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The major drawback of the s-step iterative methods for nonsymmetric linear systems of
equations is that, in the floating-point arithmetic, a quick loss of orthogonality of s-dimen-
sional direction subspaces can occur, and consequently slow convergence and instability in
the algorithm may be observed as s gets larger than 5. In [18], Swanson and Chronopoulos
have demonstrated that the value of s in the s-step Orthomin(k) algorithm can be increased
beyond s = 5 by orthogonalizing the s direction vectors in each iteration, and have shown
that the ATA-orthogonal s-step Orthomin(k) is stable for large values of s (up to s = 16).
The subject of this paper is to show how by using the CADNA library, it is possible to
determine a good value of s for ATA-orthogonal s-step Orthomin(k), and during the run
of its code to detect the numerical instabilities and to stop the process correctly, and to
restart the ATA-orthogonal s-step Orthomin(k) in order to improve the computed solution.
Numerical examples are used to show the good numerical properties.

Keywords: iterative methods, s-step methods, ATA-orthogonal s-step Orthomin(k), error
propagation, CESTAC method, stochastic arithmetic, CADNA library

1. Introduction

Consider the linear system of equations

Ax = b, (1)

where A is a nonsymmetric matrix of order n. The s-step Orthomin(k) algorithm [8]
can be applied to approximate the solution of (1). In the s-step Orthomin(k) it-
eration s directions {ri,Ari, . . . ,As−1ri} are formed and are ATA-orthogonalized
simultaneously to k of the preceding directions {p1

j , . . . , p
s
j}, j = ji, . . . , i, where

ji = max(0, i − k + 1). The norm of the residual ‖ri+1‖2 is minimized simulta-
neously in all s new directions in order to obtain xi+1. This method require less
computational work and has better parallel properties than the standard Orthomin(k)
algorithm. However, in finite arithmetic, for large s > 5 the loss of orthogonality
between the direction subspaces leads to instability [8,9,11]. To alleviate the orthog-
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onality loss in [18], Swanson and Chronopoulos have developed the ATA-orthogonal
s-step Orthomin(k) algorithm and shown that it is stable for large values of s (up to
s = 16). The use of this method has to face a difficulty, which is how to choose
the value of s. When s has a large value, the method has slow convergence because
of the round-off errors propagation. So a reliable and efficient method for evaluating
the round-off errors is necessary if one wants to determine a good value of s. In this
paper, it is shown that the CESTAC method of La Porte and Vignes [16,17,19,21],
which uses a random arithmetic and the CADNA library which implements it, are ef-
ficient tools for doing so. In section 2 we briefly describe the ATA-orthogonal s-step
Orthomin(k) algorithm and discuss the problems which exist in the implementation of
this algorithm on a computer.

In section 3 we give a brief description of stochastic round-off analysis, the
CESTAC method, and the CADNA software [4,22]. Section 4 is devoted to the use
of the CESTAC method and CADNA library for determining a good value of s for
ATA-orthogonal s-step Orthomin(k). Moreover, we will observe that by using the
CADNA library and introducing the appropriate stopping criteria, it is possible, during
the run of the code of the ATA-orthogonal s-step Orthomin(k), to detect the numerical
instabilities and to stop correctly the iterative process, and to restart it in order to
improve the computed solution. Some numerical results are given to show the good
numerical properties.

2. ATA-orthogonal s-step Orthomin(k) algorithm

In [8], Chronopoulos develops the s-step Orthomin(k) algorithm for nonsymmet-
ric matrices with symmetric part M = (A + AT)/2 positive definite or indefinite. In
this method the s directions {ri, . . . ,As−1ri} are formed and are ATA-orthogonalized
simultaneously to k of the preceding directions {p1

j , . . . , p
s
j}, j = ji, . . . , i, where

ji = max(0, i−k+1) . The norm of the residual ‖ri+1‖2 is minimized simultaneously
in all s new directions in order to obtain xi+1. More details of the s-step Orthomin(k)
algorithm can be found in [8]. The following notation facilitates the description of the
algorithm:

• Wi = [(Apji ,Ap
l
i)], where 1 6 j, l 6 s;

• ai = [a1
i , . . . , a

s
i ]

T (the steplengths in updating xi );

• mi = [(ri,Ap1
i ), . . . , (ri,Apsi )]

T;

• clj = [(Alri+1,Ap1
j), . . . , (Alri+1,Apsj)]

T;

• blj = {bl,mj }sm=1 for j = ji, . . . , i and l = 1, . . . , s, where ji = max(0, i − k + 1)
(the coefficients to ATA-orthogonalize to the previous directions);

• Pi = [p1
i , . . . , p

s
i ] (the direction vectors);

• Ri = [ri,Ari, . . . ,As−1ri] (the residuals).

