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Abstract. Recently, the authors in a joint paper obtained the structure of all
capable nilpotent Lie algebras with derived subalgebra of dimension at most

1. The paper is devoted to characterize all capable nilpotent Lie algebras of
class two with derived subalgebra of dimension 2. It develops and generalizes
the result due to Heineken for the group case.

1. Motivation and preliminaries

According to Beyl and Tappe a p-group G is called capable if G is isomorphic
to H/Z(H) for a group H. There are some fundamental known results concerning
capability of p-groups. For instance, in [9, Corollary 4.16], it is shown the only
capable extra-special p-groups (the p-group with Z(G) = G′ and |G′| = p) are those
of order p3 and exponent p. In the case that G′ = Z(G) and Z(G) is elementary
abelian p-group of rank 2, Heineken in [15] proved that the capable ones have order
at most p7.
Lie algebras and groups have similarities in the structures, so some authors tried to
make analogies between them. But in this way not every thing is the same and there
are differences between groups and Lie algebras so that most of the time the proofs
are different. Also the results in the field of Lie algebras are sometimes stronger
than that for groups. For instance, in [23], the authors obtained the structure of
a capable nilpotent Lie algebra L when dimL2 ≤ 1. It developed the result of [9,
Corollary 4.16] for groups to the case of Lie algebras. Recall that a Lie algebra
is capable provided that L ∼= H/Z(H) for a Lie algebra H. In the same scene of
research, we are going to characterize the structure of all capable Lie algebras that
are nilpotent of class two with with derived subalgebra of dimension 2. It obviously
develops and generalizes the result of Heineken [15] for groups to the area of Lie
algebras. As an application, we exactly obtain M(L), the Schur multiplier of those
Lie algebras. Recall that if L is a Lie algebra and F a free Lie algebra such that
L ∼= F/R, then M(L), is isomorphic to R ∩ F 2/[R,F ]. The reader can find some
literatures about the Schur multiplier of groups and Lie algebras for instance in
[1, 4, 5, 7, 9, 11, 19, 20, 21, 22, 23, 24, 25, 27, 28, 26, 29].

Throughout the paper, we assume that all Lie algebras have finite dimensions
on an algebraically closed field, and we use the symbol H(m) for the Heisenberg
algebra of dimension 2m+1 that is a Lie algebra L with L2 = Z(L) and dimL2 = 1.
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Such algebras are odd dimensional with basis v1, . . . , v2m, v and the only non–
zero multiplication between basis elements is [v2i−1, v2i] = −[v2i, v2i−1] = v for
i = 1, 2, . . . ,m. We also denote an abelian Lie algebra of dimension n by A(n).

The following lemma gives the structure of the Schur multiplier of a direct sums
of Lie algebras.

Lemma 1.1. (See [4, Proposition 3]) Let A and B be Lie algebras. Then

M(A⊕B) ∼= M(A)⊕M(B)⊕ (A/A2 ⊗B/B2).

The following is another easy consequence. It can also be deduced in different
ways, using homological methods of abstract algebra in [32].

Corollary 1.2. (See [23, Corollary 2.5]) We have M(A(n)) = A(n) ∧A(n).

Schur multipliers of abelian and Heisenberg algebras are well-known.

Lemma 1.3. (See [23, Lemma 2.6]) We have

(i) dimM(A(n)) = 1
2n(n− 1).

(ii) dimM(H(1)) = 2.
(iii) dimM(H(m)) = 2m2 −m− 1 for all m ≥ 2.

Recall from [23], the concept of the exterior center Z∧(L), the set of all elements
l of L for which l ∧ l1 = 0L∧L for all l1 ∈ L. Following [23], a Lie algebra L is ca-
pable if and only if Z∧(L) = 0. It gives a criteria for detecting capable Lie algebras.

The following lemmas provide a condition under which we can decide whether
Z∧(L) = 0.

Lemma 1.4. (See [1, Theorem 4.4] and [23, Lemma 2.1]) Let K be a central ideal
in a Lie algebra L. Then K ⊆ Z∧(L) if and only if M(L) → M(L/K) is a
monomorphism.

