Hence, we start using the model (14) and (15) for computing
SFE. This model is an inaccurate model since the profit of firm
f at hour t is only a function of bids of its unbound generating
units, whereas in this model, the profit of firm f at hour t is a
function of bids of all units. By solving (14) and (15), the bids
of all units and dual variables of all generation and ramp rate
constraints for every hour t in T are computed. The positive
dual variables of hour t show the active generation and ramp
rate limits at hour t of equilibrium. However, since this model
is not an accurate model, identifying all active generation and
ramp rate limits using this model could be misleading. The
dual variables that are well in positive territory will remain
positive in the accurate model and show the active generation
and ramp rate limits at equilibrium. In [3], the unit that has the
biggest dual variable is identified, and the model is modified.
Since this model is a multiperiod model and takes into account
ramp rate limits, omitting bound units one by one is very time-
consuming. In the presented algorithm, first the maximum dual
variable over all generation and ramp rate limits of all hours is
identified. At each hour, the unit where the dual variable of one
of its limits is greater than the g percent of the maximum dual
variable is omitted from the model, and the model is modified
as (21) and (22). By solving the modified model, other active
generation and ramp rate limits can be identified. The procedure
continues until all active generation and ramp rate limits are
omitted. In this case, we reach the equilibrium model (20), and
the bids of unbound units at equilibrium are computed from
this linear algebra model. Two results can be concluded from
the equilibrium model (20). First, the bid of every unbound unit
at equilibrium is unique. This will be approved in the following
theorem. Second, around the equilibrium, as far as the status
of active limits is unchanged, the model can be divided to nT

decoupled models for every t in T , where nT is the number of

hours in the study time horizon. Therefore, the equilibrium can
be defined for every hour in the study time horizon.

Theorem 1: If a constrained uniform electricity market has
SFE at hour t, the unbound units of hour t have a unique bid at
the SFE of hour t.

This theorem is proved in the Appendix. Assuming that ISO
optimization has a unique solution, it can be concluded that un-
bound units have unique bid and power at market equilibrium,
but bound units have only unique power at market equilibrium.
The existence and uniqueness of concave n-person games are
addressed in [12]. It is assumed that the set of player actions
is a compact and coupled constrained set. The author proves
that such concave n-person game has Nash equilibrium, and it
is unique if the weighted sum of payoff functions is diagonally
strictly concave. A similar condition for the uniqueness of equi-
librium in the Cournot model is presented in [13]. The existence
and uniqueness of SFE in uniform electricity markets with and
without generation constrained are discussed in [3]. In [3],
generation space is divided into partitions. In each partition, the
status of each generation limit (in terms of being active or not)
is unchanged. According to [3], every unconstrained uniform
electricity market has a unique SFE. A constrained uniform
electricity market has at most one SFE in each partition. In
constrained uniform electricity markets that may have multiple
SFEs, [3] focuses on one of the equilibria that corresponds to
the unconstrained SFE and refers to it as principal SFE.

C. Heuristic Algorithm for Computing SFE

The presented heuristic algorithm for computing market
equilibrium can be itemized as follows.

1) Set iteration counter at ν = 1, and solve (14) and (15). By
solving this mixed complementarity problem, the bids of
all units and dual variables of all generation and ramp rate
limits are computed for every hour t.

2) For every t in T , identify the greatest generation or ramp
rate dual variable. The units that are related to those
maximum dual variables whose values are greater than or
equal to the g percent of the maximum dual variables are
determined. These units should be omitted. Save the bids
and dual variables of these units for the related hours.

3) Increase the iteration counter (ν = ν + 1).
4) Revise (14) and (15) by omitting the bound units identi-

fied in step 2. Revising (14) and (15) yields (21) and (22).
5) Solve (21) and (22). By solving (21) and (22), the bids

and dual variables of generation and ramp rate limits of
all remaining units at hours t, ∀t ∈ T , are computed.