A description of the s-step Orthomin(k) method can be given as follows:
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Algorithm 2.1. s-step Orthomin(k)
Select x0

P0 = [r0 = b−Ax0,Ar0, . . . ,As−1r0]
For i = 0 Until convergence Do

Compute mi, Wi

Call Scalar1
xi+1 = xi + Piai
ri+1 = ri −APiai
Compute cij , j = ji, . . . , i
Call Scalar2
Compute Ri+1 = [ri+1,Ari+1, . . . ,As−1ri+1]
Pi+1 = Ri+1 +

∑i
j=ji

Pj[b
l
j]
s
l=1

Compute APi+1 = ARi+1 +
∑i

j=ji
APj[blj]

s
l=1

EndFor
Scalar1: Decomposes Wi and solves Wiai = mi.
Scalar2: Solves Wjb

l
j = −clj for j = ji, . . . , i and l = 1, . . . , s, where ji = max(0, i−

k + 1).

The solution of the linear systems may cause a quick loss of orthogonality of the
s-dimensional direction subspaces Pi because the matrix Wi may have a very large
condition number. Numerical tests [9–11] have shown that the condition number of
Wi is small for s 6 5. One way to alleviate the orthogonality loss which can occur for
large s > 5 is to ATA-orthogonalize the s direction vectors in each iteration. In [18],
ATA-orthogonal s-step Orthomin(k) was developed and shown to be stable for large
values of s (up to s = 16). In this method the direction vectors within each subspace
Pi are ATA-orthogonalized using the Modified Gram–Schmidt method. The linear
systems need not be solved at each iteration since the Wi matrix is the identity matrix
if Pi is perfectly ATA-orthogonalized. By using the notation ji = max(0, i − k + 1)
the algorithm can be described as follows:

Algorithm 2.2. ATA-orthogonal s-step Orthomin(k)
Select x0

Compute r0 = b−Ax0

For i = 0 Until convergence Do
Compute APi = [Ari,A2ri, . . . ,Asri], and set Pi = [ri,Ari, . . . ,As−1ri]
If (0 < i) Then

Compute blj = [−(Alri,Ap1
j ), . . . ,−(Alri,Apsj)]

T,
for l = 1, . . . , s and j = ji−1, . . . , i− 1

Compute Pi = Pi +
∑i−1

j=j(i−1)
Pj[b

l
j]
s
l=1

Compute APi = APi +
∑i−1

j=j(i−1)
APj[b

l
j]
s
l=1

EndIf
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Apply the Modified Gram–Schmidt method to the matrix APi to obtain final APi
and Pi

Compute ai = [(ri,Ap1
i ), . . . , (ri,Apsi )]

T

xi+1 = xi + Piai
ri+1 = ri −APiai

EndFor.

It is necessary to mention that the value of ATA-orthogonalizing the Pi direction
vectors is that it allows s to become larger. This means the number of iterations is
reduced with more work being done in each iteration, a situation that should make
more efficient use of multiple processors. The additional work from the orthogonal-
ization should be compensated by the enhanced parallel performance to obtain a faster
algorithm. More details about the ATA-orthogonal s-step Orthomin(k) method can be
found in [18].

The main problem in the use of the ATA-orthogonal s-step Orthomin(k) method,
with floating-point arithmetic, is the choice of s. Let us consider the results of this
method with different values of s and k for the examples 1–3 of section 4 (tables 2,
4 and 6, in which the number of iterations to convergence are given). These results
clearly show that when s has a small or large value the method has slow convergence,
and for each problem and each k there exists an s which minimizes the number of
iterations to convergence. However, as mentioned above, the slow convergence of
the method with large s values is due to the round-off error propagation. Hence,
it is not possible to determine a good value of s without estimating the round-off
errors propagation. In section 4, it is shown that by using the CADNA library,
which is an efficient tool for doing so, we will be able to determine a good value
of s.