Lemma 1.5. (See [23, Theorem 2.7]) Let A and B be Lie algebras. Then

Z∧(A⊕B) ⊆ Z∧(A)⊕ Z∧(B).

We also need the following lemma.

Lemma 1.6. (See [11, Proposition 13] and [1, Proposition 4.1(iii)]) Let L be a
Lie algebra and N be a central ideal of L. Then the following sequences are exact.

(i) L ∧N → L ∧ L → L/N ∧ L/N → 0.
(ii) M(L) → M(L/N) → N ∩ L2 → 0.

The following lemma gives the structure of all capable Lie algebras in the class
of abelian and Heisenberg Lie algebras.

Lemma 1.7. (See [23, Theorem 3.5]) We have

(i) A(n) is capable if and only if n ≥ 2.
(ii) H(m) is capable if and only if m = 1.

The direct sum of two Heisenberg Lie algebras has the derived subalgebra of
dimension 2. The following corollary gives a necessary condition for capability of
such Lie algebras.

Corollary 1.8. Let L = H(t) ⊕ H(m). If t ≥ 2, then L is non-capable for all
m ≥ 1.
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Proof. We show that H(t)2 ⊆ Z∧(L). By Lemma 1.1, we have

dimM(L) = dimM(H(t)) + dimM(H(m)) + dim(
H(t)

H(t)2
⊗ H(m)

H(m)2
),

and

dimM(L/H(t)2) = dimM(
H(t)

H(t)2
) + dimM(H(m)) + dim(

H(t)

H(t)2
⊗ H(m)

H(m)2
).

Lemmas 1.6 and 1.7(ii) show that

dimM(L) = dimM(L/H(t)2)− 1.

Therefore by Lemma 1.4, H(t)2 ⊆ Z∧(L) and hence L is non-capable. �

The following lemma determines the structure of a capable Lie algebra L of
dimension n with dimL2 = 1. In the next section, we follow the same line of
research to characterize the structure of all nilpotent Lie algebra L of class 2 with
dimL2 = 2.

Lemma 1.9. (See [22, Lemma 3.3]) Let L be a nilpotent Lie algebra of dimension
n such that dimL2 = 1. Then L ∼= H(m)⊕A(n− 2m− 1) for some m ≥ 1 and L
is capable if and only if m = 1, that is, L ∼= H(1)⊕A(n− 3).

2. Main results

We are going to classify all capable nilpotent Lie algebras of class two with
derived subalgebra of dimension 2. Furthermore, we give the structure of Schur
multiplier of such Lie algebras as an application. It gives a vast generalization of a
result due to Heineken’s result on capability in the class of p-groups in [15].

We need the notion of central product of Lie algebras.

Definition 2.1. The Lie algebra L is a central product of A and B, if L = A+B,
where A and B are ideals of L such that [A,B] = 0 and A ∩B ⊆ Z(L). We denote
the central product of two Lie algebras A and B by AuB.

On the capability of a central product we have the following proposition.

Proposition 2.2. Let L = AuB with A2 ∩B2 ̸= 0. Then L is non-capable.

Proof. Assume that 0 ̸= x ∈ A2 ∩ B2 and l = a + b be an arbitrary element of L
such that a ∈ A, b ∈ B. We have x =

∑n
j=1 αj [a

′
j , aj ] =

∑m
i=1 βi[b

′
i, bi] in which

αj , βi are scalers such that a′j , aj ∈ A, b′i, bi ∈ B . Since [A,B] = 0, we have

a ∧ x = a ∧
m∑
i=1

βi[b
′
i, bi] =

m∑
i=1

βi([a, b
′
i] ∧ bi − [a, bi] ∧ b′i) = 0.

and

b ∧ x = b ∧
n∑

j=1

αj [a
′
j , aj ] =

n∑
j=1

αj([b, a
′
j ] ∧ aj − [b, aj ] ∧ a′j) = 0,

which shows x ∧ l = 0L∧L, for all l ∈ L. Therefore Z∧(L) ̸= 0, and the result
holds. �

Definition 2.3. A Lie algebra H is called generalized Heisenberg of rank n if
H2 = Z(H) and dimH2 = n.
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The following proposition states a close relationship between generalized Heisen-
berg Lie algebras and those of class 2 with derived subalgebra of dimension 2. This
relationship allows us to work only on generalized Heisenberg Lie algebras when
working on the capability of mentioned Lie algebras of class 2.

