A DENSE SUBGROUP OF TOPOLOGICAL FUNDAMENTAL GROUP OF QUOTIENT SPACES

HAMID TORABI

ABSTRACT. In this talk, we show that the image of the topological fundamental group of a given space X is dense in the topological fundamental group of the quotient space X/A under the induced homomorphism of the quotient map, where A is a suitable subspace of X with some conditions on X. Also, we give some applications to find out some properties for $\pi_1^{top}(X/A,*)$. In particular, we give some conditions under which $\pi_1^{top}(X/A,*)$ is an indiscrete topological group.

1. Introduction

Let X be a topological space and \sim be an equivalent relation on X. Then one can consider the quotient topological space X/\sim and the quotient map $p:X\longrightarrow X/\sim$. By applying the fundamental group functor on p there exists the induced homomorphism

$$p_*:\pi_1(X)\longrightarrow \pi_1(X/\sim).$$

It seems interesting to determine the image of the above homomorphism. Recently, Calcut, Gompf, and Mccarthy [2] proved that if X is a locally path connected topological space partitioned into connected subsets and if the associated quotient space X/\sim is semi-locally simply connected, then the induced homomorphism, p_* , of fundamental groups is surjective for each choice of base point $x \in X$. They inspired the problem by one of Arnold's problems on orbit spaces of vector fields on manifolds [2, Section 3.6].

D. Biss [1] introduced the topological fundamental group $\pi_1^{top}(X,x)$ of a based space (X,x) as the fundamental group $\pi_1(X,x)$ with the quotient topology of the loop space $\Omega(X,x)$ with respect to the canonical function $\pi:\Omega(X,x)\longrightarrow \pi_1(X,x)$ identifying path components. It is known that this construction gives rise a homotopy invariant functor $\pi_1^{top}:htop_*\longrightarrow QTG$ from the homotopy category of based spaces to the category of quasitopological groups and continuous homomorphism [3]. By applying the above functor on the quotient map $p:X\longrightarrow X/\sim$, we have a continuous homomorphism $p_*:\pi_1^{top}(X)\longrightarrow \pi_1^{top}(X/\sim)$. For a pointed topological space (X,x), by a path we mean a continuous map $\alpha:[0,1]\longrightarrow X$. The points $\alpha(0)$ and $\alpha(1)$ are called the initial point and the terminal point of α , respectively. A loop α is a path with $\alpha(0)=\alpha(1)$. For a path $\alpha:[0,1]\longrightarrow X$, α^{-1} denotes a path such that $\alpha^{-1}(t)=\alpha(1-t)$, for all $t\in[0,1]$. Denote [0,1] by I, two paths $\alpha,\beta:I\longrightarrow X$ with the same initial and terminal points are called homotopic relative to end

²⁰¹⁰ Mathematics Subject Classification. Primary: 54B15; Secondary: 55P65, 55Q52.

Key words and phrases. Topological fundamental group, Quotient map, Dense subgroup.

Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran. Email: hamid_torabi86@yahoo.com.

points if there exists a continuous map $F: I \times I \longrightarrow X$ such that

$$F(t,s) = \begin{cases} \alpha(t) & s = 0\\ \beta(t) & s = 1\\ \alpha(0) = \beta(0) & t = 0\\ \alpha(1) = \beta(1) & t = 1. \end{cases}$$

The homotopy class containing a path α is denoted by $[\alpha]$. Since most of the homotopies that appear in this paper have this property and end points are the same, we drop the term "relative homotopy" for simplicity. For paths $\alpha, \beta: I \longrightarrow X$ with $\alpha(1) = \beta(0)$, $\alpha * \beta$ denotes the concatenation of α and β , that is, a path from I to X such that $(\alpha * \beta)(t) = \alpha(2t)$, for $0 \le t \le 1/2$ and $(\alpha * \beta)(t) = \beta(2t-1)$, for $1/2 \le t \le 1$.