Another problem is the choice of the value ε for the stopping criterion ‖ri‖2 6 ε.
When ε is chosen too large, the iterative process is stopped too soon, and consequently
the solution obtained has a poor accuracy. On the contrary, when ε is chosen small, it is
possible, due to the numerical instabilities, that many useless iterations are performed
without improving the accuracy of the solution. How can the iterative processs be
stopped correctly, and restarted in order to improve the computed solution? The
CADNA library is a precious tool for obtaining an answer to this question. In section 4
we will show that with the CADNA library it is possible, by including simple tests,
to stop and to restart correctly the iterative process. The CADNA library, which
allows to solve the above numerical problems, is a tool for automatic synchronous
implementation of the CESTAC method of Vignes. In the following section we give
a brief description of the CESTAC method, which is an efficient method for solving
numerical problems such as those described above.



F. Toutounian / The stable ATA-orthogonal s-step Orthomin(k) algorithm 109

3. The CESTAC method

3.1. Basic ideas of the CESTAC method

Any result R provided by a computer always contains an error resulting from
round-off error propagation. It has been proved [2] that a computed result R is mod-
elled to the first order in 2−p by the equation

R = r +
n∑
i=1

ui(d)2−pαi,

where r is the exact result, αi is the round-off error, and ui(d) are quantities depending
exclusively on the data. The integer n is the number of arithmetical operations involved
in the computation of R, and the integer p is the number of bits in the mantissa.

The CESTAC method (Contrôle et Estimation Stochastique des Arrondis de Cal-
culs) was developed by La Porte and Vignes, and was then generalized by the latter.
It is based on a probabilistic approach of the round-off error propagation, it has been
presented in [13–15], the CESTAC method allows to estimate the round-off error on
each result and consequently provides the accuracy of this result.

The basic idea of this method consists in performing the same code several times
in order to propagate the round-off error differently each time. Several samples of
R containing different round-off errors are then obtained. The first digits common
to all the samples are significant and the others are not significant and represent the
round-off error propagation. The aim is then to obtain these samples of R. They are
obtained by the use of random arithmetic.

Indeed, each result r of any floating-point (FP) arithmetical operator is always
bounded by two consecutive FP values R− and R+. The random arithmetic consists in
randomly choosing either R− or R+ with a probability 0.5. Then when the same code
is executed N times with a computer using this random arithmetic, for each result of
any floating-point arithmetic, N different results Ri, i = 1, . . . ,N , will be provided.
It has been proved [2,6] that, under certain hypotheses, these N results belong to a
quasi-Gaussian distribution centered on the exact result r. So, in practice, the use of
the CESTAC method consists in:

(i) Running in parallel N times (N = 2 or 3) the program with this new arithmetic.
Consequently, for each result R of any floating-point arithmetic operation, a set
of N computed results Ri, i = 1, . . . ,N , is obtained.

(ii) Taking the mean value R = (1/N )
∑N

i=1Ri of the Ri as the computed result.

(iii) Using the Student distribution to estimate a confidence interval for R, and then
compute the number CR of significant digits of R, defined by

CR = log10

(√
N |R|
sτβ

)
, with s2 =

1
N − 1

N∑
i=1

(
Ri −R

)2
,
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τβ is the value of the Student distribution for N − 1 degrees of freedom and a
probability level 1− β.

If Ri = 0, i = 1, . . . , N , or if CR 6 0, then R is an informatical zero denoted 0.
This concept of informatical zero has been introduced by Vignes [20].

3.2. Stochastic arithmetic

By using the CESTAC method so that the N runs of the computer program
take place in parallel, the N results of each arithmetic operation can be considered
as realisations of a Gaussian random variable centered on the exact result. We can
therefore define a new number, called stochastic number, and a new arithmetic, called
stochastic arithmetic, applied to these numbers. We present below the main definitions
and properties of this arithmetic. For more details see [7].

Definition 1. We define the set S of stochastic numbers as the set of Gaussian random
variables. We denote an element X ∈ S by X = (µ,σ2), where µ is the mean value of
X and σ its standard deviation. If X ∈ S and X = (µ,σ2), there exists λβ , depending
only on β, such that

P
(
X ∈ [µ− λβσ,µ+ λβσ]

)
= 1− β.

Iβ,X = [µ− λβσ,µ+ λβσ] is a confidence interval of µ at (1− β). An upper bound
to the number of significant digits common to µ and each element of Iβ,X is

Cβ,X = log10

(
|µ|
λβσ

)
.