Proposition 2.4. Let L be a nilpotent Lie algebra of nilpotency class 2. Then L =
H ⊕A and Z∧(L) = Z∧(H), where A is abelian and H is generalized Heisenberg.

Proof. Since Z(L) = L2 +A, where A is abelian, we have

L/L2 = H/L2 ⊕ (A+ L2)/L2

for some subalgebra H of L. Therefore L = H + A and H ∩ A = L2 ∩ A = 0.
This shows L = H ⊕ A and Z(H) = L2 = H2. By Lemma 1.5, we have Z∧(L) ⊆
Z∧(H)⊕Z∧(A). First assume that dimA ≥ 2. Now Lemma 1.7(i) shows Z∧(L) = 0
and so Z∧(L) ⊆ Z∧(H). Now let dimA = 1. Using Lemma 1.1,

M(L) = M(H ⊕A(1)) = M(H)⊕ (H/H2 ⊗A(1)).

By Lemma 1.6(ii) and the fact that A(1)∩L2 = 0, we haveM(L) −→ M(L/A(1)) is
an epimorphism. Thus M(L) −→ M(L/A(1)) is not a monomorphism. Therefore
A(1) * Z∧(L), using Lemma 1.4, we should have Z∧(L) ⊆ Z∧(H). Now we show
that Z∧(H) ⊆ Z∧(L). Note that by Lemma 1.7(i)H/H2 is capable so Z∧(H) ⊆ H2,
therefor for getting the result we consider two cases as follows

(i) Z∧(H) = 0,
(ii) 0 ̸= Z∧(H) ⊆ H2.

Case (i) is trivial.
Case (ii), by invoking Lemma 1.1, we have

M(L) ∼= M(H)⊕M(A)⊕ (H/H2 ⊗A)

and

M(L/Z∧(H)) ∼= M(H/Z∧(H))⊕M(A)⊕ (H/H2 ⊗A).

Now Lemma 1.6(ii) shows that, dimM(H) = dimM(H/Z∧(H)) − dim(Z∧(H).
From Lemma 1.4, the homomorphism M(L) → M(H/Z∧(H)) is a monomorphism,
and so Z∧(H) ⊆ Z∧(L), as required. �

Heineken in [15] proved that for a finite capable p-groups with

Zp ⊕ Zp
∼= G′ ⊆ Z(G)

we have

p2 < |G/Z(G)| < p6.

Similarly, if L is a finite dimensional nilpotent Lie algebra of class 2 with dimL2 = 2,
then the capability of L implies

2 < dimL/Z(L) < 6.

In the sequel we prove the above result.

Lemma 2.5. Let L be a finite dimensional nilpotent Lie algebra of nilpotency class
2 with dimL2 = 2. Then there exists two subalgebras U and V of L such that
L = U + V and U ∩ V ⊆ Z(L).



ON THE CAPABILITY AND SCHUR MULTIPLIER OF NILPOTENT LIE ALGEBRA OF CLASS TWO5

Proof. Consider L as a vector space on the filed S. If L2 = ⟨a⟩ ⊕ ⟨b⟩, then consider
the mapping

λ : L/Z(L)× L/Z(L) → L2

(l1 + Z(L), l2 + Z(L)) 7→ [l1, l2].

Now [l1, l2] = n(l1, l2)a+m(l1, l2)b, where n(l1, l2),m(l1, l2) ∈ S, so the mapping λ
induces the following two alternating bilinear forms

λ1 : L/Z(L)× L/Z(L) → S

(l1 + Z(L), l2 + Z(L)) 7→ n(l1, l2)

and

λ2 : L/Z(L)× L/Z(L) → S

(l1 + Z(L), l2 + Z(L)) 7→ m(l1, l2);

on L/Z(L). By [15, Proposition 1], we have L/Z(L) = U/Z(L) ⊕ V/Z(L), for
subalgebras U and V of L. The result follows. �

Proposition 2.6. Let L be a finite dimensional nilpotent Lie algebra of nilpotency
class 2 such that dimL2 = 2. If L is capable, then

2 < dimL/Z(L) < 6.