6) Compute the generation power of all units for every hour
of scheduling period by running ISO optimization. The
computed bids for the remaining units in step 5 and the
latest value(s) computed for the bid(s) of omitted unit(s)
are used for ISO optimization. The dual variables of the
omitted units of each hour are updated in this step. If the
results of the ISO optimization show that more than one
omitted units are unbound, the algorithm is back one step,
and the omitted units in the last step are restricted. In
this case, only the bound units that remained bound and
the unit that becomes unbound and has the greatest dual
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TABLE I
PARAMETERS OF GENERATING UNITS

variable among the units that become unbound are omit-
ted. If the results of the ISO optimization show that, for
every t in T , the omitted units of hour t remained bound
at hour t, then there are some other active generation
or ramp rate limits at some hour t. The procedure is
continued until the SFE at all hours is reached or it is
realized that the market does not have SFE at some hours.

7) If the result of ISO optimization shows that all omitted
units remained bound at related hour and there is no any
other bound unit at any hour, the considered values for
bids in ISO optimization indicate SFE in bid space.

If the result of ISO optimization shows that only one
omitted unit got unbound, the market does not have SFE
by contradiction.

If the result of ISO optimization shows that more than
one omitted units got unbound, back to step 4. Omit only
the bound units that remained bound and the unit that
got unbound and has the greatest dual variable among the
units that got unbound in the last ISO optimization.

If the result of ISO optimization shows that all omitted
units remained bound at related hour but there are some
other bound units, go to step 2, and continue the proce-
dure until reaching SFE, or realize that the market does
not have equilibrium.

IV. CASE STUDIES AND NUMERICAL RESULTS

In this section, the presented algorithm is applied to the
generating units of the IEEE 30-bus test system. The parameters
of the generating units are given in Table I. Transmission
constraints are ignored. A day-ahead uniform electricity market
is considered for this test system. It is assumed that units 1 to
6 belong to firms A to F, respectively. Load is inelastic and is
given in Fig. 1 for the study period. In this section, the impacts
of ramp rate limits on the electricity market are assessed. Note
that, in day-ahead scheduling, it is assumed that the power
outputs of generating units are constant during an hour. It is
also assumed that generating units change their power during
the last 5 or 10 min of each hour to follow their schedule
for the next hour. Therefore, restrictions in power increase or
decrease during 5 or 10 min are considered as ramp-up or
ramp-down rate limits in megawatts per hour [8], [14], [15].
In this paper, the ramp rate limits given in megawatts per 5 min
are considered as ramp rate limits from one hour to the next
hour and are expressed in terms of megawatts per hour or per

Fig. 1. IEEE 30-bus power system’s hourly loads.

Fig. 2. Bids, generating powers, and MCP at equilibria of hours 11 and 12.

unit per hour. Solver PATH in GAMS environment is used to
solve the mixed complementarity problem. The accuracies of
all equilibrium points were verified using the definition of Nash
equilibrium, i.e., in equilibrium, no firm can increase its profit
by changing its strategy unilaterally.

A. Impacts of Ramp Rate Limits on
Oligopolistic Opportunities

In order to study the impacts of ramp rate limits on
oligopolistic opportunities of firms, the upper ramp rate limit
of unit 4, firm D, is changed from 1 to 0.07 per unit/h step by
step, while the ramp rates of other units are set at 1 per unit/h.
In each step, the SFE is computed for the 24-h load which
is given in Fig. 1. Let us focus on hour 11. The upper ramp
rate limit of unit 4 will become active at the equilibrium of
hour 11 if the ramp rate is equal or less than 0.47 per unit/h.
Figs. 2 and 3 show the generating powers, bids, MCPs, and
profits at equilibria of hours 11 and 12. As Fig. 2 shows, when
the upper ramp rate limit of unit 4 gets active, MCP increases
due to the decrease in competition level, which is the result
of the omission of firm D. An increase in MCP increases the
profits of all firms, as depicted in Fig. 3. As the upper ramp
rate limit of unit 4 decreases, the generating power of firm D
decreases, and consequently, the generating powers of the other
units increase at equilibrium. Hence, the profit of firm D
decreases, and the profits of the other firms increase. The
interesting result is that, if the upper ramp rate limit of unit
4 is in the range of 0.27–0.47 per unit/h, the profit of firm D
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Fig. 3. Profits of generating firms at equilibria of hours 11 and 12 (red
continues: hour 11; blue continues: hour 12).