The following definition is the modelling of the concept of informatical zero
proposed in [20].

Definition 2. X ∈ S is a stochastic zero if and only if

Cβ,X 6 0 or X = (0, 0).

In accordance with the concept of stochastic zero, two elements X and Y of S will
be stochastically equal, denoted X s=Y , if and only if their difference is a stochastic
zero. For the order, a stochastic value X will be strictly greater than another stochastic
value Y , denoted X s>Y , if and only if it is significantly greater than the other. On
the other hand, a stochastic value X will be greater than or equal to another stochastic
value Y , denoted X s> Y , if and only if it is greater than the other or their difference
is a stochastic zero.

The stochastic elementary arithmetic operations are defined as operations between
Gaussian independent random variables at the first order with respect to σ/µ. Stochas-
tic operations are denoted (s+, s−, s∗, s/). For instance, X1 s−X2 = (µ1−µ2,σ2

1+σ2
2).

Based on these definitions, the following properties of stochastic arithmetic have
been proved:
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• s= is reflexive and symmetric but is not transitive;

• s> is transitive;

• s> is reflexive, anti-symmetric, but is not transitive;

a s6 b ⇒ a s= b or a s< b;

a s= b and b s< c ⇒ a s6 c;
a s6 b and b s< c ⇒ a s6 c.

0 is absorbent for operation s∗ and is the neutral element for operation s+. Let x, y ∈ R
and X,Y ∈ S, respectively, be their representative. If X s<Y ⇒ x < y.

As explained in [5], we recover with these definitions, especially the stochastic
equality (the others only depend on it), the coherence between arithmetic operations
and order relations that was lost in floating-point arithmetic.

In section 4, we shall see how the use of these new concepts has allowed us,
during the run of the code of the ATA-orthogonal s-step Orthomin(k) algorithm, to
estimate the accuracy of any numerical result, to stabilize the code and to reduce
numerical instabilities.

3.3. The CADNA library

The abbreviation CADNA [3,4,22] means Control of Accuracy and Debugging
for Numerical Applications. This library implements the CESTAC method.

The first aim of this library is to enable us to estimate the effect of round-off
errors on each result of the scientific codes. In addition, by identifying the notions of
the theoretical number of significant digits of a stochastic number and the number of
significant digits of an informatical result obtained by the CESTAC method, we can
use all the concepts of the stochastic arithmetic on a computer.

Concretely, we assimilate

CR = log10

(√
N |R|
sτβ

)
to

Cβ,X = log10

(
|µ|
λβσ

)
because, when N is a small value (2 or 3), which is the case in practice, the val-
ues obtained with these two equations are very close values. This assimilation allows
CADNA to use the definitions of the order relations and the equality relation of stochas-
tic arithmetic. Therefore, CADNA allows to check the branching statements, which
constitutes the second aim of this library.

The current version of CADNA has been written in Fortran 90, and is the version
that we will describe here. CADNA is a library for programs written in Fortran. The
use of CADNA requires compilation of the code with a Fortran 90 compiler and
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linking the object code with the CADNA library. CADNA allows the programmers
to dispose the new numerical type: the stochastic type. It contains the definitions of
all the arithmetic operators, the ordering relations, as well as the elementary functions
which are defined on the variables of the stochastic type. The control of the round-off
errors is uniquely carried out on the variables of the stochastic type. In output, only
the significant decimal digits are printed, so it is very easy to see the accuracy of the
results. If the result is an informatical zero, the symbol @ appears.

The third aim of this library is to allow one to detect the numerical instabilities
of the scientific codes, and to be considered as an efficient numerical debugger. We
insist on the fact that it is a dynamic debugger which acts not on the correction of the
writing of the program, but on the capacity of the computer used for providing the
correct results in running the program.

Certainly, CADNA includes all the necessary controls for guaranteeing the relia-
bility of the estimation of round-off errors that are provided by the CESTAC method.
These controls, which are imposed by the theoretical study, allow the library self-
validation, because it is able to determine, in a few moments, the conditions of the
validity of the method which are no longer satisfied, if this is the case, and to warn
the user of it.

The numerical debugger and self-validation of CESTAC are translated by the
continuous detection of susceptible numerical instabilities which occur during the run
of a program. The user is warned of these instabilities by the intermediary of a trace
file called Cadna stability f90.lst which is managed by the CADNA library. Each time
that an instability occurs, a trace numbered, in the form of a message, will be left in
this file. These messages are classified into two categories: those which correspond
to the self-validation of the CESTAC method, and those which uniquely correspond
to the numerical debugger.