Proof. It is clear that 2 < dimL/Z(L). Now we show that dimL/Z(L) < 6. We
suppose that L ∼= E/Z(E) for some Lie algebra E and deduce restrictions on L. By
Lemma 2.5, we have L = U + V and U ∩ V ⊆ Z(L) for subalgebras U and V of L.
First we show that if L = U + V with [U, V ] = 0 and U * Z(L), V * Z(L), then
dimL/Z(L) = 4.
Since L is capable so U2 ∩ V 2 = 0, by Proposition 2.2. We conclude

dim U2 = dim V 2 = 1, L2 = U2 ⊕ V 2.

Using Lemma 1.9, we have

U = H(m)⊕A(n− 2m− 1), V = H(t)⊕A(n1 − 2t− 1).

Since [U, V ] = 0, we have Z(L) = Z(U) + Z(V ) and U ∩ V ⊆ Z(L). Therefore

L = H(m)⊕H(t)⊕A,

where A is abelian. Corollary 1.8 follows L = H(1)⊕H(1)⊕A. Therefore U/Z(U)
and V/Z(V ) are abelian of dimension 2. Since L/Z(L) = U/Z(U) ⊕ V/Z(V ),
dimL/Z(L) = 4.

Let dimL/Z(L) > 4. From now the proof is completely similar in techniques, to
that of [15, Proposition 3] except that here it is stated for Lie algebras. �

Now considering the above proposition, for determining capable Lie algebras
among nilpotent ones of class 2 with derived subalgebra of dimension 2, it is enough
to consider those ones with

5 ≤ dimL ≤ 7.

Following to Shirshov [31] for a free Lie algebra L on the set X = {x1, x2, . . .}.
The basic commutator on the set X defined inductively.
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(i) The generators x1, x2, . . . , xn are basic commutators of length one and or-
dered by setting xi < xj if i < j.

(ii) If all basic commutators di of length less than t have been defined and
ordered, then we may define the basic commutators of length t to be all
commutators of the form [di, dj ] such that the sum of lengths of di and dj
is t, di > dj , and if di = [ds, dt], then dj ≥ dt. The basic commutators
of length t follow those of lengths less than t. The basic commutators of
the same length can be ordered in any way, but usually the lexicographical
order is used.

The number of all basic commutators on a set X = {x1, x2, . . . xd} of length n is
denoted by ld(n). Thanks to [17], we have

ld(n) =
1

n

∑
m|n

µ(m)d
n
m ,

where µ(m) is the Möbius function, defined by µ(1) = 1, µ(k) = 0 if k is divisible by
a square, and µ(p1 . . . ps) = (−1)s if p1, . . . , ps are distinct prime numbers. Using
the topside statement and looking [30, Lemma 1.1] and [31], we have the following
theorem.

Theorem 2.7. Let F be a free Lie algebra on set X, then F c/F c+i is an abelian Lie
algebra with the basis of all basic commutators on X of lengths c, c+1, . . . , c− i+1
for all 0 ≤ i ≤ c. In particular, F c/F c+1 is an abelian Lie algebra of dimension
ld(c), where F c is the c-th term of the lower central series of F .

Proof. See [3], page 72-74. �
By Propositions 2.4 and 2.6, it is enough to determine the capability of gener-

alized Heisenberg Lie algebras of rank 2 whose dimensions are 5, 6 or 7. According
to the classification of nilpotent Lie algebras of dimension at most 7 in [15] and
using notation and terminology in [10, 13, 14], the following Lie algebras must be
considered.

L5,8 = ⟨x1, x2, x3, x4, x5

∣∣[x1, x2] = x4, [x1, x3] = x5⟩,
L1 = 27A = ⟨x1, x2, x3, x4, x5, x6, x7

∣∣[x1, x2] = x6 = [x3, x4], [x1, x5] = x7 = [x2, x3]⟩,
L2 = 27B = ⟨x1, x2, x3, x4, x5, x6, x7

∣∣[x1, x2] = x6, [x1, x4] = x7, [x3, x5] = x7⟩,
L6,22(0) = ⟨x1, x2, x3, x4, x5, x6

∣∣[x1, x2] = x5, [x1, x3] = x6, [x3, x4] = x5⟩.
The following remark shows that L6,22(0) is isomorphic to a known Lie algebra

as follows.