increases and creates an oligopolistic opportunity for firm D.
This is in contradiction with this general expectation that the
operating constraints of a unit will decrease its oligopolistic
opportunity. According to Fig. 3, if the upper ramp rate limit
of unit 4 is less than 0.47 per unit/h, the ramp rate limit will
decrease the profit of firm D and, consequently, its oligopolistic
opportunity. Fig. 3 also shows that decreasing the upper ramp
rate limit of unit 4 increases the oligopolistic opportunities of
the other firms, which is consistent with the general expectation.
Let us now turn the focus to hour 12. The upper ramp rate limit
of unit 4 will become active at the equilibrium of hour 12 if the
ramp rate is equal or less than 0.3 per unit/h. The same result is
concluded from the analysis of hour 12. Fig. 3 shows that the
profits of all firms increase from hour 11 to hour 12 due to the
increase in load if no ramp rate limit is active at hours 11 and
12, i.e., if the ramp rate limit of unit 4 is greater than 0.47 per
unit/h. Fig. 3 also shows that, although the load at hour 12 is
greater than the load at hour 11, the profits of firms A, B, C,
E, and F at hour 12 will be less than their profits at hour 11
if the ramp rate limit of unit 4 is in the range of 0.47–0.3 per
unit/h. It could be concluded that the restriction on the ramp
rate limit of the unit of firm D decreased the profits of the other
firms. This is not true. In fact, for this case, the firms gain from
the oligopolistic opportunities that resulted from the ramp rate
limit of unit 4 at hour 11 but not at hour 12. This is why their
profits decreased in hour 12 in spite of the increase in load.

B. Existence of Equilibrium in Constrained
Electricity Markets

In this section, the existence of SFE in the test system is
assessed. Two scenarios for ramp rate limits are considered. In
the first scenario, the ramp rate limits are the same as given
in Table I. In the second scenario, it is assumed that unit 1 is a
nuclear power plant, and its upper and lower ramp rate limits are
equal to 0.04 and 0.05 per unit/h, respectively. In each scenario,
the SFE is computed for the 24-h load. In the first scenario,
in the first iteration of computing SFE, the lower generation
limit of unit 6 at hours 2 to 6 is activated. The dual variable
of this constraint is very small at hours 2, 3, 4, and 6. After

omitting unit 6 at hours 2, 3, 4, and 6, in the second iteration,
the lower generation limit of unit 6 becomes inactive at these
hours. Therefore, the system does not have SFE at hours 2,
3, 4, and 6. In other words, activation of the lower generation
limit of unit 6 changes the system model and, consequently, the
firms’ strategies. The new strategies of firms cause the lower
generation limit of unit 6 to get inactive and switch to the
first system model. This process is continued and prohibits the
system to approach its SFE at these hours. This happens in the
second scenario at the respected hours.

Moreover, in the second scenario, the market does not have
equilibrium at hours 11, 19, 21, and 22. At hour 11, the upper
generation limit of unit 3 and the upper ramp rate limits of units
1, 2, 4, and 6 are active, and hence, all units, except unit 5, are
omitted. At hour 19, the upper generation limits of units 3 to
5 and the upper ramp rate limits of units 1 and 2 are active,
and hence, all units, except unit 6, are omitted. Since the load
is inelastic, the bid of unit 5 at hour 11 and the bid of unit 6 at
hour 19 tend to approach infinity, and hence, the market has no
SFE at hours 11 and 19. At hours 21 and 22, the lower ramp rate
limit of unit 1 becomes active, and the associated dual variable
is very small. After omitting unit 1 in these hours, the lower
ramp rate limit of unit 1 gets inactive at these hours, and hence,
the system does not have SFE at hours 21 and 22. This example
shows that the smaller ramp rate limits cause the less hours to
have SFE.

Having a unit with small ramp rate limits in the second sce-
nario causes the SFE of different hours of the second scenario to
deviate from the SFE of the related hours in the first scenario.
Among the hours that have SFE, the SFE of hour 11 has the
biggest deviation. At the SFE of hour 11, the total absolute
generation error is 8.22 MW or 3%, the total profit error is
217.86 $/h or 8.32%, and the MCP error is 0.84 $ MW · h or
2.26%. This shows that ramp rate limits can affect the SFE
and, consequently, the oligopolistic opportunities of some hours
considerably.