These two fundamental instabilities are:

– INSTABLE DIVISION, which means that during a division, the denominator is an
informatical zero.

– INSTABLE TEST, which means that in evaluating of A 6 B, A − B is an in-
formatical zero. By applying the corresponding stochastic definition, the branch
corresponding to the equality will be executed.
But the user is warned of the fact that the mathematical answer of the test may be
contrary to the informatical answer.

After each run, the user must consult the trace file and analyse the causes of each
message which is left in the file. This can be done very easily with the help of the
symbolic debugger. The traces are generated by an internal procedure in CADNA.
By placing a “stop” instruction at the beginning of this procedure, under the symbolic
debugger, the program will be stopped each time that a trace is written in the file. The
statement of the call then provides the line of the source program which is responsible
for the trace.
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Finally, CADNA allows one to take into account the data errors in estimating the
accuracy.

Information and a program for demonstration are available on the Internet site
http://www-masi-chpv.ibp.fr.

4. Using the CADNA library in ATA -orthogonal s-step Orthomin(k) method

As we have seen in section 2, in implementations of the ATA-orthogonal s-step
Orthomin(k) method two problems arise. The first one is:

• How to determine a good value of s?

Let us first consider tables 1, 3 and 5 of examples 1–3, respectively. These tables
present the minimum number of significant digits of the norm of orthogonal direction
vectors of P0 (the first s-dimensional subspace) which are furnished by the CADNA
library for differents values of s. It emerges from these results that, for each problem,
this number begins to decrease from a certain s. When it has a small value for some s,
a large error exists at the beginning of the iterative process and can lead to serious
round-off errors, and then to slow convergence (see the results of tables 2, 4 and 6
of the mentioned examples which represent the number of iterations to convergence
for different values of s). By noting this remark, it has been observed in experiments
that, for double precision, we can obtain a good value of s by taking the highest value
of s for which all the orthogonal direction vectors of P0 have a norm with at least
10 significant digits. By using the CADNA library and increasing the value of s (for
example, 4 by 4), it is very easy to determine such a value of s, because the number of
significant digits of the norm of orthogonal direction vectors of P0, for each s, can be
furnished by the cestac function which exists in this library, and returns the number
of significant digits of every stochastic variable.

Now, we consider the second problem, which is:

• How can the iterative process be stopped correctly?

As we mentioned in section 2, when we use the stopping criterion

‖ri‖2 6 ε, (2)

it is possible, due to numerical instabilities or/and stationarity, that this stopping crite-
rion is never satisfied. So, we need to use additional termination criteria for stopping
the process in the cases:

(i) The algorithm is stationary and can not converge.

(ii) The computer is not able to distinguish the vector ri from the null vector and to
improve the computed solution, because of the round-off error propagation.

As explained in [20,22], the stochastic arithmetic allows the development of two
termination criteria for these cases.
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In stochastic arithmetic, when the iterative process becomes stationary (before
the stopping criterion (2) is satisfied), that is, the difference between two iterates is
insignificant, the components of the vector xi − xi−1 are stochastic zeros. So, with
the CADNA library which automatically implements the CESTAC method, and using
the stopping criterion

‖xi − xi−1‖1 = 0, (3)

it is possible to stop the iterative process as soon as it becomes stationary.
On the other hand, in stochastic arithmetic, when the computer is unable to distin-

guish the vector ri from the null vector (before the stopping criterion (2) is satisfied)
and to improve the computed solution, because of the round-off error propagation,
the components of ri are stochastic zeros and a satisfactory informatical solution is
available. So, with the CADNA library, and using the stopping criterion

‖ri‖2 = 0, (4)

it is possible to stop the iterative process as soon as case (ii) occurs and a satisfactory
informatical solution is reached.

It is clear that, in the above cases, in which the iterative process is stopped by
criterion (3) or (4) before criterion (2) is satisfied, the computed solution will not be a
solution with the desired accuracy (‖ri‖2 6 ε) and it is necessary to improve it by an
increment vector ∆xi. For doing this, we need the classical type value of the residual
vector ri of the computed solution xi for solving the linear system A∆xi = ri by
restarting the iterative process. Fortunately, with the CADNA library, it suffices for
obtaining the classical type value of ri to use the old type function which exists in
this library, and which returns the corresponding classical type value of every stochastic
variable.