Remark 2.8. With the above notations and assumptions we have

L6,22(0) = ⟨y1, y2, y3, y4, y5, y6
∣∣[y1, y2] = y6, [y3, x4] = y5⟩ ∼= H(1)⊕H(1).

Proof. By taking y2 = x3 − x2, y6 = x6 − x5, yi = xi, i = 1, 3, 4, 5. We have

L6,22(0) = ⟨y1, y2, y3, y4, y5, y6
∣∣[y1, y2] = y6, [y3, x4] = y5⟩ = H(1)⊕H(1),

and the result holds. �
For capability of these algebras we have

Lemma 2.9. H(1)⊕H(1) is capable.
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Proof. Using Lemma 1.5, we have Z∧(H(1)⊕H(1)) ⊆ Z∧(H(1))⊕Z∧(H(1)). But
the latter is trivial because H(1) is capable, so the result follows. �

In the next proposition, we determine the structure of the Schur multipliers of
those Lie algebras whose capabilities are determined in the next investigation.

Proposition 2.10. The Schur multiplier of Lie algebras L6,22(0), L5,8, L1 and L2

are abelian Lie algebras of dimension 8, 6, 9 and 10, respectively.

Proof. By Lemma 2.8, we have L6,22(0)
∼= H(1)⊕H(1). Using Lemmas 1.1 and 1.3

and 2.9,

M(L6,22(0)) = M(H(1)⊕H(1)) = M(H(1))⊕M(H(1))⊕ (
H(1)

H(1)2
⊗ H(1)

H(1)2
).

Therefore dimM(L6,22(0)) = 8.
Now let L ∼= L5,8, F be a free Lie algebra on the set {x1, x2, x3, x4, x5} note that
here we order {x1, . . . , x5} as x5 < x4 < x3 < x2 < x1 and

R = ⟨[x1, x2]− x4, [x1, x3]− x5, [x1, x4], [x1, x5], [xi, xj ]
∣∣2 ≤ i, j ≤ 5⟩F .

Since L5,8 is of class two, F 3 ⊆ R and hence M(L5,8) =
R ∩ F 2/F 4

[R,F ]/F 4
. On the other

hand,

R ∩ F 2

F 4
=

F 3 + ⟨[x1, x4], [x1, x5], [xi, xj ]
∣∣2 ≤ i, j ≤ 5⟩

F 4
.

Theorem 2.7 implies dim
F 2

F 4
= l5(3) + l5(2) = 40 + 10 = 50, and also we have

R ∩ F 2/F 4 ∼=
F 2/F 4

⟨[x1, x3] + F 4, [x1, x2] + F 4⟩
,

so

dimR ∩ F 2/F 4 = dim
F 2/F 4

⟨[x1, x3] + F 4, [x1, x2] + F 4⟩
= 50− 2 = 48.

Now
R

F 4
=

F 3

F 4
+

⟨[x1, x2]− x4, [x1, x3]− x5, [x1, x4], [x1, x5], [xi, xj ]
∣∣2 ≤ i, j ≤ 5⟩

F 4
,

and so

[R,F ]/F 4 = [⟨[x1, x2]−x4, [x1, x3]−x5, [x1, x4], [x1, x5], [xi, xj ]
∣∣2 ≤ i, j ≤ 5⟩, F ]/F 4.

Putting

M1 =⟨[x1, x4, xt], [x1, x5, xk],

[xi, xj , xl]
∣∣2 ≤ i < j ≤ 5, 1 ≤ t ≤ 4, 1 ≤ k ≤ 5, 1 ≤ l ≤ j⟩/F 4

and

M2 = ⟨[x1, x2, xi] + [xi, x4],

[x1, x3, xj ] + [xj , x5], [x3, x5]− [x3, x4], [x4, x5]
∣∣1 ≤ i ≤ 2, 1 ≤ j ≤ 3⟩/F 4.