For a space (X,x), let $\Omega(X,x)$ be the space of based maps from I to X with the compactopen topology. A subbase for this topology consists of neighborhoods of the form $\langle K,U\rangle=\{\gamma\in\Omega(X,x)\mid\gamma(K)\subseteq U\}$, where $K\subseteq I$ is compact and U is open in X. When X is path connected and the basepoint is clear, we just write $\Omega(X)$ and we will consistently denote the constant path at x by e_x . The topological fundamental group of a pointed space (X,x)may be described as the usual fundamental group $\pi_1(X,x)$ with the quotient topology with respect to the canonical map $\Omega(X,x)\longrightarrow \pi_1(X,x)$ identifying homotopy classes of loops, denoted by $\pi_1^{top}(X,x)$. A basic account of topological fundamental groups may be found in [1], [3].

2. Main Results

Theorem 2.1. Let A be an open subset of X such that \overline{A} is path connected, then for each $a \in A$ the image of p_* is dense in $\pi_1^{top}(X/A,*)$ i.e:

$$\overline{p_*\pi_1^{top}(X,a)} = \pi_1^{top}(X/A,*).$$

Definition 2.2. Let X be a topological space and $A_1, A_2, ..., A_n$ be any subsets of X, $n \in \mathbb{N}$. By the quotient space $X/(A_1, ..., A_n)$ we mean the quotient space obtained from X by identifying each of the sets A_i to a point. Also, we denote the associated quotient map by $p: X \longrightarrow X/(A_1, A_2, ..., A_n)$.

Corollary 2.3. Let $A_1, A_2, ..., A_n$ be open subsets of a path connected space X such that the A_i 's are path connected for every i = 1, 2, ..., n. Then for every $a \in \bigcup_{i=1}^n A_i$,

$$p_*\pi_1^{top}(X,a) = \pi_1^{top}(X/(A_1,A_2,...,A_n),*).$$

Corollary 2.4. Let $A_1, A_2, ..., A_n$ be open subsets of a connected, locally path connected space X such that the A_i 's are path connected for every i = 1, 2, ..., n. If $X/(A_1, A_2, ..., A_n)$ is semi-locally simply connected, then for each $a \in \bigcup_{i=1}^n A_i$,

$$p_*: \pi_1^{top}(X, a) \longrightarrow \pi_1^{top}(X/(A_1, A_2, ..., A_n, *))$$

is an epimorphism.

In the following example we show that with assumption of previous Theorem p_* is not necessarily onto.

Examples 2.5. Let $A_n = \{1/(2n-1), 1/2n\} \times [0, 1+1/2n] \cup [1/2n, 1/2n-1] \times \{1+1/2n\}$ for each $n \in \mathbb{N}$. Consider $X = (\bigcup_{n \in \mathbb{N}} A_n) \cup \{0\} \times [0, 1] \cup [0, 1] \times \{0\}$ with a = (0, 0) as the base point and $A = \{(x, y) \in X \mid y < 1\}$. A is an open subset of X with path connected closure. Let $I_n = (1/2 + 1/2(n+1), 1/2 + 1/2n]$ and f_n be a homeomorphism from I_n to $A_n - \{(1/2n, 0)\}$ for every $n \in \mathbb{N}$. Define $f : I \longrightarrow X$ by

$$f(t) = \begin{cases} the \ point \ (0,2t) & t \in [0,1/2], \\ f_n(t) & t \in I_n. \end{cases}$$

We claim that $\alpha = p \circ f$ is a loop in X/A at *. It suffices to show that α is continuous on t = 1/2 and boundary points of I_n 's since f is continuous on [0,1/2) and by gluing lemma on $\bigcup int(I_n)$. Since α is locally constant at t = 1/2 + 1/2n for each $n \in \mathbb{N}$, α is continuous at boundary points of I_n . For each open neighborhood G of f(1/2) = (0,1) in X, there exists $n_0 \in \mathbb{N}$ such that G contains $A_n \cap A^c$ for $n > n_0$. Therefore continuity at t = 1/2 follows from $\alpha(1/2) \in \overline{\{*\}}$. Now let $B \subseteq \mathbb{N}$ and define

$$g_B(t) = \begin{cases} (p \circ f)(t) & t \in \bigcup_{m \in B} I_m, \\ * & otherwise. \end{cases}$$