We observe that, with the CADNA library, criteria (3) and (4) stop the iterative
process as soon as cases (i) and (ii) occur, and make it possible to save computation
time, because many useless iterations are avoided, to restart the iterative process in
order to improve the satisfactory informatical solution which is furnished, and to obtain
the solution with the desired accuracy. Consequently, with the CADNA library and
using the termination criteria (2)–(4), and including the test for restarting the process
in the cases in which the process is stopped by the stopping criterion (3) or (4), we
can have a stable and efficient ATA-orthogonal s-step Orthomin(k) algorithm with the
value of s furnished by the method discussed above for solving the linear system and
obtaining the desired approximate solution (with ‖ri‖2 6 ε).

Let us now present the examples and the results which we obtained by the
FORTRAN code of the ATA-orthogonal s-step Orthomin(k) method, with floating-
point arithmetic for different values of s, and this code with the CADNA library, and
the above tests, for the value of s furnished by the computer. Computations have been
performed on a SUN4 computer in double precision. For floating-point arithmetic the
stopping criterion was ‖ri‖2 6 ε and the maximum number of iterations allowed set
to 1000.
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Example 1. We consider the constant-coefficient elliptic equation

−∆u+ 2P1ux + 2P2uy = f , (5)

which was described in [12], on the unit square Ω = {(x, y) | 0 6 x, y 6 1} with
Dirichlet boundary conditions. Discretizing (5) on an n1 × n1 grid gives rise to a
sparse linear system of equations of order n = n2

1. By using the second order centered
differences for the first derivatives and the Laplacian, the coefficient matrix has the
form

A =



a d e

b a d
. . .

b a e
. . .

c
. . . . . .

. . . d

c b a


.

After scaling the matrix and right hand side by h2 (h = 1/(n1 + 1)), the matrix entries
are given by

a = 4, b = −(1 + p1), c = −(1 + p2), d = −1 + p1, e = −1 + p2,

where p1 = P1h, p2 = P2h. In our test we take P1 = 0, P2 = 50. The grid size is
h = 1/21, leading to a problem of size 400. The right hand side is determined so that
the solution x to the discrete system is 1 everywhere. This allows an easy verification
of the results. With ε = 10−9 and x0 = [0, . . . , 0]T the results obtained are presented
in tables 1 and 2. Table 1 contains the minimum number of significant digits of the
norm of orthogonal direction vectors of P0 for different values of s. Table 2 contains
the number of iterations needed to satisfy the stopping criterion (2). For the CADNA
library there are two numbers in this table, the first one, denoted by TN, presents the
total number of iterations needed in the different runs of the iterative process. The
second number, denoted by NR, presents the number of restarts of the iterative process.

The results presented in table 1 show that the highest value of s for which all
the orthogonal direction vectors of P0 have a norm with at least 10 significant digits
is s = 20. Table 2 shows that the value s = 20 is a good value for this example. With
this computed value s = 20, and the CADNA library, the solution was reached with

Table 1
The minimum number of significant digits of the norm of orthogonal

direction vectors of P0.

s 4 8 12 16 20 24 28 32 36 40

MIN 14 14 14 13 11 9 7 5 3 3
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Table 2
The number of iterations to convergence.

Double floating-point arithmetic CADNA library

s 4 8 12 16 20 24 28 32 36 40 TN NR

k = 1 35 27 19 11 7 6 7 9 18 22 5 1
k = 2 46 23 10 7 6 17 16 19 27 34 5 1
k = 4 52 12 8 8 8 53 57 65 88 90 5 1

only 5 iterations for all the values k = 1, 2, 4, which is less than those needed with
floating-point arithmetic for different values of s. It must be noted that the process was
stopped by the stopping criterion (4) at the 3rd iteration and restarted for improving
the computed solution for which the norm of the residual was ‖r3‖2 = 0.484E–5,
‖r3‖2 = 0.755E–6, ‖r3‖2 = 0.755E–6, for k = 1, 2, 4, respectively. We observe that,
for this example, by using the CADNA library we could determine a good value of s
(s = 20), and obtain the desired approximate solution (with ‖ri‖2 6 10−9) with the
minimum number of iterations. So, for this example, the algorithm using the CADNA
library is more efficient than that using floating-point arithmetic.