Invoking the jacobian identity and some calculations, we have

M2 = ⟨[[x1, x2]− x4, f1], [[x1, x3]− x5, f2]
∣∣f1, f2 ∈ F ⟩/F 4

and

M1 = ⟨[x1, x4, f ], [x1, x5, f ], [xi, xj , f ]
∣∣2 ≤ i, j ≤ 5, f ∈ F ⟩/F 4.
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It is easy to see that [R,F ]/F 4 = M1 ⊕M2 and

M1
∼=

F 3/F 4

⟨[x1, x2, xi] + F 4, [x1, x3, xj ] + F 4
∣∣1 ≤ i ≤ 2, 1 ≤ j ≤ 3⟩

.

By Theorem 2.7, we have

dimM1 = l5(3)− 5 = 40− 5 = 35.

Therefore

dim [R,F ]/F 4 = dimM1 + dimM2 = 35 + 7 = 42.

It follows

dimM(L5,9) = dimR ∩ F 2/F 4 − dim [R,F ]/F 4 = 48− 42 = 6.

Now assume that L = L1, and let F be the free Lie algebra on the set
{x1, x2, x3, x4, x5, x6, x7}. Note that here we order {x1, . . . , x7} as x7 < x6 < x5 <
x4 < x3 < x2 < x1. Put

R =⟨[x1, x2]− x6, [x3, x4]− x6, [x1, x5]− x7, [x2, x3]− x7,

[x1, x2]− [x3, x4], [x1, x5]− [x2, x3], [xt, xd]
∣∣1 ≤ t, d ≤ 7⟩F .

F 3 ⊆ R, since L1 is nilpotent of class two. We know M(L1) =
R ∩ F 2/F 4

[R,F ]/F 4
and

R ∩ F 2

F 4
=

F 3 + ⟨[x1, x2]− [x3, x4], [x1, x5]− [x2, x3], [xi, xj ]
∣∣1 ≤ i, j ≤ 7⟩

F 4
.

Using Theorem 2.7, we have

dim
F 2

F 4
= l7(3) + l7(2) = 112 + 21 = 133.

Therefore

dimR ∩ F 2/F 4 = l7(3) + l7(2)− 4 + 2 = 131.

Taking

M3 =⟨[x1, x2]− [x3, x4], [x1, x5]− [x2, x3], [x1, x2]− x6,

[x1, x5]− x7, [xi, xj ]
∣∣1 ≤ i, j ≤ 7⟩/F 4.

Since
R

F 4
=

F 3

F 4
+ M3,

[R,F ]

F 4
= [M3, F/F

4]. Now define M4 to be the subalge-

bra (subspace) of F 3/F 4 generated by all basic commutators of weight 3 except
[x1, x5, x1], [x2, x3, x1] and [x3, x4, x3].
Put

M5 =⟨[x1, x5, x1]− [x1, x7],

[x2, x3, x1]− [x1, x7], [x1, x7]− [x3, x6], [x3, x4, x3]− [x1, x7]⟩/F 4.

Using the jacobian identity, we have

M5 =⟨[[x1, x2]− x4, f1], [[x1, x5]− x5, f2],

[[x1, x5]− [x2, x3], f ], [[x1, x2]− [x3, x4], f ]
∣∣f1, f2 ∈ F ⟩/F 4

It is easy to see that
[R,F ]

F 4
= M4 ⊕M5. Now Theorem 2.7 shows

dimM4 = l7(3)− 3 = 112− 3 = 109.
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Therefore

dim[R,F ]/F 4 = dimM1 + dimM2 = 109 + 13 = 122.

It implies

dimM(L1) = dimR ∩ F 2/F 4 − dim[R,F ]/F 4 = 131− 122 = 9.

By a similar way we can obtain that dimM(L2) = 10. It completes the proof. �

We are ready to decide about the capability of L5,8, L1 and L2 in the following
lemma.

Lemma 2.11. L5,8 and L1 are capable while L2 is not.