Then g_B is continuous and for $B_1, B_2 \subseteq \mathbb{N}$ such that $B_1 \neq B_2$, $[g_{B_1}] \neq [g_{B_2}]$ which implies that $\pi_1(X/A,*)$ is uncountable. But by compactness of I, a given path in X can traverse finitely many of the A_n 's and therefore $\pi_1(X,a)$ is a free group on countably many generators which implies that p does not induce a surjection of fundamental groups.

3. SOME APPLICATIONS

After that Biss [1] equipped the fundamental group of a topological space and named it topological fundamental group, Fabel [5] showed that topological fundamental groups can distinguish spaces with isomorphic fundamental groups. Hence studying the topology of fundamental groups seems important.

By $(X, A_1, A_2, ..., A_n)$ we mean an (n+1)-tuple of spaces where the A_i 's are open subsets of X with path connected closure.

Theorem 3.1. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if X is simply connected, then $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is an indiscrete topological group.

Theorem 3.2. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if $\pi_1^{top}(X,a)$ is compact and $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is Hausdorff, then p_* is an epimorphism and so is a closed quotient map.

Theorem 3.3. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if $\pi_1^{top}(X,a)$ is compact and $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is Hausdorff, then either $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is a discrete topological group or uncountable.

Corollary 3.4. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if $\pi_1^{top}(X,a)$ is a compact, countable quasitopological group, then either $X/(A_1,A_2,...,A_n)$ is semi-locally simply connected or $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is not Hausdorff.

Corollary 3.5. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if $\pi_1^{top}(X,a)$ is finite and $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is Hausdorff, then $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is finite and $X/(A_1,A_2,...,A_n)$ is semi-locally simply connected.

Definition 3.6. (cf. [4]) A topological space is said to be **irreducible** if it cannot be expressed as a union of two proper closed subsets. Equivalently, it is irreducible if each of its nonempty open subsets is dense. A space is called **semi-irreducible** if every disjoint family of its nonempty open subsets is finite.

A sober space is a topological space X such that every irreducible closed subset of X is the closure of exactly one point of X ([4]). For example every Hausdorff space is sober space, since the only irreducible subsets are points. In [4] it is proved that a sober space is semi-irreducible if and only if it has a finite dense subset.

Corollary 3.7. For an (n+1)-tuple of spaces $(X,A_1,A_2,...,A_n)$, if $\pi_1^{top}(X,a)$ is finite and $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is a sober topological space, then $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ is semi-irreducible.

Proof. Note that since $\pi_1^{top}(X/(A_1,A_2,...,A_n),*)$ has a finite dense subset, the result holds.

REFERENCES

- [1] D. BISS, The Topological Fundamental Group and Generalized Covering Spaces. Topology and its Applications **124**(2002), 355-371.
- [2] J.S. CALCUT, R.E GOMPF AND J.D MCCARTHY, Quotient maps with the connected fibers and the fundamental group. arXiv:0904.4465v1.
- [3] J. BRAZAS, The topological fundamental group and free topological groups. arXiv:1006.0119v3.
- [4] T. DUBE, Irreducibility In Pointfree Toplogy. Quaestiones Mathematicae 27 (2004), 231-241
- [5] P. FABEL, Topological fundamental groups can distinguish spaces with isomorphic homotopy groups, Topology Proc. **30** (2006), 187–195.
- [6] H. Torabi, A. Pakdaman and B. Mashayekhy, On The Topological Fundamental Group of Quotient Space. Ukrainian Mathematical Jurnal, **65**(2014), no. 12, 1883-1897.