Example 2. We consider the linear system with

A =



α 1

−1 α 1
. . . . . . . . .

1

−1 α

 , b =


1 + α

α
...

α

α− 1

 ,

which was described in [1], and dimension equal to 400. With α = 10−8, ε = 10−5

and the initial vector x0 = [0, . . . , 0]T the results are given in tables 3 and 4.
For this example the computed value of s is 28. From the results presented

in table 4 it clearly appears that s = 28 is a good value for this example. With the
CADNA library, the solution was reached with 18 iterations for k = 1, and 17 iterations
for k = 2, 4. The iterative process was stopped by the stopping citerion (3) at the 16th
iteration, and restarted in order to improve the computed solution for which the norm
of the residual was ‖r16‖2 = 0.285E–3, ‖r16‖2 = 0.163E–3, ‖r16‖2 = 0.124E–3, for
k = 1, 2, 4, respectively. We observe that, with the CADNA library for k = 1 the
total number of iterations to convergence is slightly greater than the smallest which

Table 3
The minimum number of significant digits of the norm of orthogonal

direction vectors of P0.

s 4 8 12 16 20 24 28 32 36 40

MIN 14 14 14 14 14 13 10 7 4 2
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Table 4
The number of iterations to convergence.

Double floating-point arithmetic CADNA library

s 4 8 12 16 20 24 28 32 36 40 TN NR

k = 1 100 50 36 25 20 19 17 15 24 29 18 1
k = 2 100 50 37 25 20 20 18 17 23 39 17 1
k = 4 100 50 39 25 20 22 20 21 37 58 17 1

corresponds to s = 32, and for k = 2, 4 this number, which is equal to 17, is less
than or equal to those needed for different values of s. So, for this example, with the
CADNA library the program is able to determine a good value of s (s = 28) and to
furnish the desired approximate solution (with ‖ri‖2 6 10−5) with a reasonable number
of iterations. Consequently, ATA-orthogonal s-step Orthomin(k) performed with the
CADNA library is an efficient tool for solving the linear system of this example.

Example 3. We consider the linear system with

A =


1 α

2
. . .

n− 1

n

 , b =


1

1
...

1

 ,

which was described in [18,23] and has dimension equal to 100. With α = 2 × 106,
ε = 10−10 and the initial vector x0 = [0, . . . , 0]T the results are listed in tables 5, 6.

For this example, the highest value of s for which all the orthogonal direction
vectors of P0 have a norm with at least 10 significant digits is s = 8. The results of

Table 5
The minimum number of significant digits of the norm of orthogonal

direction vectors of P0.

s 4 8 12 16 20 24 28 32 36 40

MIN 15 11 5 2 2 1 0 0 0 0

Table 6
The number of iterations to convergence. ∗ = problem reached itera-

tion count limit.

Double floating-point arithmetic CADNA library

s 4 8 12 16 20 TN NR

k = 1 29 14 10 92 * 13 2
k = 2 27 15 19 85 * 14 3
k = 4 22 74 68 131 * 15 3
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table 6 show that, with the CADNA library, the behavior is similar to that in example 2.
It must be noted that the process has been stopped by the stopping criterion (4) two
times for k = 1, and three times for k = 2, 4.

5. Conclusion

In this paper we have seen, in floating-point arithmetic, that the ATA-orthogonal
s-step Orthomin(k) method has to face the two inherent difficulties:

• How to determine a good value of s?

• How can the iterative process be stopped correctly?

We observed that the use of the CADNA library allows us to solve these problems.
It has been shown that it is possible, on the one hand, by using the number of significant
digits of the norm of orthogonal direction vectors of P0, furnished by this library, to
determine a good value of s, and, on the other hand, by using the appropriate stopping
criteria which use the informatical zero, to stop correctly the iterative process and
to save computer time, because many useless iterations are not performed. We have
seen by restarting the iterative process, that it is possible to improve the computed
solution. The numerical experiments show that the total number of iterations taken
in the different runs of the iterative process is a reasonable number versus those
needed for different values of s with floating-point arithmetic. In short, the two
problems encountered in the use of the ATA-orthogonal s-step Orthomin(k) method
have been solved with the CADNA library. Consequently, the ATA-orthogonal s-step
Orthomin(k) algorithm with the CADNA library is a robust and efficient tool for
solving large nonsymmetric systems of linear equations.
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