V. CONCLUSION

In this paper, an SFE model for electricity markets consider-
ing ramp rate limits has been presented. A heuristic algorithm
for computing market equilibrium has been proposed. The
existence of market equilibrium considering ramp rate limits
has been examined. The results show that ramp rate limits may
considerably affect the existence of market equilibrium. The
smaller ramp rate limits cause more hours not to have SFE.
Furthermore, the impacts of ramp rate limits on the suppliers’
oligopolistic opportunities are studied in this paper. The results
of the test system show that applying ramp rate limits on a
particular unit could increase or decrease its profit depending on
the value of the ramp rate limit. However, ramp rate limits may
increase the profit of other firms. Depending on the value of the
ramp rate limits, firms’ profits at SFE may be considerably af-
fected during some hours. It is worth mentioning that applying
ramp rate limits on a unit could actually create an oligopolistic
opportunity for its owner. This is in contradiction with this
general expectation that applying operating constraints to a unit
will decrease its oligopolistic opportunity.
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APPENDIX

PROOFS OF LEMMAS AND THEOREMS

Proof—Lemma 1: Consider a uniform electricity mar-
ket. The first-order optimality conditions of ISO optimization
(1)–(4) are as follows:

λ(t) = λ
(t)
i =

(
α
(t)
i + μ

(t)
i + ε

(t)
i − ε

(t+1)
i

)
+ bi Q

(t)
Si ,

∀i ∈ S, ∀t ∈ T (23)

λ(t) = λ
(t)
i = c

(t)
i − d

(t)
i Q

(t)
Di, ∀i ∈ D, ∀t ∈ T (24)

Q
(t)
Si −Qmax

Si ≤ 0 ⊥ μ
(t)max
i ≥ 0, ∀t ∈ T , ∀i ∈ S (25)

Qmin
Si −Q

(t)
Si ≤ 0 ⊥ μ

(t)min
i ≥ 0, ∀t ∈ T , ∀i ∈ S (26)

Q
(t)
Si −Q

(t−1)
Si − UrriQ

max
Si

≤ 0 ⊥ ε
(t)max
i ≥ 0, ∀i ∈ S, ∀t ∈ T (27)

Q
(t−1)
Si −Q

(t)
Si −DrriQ

max
Si ≤ 0 ⊥ ε

(t)min
i

≥ 0, ∀t ∈ T , ∀i ∈ S. (28)

Computing Q
(t)
Sj and Q

(t)
Dl versus Q(t)

Si from (23) and (24) yields

Q
(t)
Sj =

1

bj

((
α
(t)
i + μ

(t)
i + ε

(t)
i − ε

(t+1)
i

)
−
(
α
(t)
j + μ

(t)
j

+ε
(t)
j − ε

(t+1)
j

)
+ biQ

(t)
Si

)
∀j ∈ S, j 	= i,∀t ∈ T

(29)

Q
(t)
Dl =

1

d
(t)
l

(
c
(t)
l −

(
α
(t)
i + μ

(t)
i + ε

(t)
i − ε

(t+1)
i

)

−biQ
(t)
Si

)
∀l ∈ D, ∀t ∈ T . (30)

Substituting Q
(t)
Sj , Q(t)

Dl, and λ(t) from (29), (30), and (23) into
(2) yields

Q
(t)
Si = v

(t)
i Q

(t)
D + u

(t)Tr

i

(
α(t) + μ(t) + ε(t) − ε(t+1)

)
∀i ∈ S, ∀t ∈ T (31)

where Q
(t)
D , v

(t)
i , and the elements of u

(t)
i are defined as

follows:

Q
(t)
D =

{
total demand for inelastic loads∑

i∈D
c
(t)
i

d
(t)
i

for elastic loads (32)

v
(t)
i =

1

biB(t)
∀i ∈ S, ∀t ∈ T (33)

u
(t)
ij

=
1

bibjB(t)
∀i ∈ S, i 	= j,∀t ∈ T (34)

u
(t)
ii

=
−
(
biB

(t) − 1
)

b2iB
(t)

∀i ∈ S, ∀t ∈ T (35)

B(t) =

{∑
i∈S

1
bi

for inelastic loads∑
i∈S

1
bi

+
∑

i∈D
1

d
(t)
i

for elastic loads .