Proof. By Lemmas 1.3 and 1.9, we have

dimM(L5,8/L
2
5,8) = 3

and

dimM(L5,8/⟨x4⟩) = dimM(L5,8/⟨x5⟩) = dimM(H(1)⊕A(1)) = 4.

Now using Proposition 2.10 and Lemma 1.4, we conclude L5,8 is capable. Again by
invoking Lemmas 1.3 and 1.9, we have

dimM(L1/L
2
1) = 10,

dimM(L1/⟨x7⟩) = dimM(L2/⟨x6⟩) = dimM(H(2)⊕A(1)) = 9

and

dimM(L2/⟨x7⟩) = dimM(H(1)⊕A(3)) = 11.

Proposition 2.10 and Lemma 1.4 show L1 is capable while L2 is not. It completes
the proof. �

By the following, we get the capability of all generalized Heisenberg Lie algebras
of rank 2 and dimension n.

Theorem 2.12. Let H be a generalized Heisenberg Lie algebra, dimH = n and
dimH2 = 2. Then H is capable if and only if n = 5, 6, 7 and H = L5,8 or H =
L6,22(0) or H = L1.

Proof. Using Lemmas 2.9 and 2.11, the result follows. �

In the following corollary we classify all capable nilpotent Lie algebras of class 2
with derived subalgebra of dimension 2.

Corollary 2.13. Let L be a nilpotent Lie algebra of nilpotency class 2 and dimL2 =
2. Then L is capable if and only if L = L5,8⊕A or L = L6,22(0)⊕A or L = L1⊕A,
where A is abelian.

Proof. This is an immediate consequence of Proposition 2.4 and Theorem 2.12. �
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3. Schur Multipliers of Generalized Heisenberg Lie Algebras

In this section using Proposition 2.10, we can compute the Schur multiplier of
all generalized Heisenberg Lie algebras of rank 2 and dimension n. A usage of
Lemma 1.1 enables us to compute the Schur multiplier of all nilpotent Lie algebras
of nilpotency class 2 whose derived subalgebras have dimension 2.

Proposition 3.1. Let H be a non-capable generalized Heisenberg Lie algebra such
that dimH = n. Then

dimM(H) =
1

2
(n− 3)(n− 2)− 2

or

dimM(H) =
1

2
(n− 1)(n− 4) + 1.

Proof. We divide the proof into two cases.

(i) Z∧(H) = H2,
(ii) Z∧(H) = K, where K ⊂ H2 and dimK = 1.

In case (i), since H is non-capable, by Lemmas 1.4 and 1.6(ii), we have

dimM(H) = dimM(H/H2)− 2.

and so by Lemma 1.3,

dimM(H/H2) = dimM(A(n− 2)) =
1

2
(n− 2)(n− 3),

For the case (ii), since H is non-capable, Lemmas 1.4 and 1.6(ii) imply that
dimM(H) = dimM(H/Z∧(H))− 1.
Since H/Z∧(H) is capable and dim(H/Z∧(H))2 = 1, Lemma 1.9 shows that
H/Z∧(H) ∼= H(1)⊕A(n− 4). Now by Lemma 1.1, we have

dimM(H/Z∧(H)) = dimM(H(1)) + dimM(A(n− 4)) + dim(
H(1)

H(1)2
⊗A(n− 4))

=
1

2
(n− 1)(n− 4) + 2,

using Lemma 1.9. The result follows. �

The following example show all cases in Proposition 3.1 can occur. Actually L2

and H(2)⊕H(2) are examples.

Example 3.2.

Let L = L2. By Lemma 2.11, L2 is non-capable. We can show Z∧(L2) = ⟨x7⟩ ⊂
L2
2, since dim(L2/⟨x7⟩)2 = 1. From Lemma 1.9, we have L2/⟨x7⟩ ∼= H(1) ⊕ A(3).

Thus

dimM(
L2

⟨x7⟩
) = dimM(H(1)⊕A(3)) = 11.

This follows that dimM(L2) = dimM(L2/⟨x7⟩)− 1 = 10.
Now let L = H(2)⊕H(2). Corollary 1.8 implies that L is a non-capable gener-

alized Heisenberg. Thus Z∧(L) = L2 and dimM(L) = dimM(L/L2)− 2 = 26.
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