(36)

Substituting (23) and (31) into (5) and rearranging it yield (7).
The elements of Q(t)

f , R
(t)
f , R

′(t)
f , S

′(t)
f , and S

′′(t)
f are defined

as follows:

Q
(t)
fij =

1

2B(t)2

Bf

bibj
∀i ∈ Sf , ∀j ∈ Sf , i 	= j,∀t ∈ T (37)

Q
(t)
fii =

1

2

(
Bf

B(t)2b2i
− 1

bi

)
∀i ∈ Sf , ∀t ∈ T (38)

Q
(t)
fij =

1

2B(t)2

Bf −B(t)

bibj
, ∀i ∈ Sf , ∀j ∈ Sf̂ , ∀t ∈ T (39)

Q
(t)
fij =

1

2B(t)2

Bf +B(t)

bibj
∀i ∈ Sf̂ , ∀j ∈ Sf , ∀t ∈ T (40)

Q
(t)
fij =

1

2B(t)2

Bf

bibj
∀i ∈ Sf̂ , ∀j ∈ Sf̂ , ∀t ∈ T (41)

R
(t)
fi =

1

B(t)bi

(
aiB

(t) − Cf

)
∀i ∈ Sf , ∀t ∈ T (42)

R
(t)
fi =

−Cf

B(t)bi
∀i ∈ Sf̂ , R

′(t)
fi =

Bf

B(t)2bi
, ∀i ∈ S, ∀t ∈ T

(43)

S
′(t)
f =

−Cf

B(t)
, S

′′(t)
f =

Bf

2B(t)2
, ∀t ∈ T (44)

Bf =
∑
i∈Sf

1

bi
, Cf =

∑
i∈Sf

ai
bi

(45)

where subscript f indicates firm f and subscript f̂ indicates all
firms except firm f .

In order to consider generation and ramp rate limits, con-
straints (25)–(28) are moved to bid space. Substituting (31) into
(25)–(28) for all i ∈ S yields (8)–(13). �

Proof—Lemma 2: The total profit of firm f can be written
as follows:

πf =
∑
t∈T

⎛
⎜⎝ ∑

j∈U(t)

f

(
λ(t)Q

(t)
Sj − ajQ

(t)
Sj −

1

2
bjQ

(t)2

Sj

)

+
∑
j∈C(t)

f

(
λ(t)Q

(t)
Sj − ajQ

(t)
Sj −

1

2
bjQ

(t)2

Sj

)⎞⎟⎠ . (46)

The first term of (46) can be written as (7), assuming that
the system has only its unbound units at every hour t, and
consequently, all related dual variables are zero, i.e., the first
term of (46) can be written as follows:

The first term of πf =
∑
t∈T

(
α̌(t)Tr

Q̌
(t)
f α̌(t) + α̌(t)Tr

Ř
(t)
f

+
(
α̌(t)Tr

Ř
′(t)
f + Š

′(t)
f

)
Q̌

(t)
D + Š

′′(t)
f Q̌

(t)2

D

)
. (47)
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Suppose that unit i is an unbound unit of firm f ; then, λ(t)

can be written as (23), and Q
(t)
Si can be written as (31), i.e.,

as follows:

Q
(t)
Si = v̌

(t)
i Q̌

(t)
D + ǔ

(t)Tr

i α̌(t) (48)

where v̌
(t)
i and ǔ

(t)
i are computed as v

(t)
i and u

(t)
i , assuming

that the system has only its unbound units at every hour t.
Substituting (48) into (23) and the result into the second sigma
of (46) and rearranging it yield (18) and (19).

Proof—Theorem 1: Consider a constrained uniform elec-
tricity market, and suppose that it has SFE at hour t. Suppose
that C(t) is the set of all bound units at the SFE of hour t.
Build the profit functions of firms (18) by omitting the bound
generators at hour t, subtracting the sum of power of the active
generation and ramp rate limits of hour t from the load of the
related hour, and considering the effects of omitted generators
in the profit functions of firms using (19). Differentiating from
(18) versus α(t)

i ∀i ∈ U (t)
f , ∀f ∈ F , and ∀t ∈ T and rearrang-

ing them yield (20). Based on [3], matrix H is nonsingular, and
hence, the unbound units of hour t have a unique bid. �
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