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ABSTRACT
In post-Cambrian time, life on Earth experienced 5 major extinction events, likely instigated by
adverse environmental conditions. Biodiversity loss among marine taxa, for at least 3 of these mass
extinction events (Late Devonian, end-Permian and end-Triassic), has been connected with
widespread oxygen-depleted and sulfide-bearing marine water. Furthermore, geochemical and
sedimentary evidence suggest that these events correlate with rather abrupt climate warming and
possibly increased terrestrial weathering. This suggests that biodiversity loss may be triggered by
mechanisms intrinsic to the Earth system, notably, the biogeochemical sulfur and carbon cycle. This
climate warming feedback produces large-scale eutrophication on the continental shelf, which, in
turn, expands oxygen minimum zones by increased respiration, which can turn to a sulfidic state by
increased microbial-sulfate reduction due to increased availability of organic matter. A plankton
community turnover from a high-diversity eukaryote to high-biomass bacterial dominated food
web is the catalyst proposed in this anoxia-extinction scenario and stands in stark contrast to the
postulated productivity collapse suggested for the end-Cretaceous mass extinction. This cascade of
events is relevant for the future ocean under predicted greenhouse driven climate change. The
exacerbation of anoxic “dead” zones is already progressing in modern oceanic environments, and
this is likely to increase due to climate induced continental weathering and resulting eutrophication
of the oceans.

KEYWORDS
climate change; climate
feedbacks; marine anoxia
and euxinia; mass
extinctions; microbial-sulfate
reduction

Macro-evolutionary analysis of the marine fossil record
led to the insight that the evolution of life on Earth, for
the last §500-million-year interval, is marked by fluctua-
tions in global marine faunal diversity.1,2 Short-term
time intervals with high extinction rates have been
dubbed mass extinctions, of which 5—the so-called “Big
Five”—stand out for their magnitude: the end-Ordovi-
cian, the Late Devonian, the end-Permian, the end-Trias-
sic and the end-Cretaceous.2-4 Adverse environmental
conditions are generally assumed to be the cause of these
biodiversity crises, with both extraterrestrial and terres-
trial sources as proposed triggers.5-9 The most famous
mass extinction is undoubtedly the biotic crisis at the
end of the Cretaceous, which marks the demise of the
non-avian dinosaurs, and has been connected to a bolide
impact,6 although challenged by other working groups.7

The resulting global impact winter, caused by the injec-
tion of dust and aerosol into the stratosphere reducing
incoming solar radiation, has often been associated with
a marine productivity collapse, in turn leading to the

demise of organisms in higher trophic levels.6,10 A
reduced vertical water column carbon isotope gradient is
recorded by carbonate fossils (or “Strangelove” ocean)
and provides evidence in support of such primary pro-
ductivity collapse.11 Although some authors suggest that
selective extinction among calcifying marine organisms,
mediated by a transient ocean acidification event, is a
more likely explanation for both the observed marine
extinction and the distinct carbon isotope signal.12

In contrast, the other mass extinctions, among which
the largest of them all—the end-Permian mass extinc-
tion—have, more often, been tied to Earth-bound pro-
cesses. Although extraterrestrial causes have not been
ruled out for these events, conclusive evidence, equal to
the end-Cretaceous impact indices, is lacking.13,14 Exam-
ples of proposed kill mechanisms inherent to the Earth
system are the consequences of glaciations, sea level
changes, global warming, large igneous provinces (LIPs)
and ocean chemistry changes, possibly coupled with syn-
ergistic effects resulting from the interactions of the
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listed mechanisms. One common ground for at least 3 of
the “Big Five” extinctions (Late Devonian, end-Permian
and end-Triassic) is the compelling evidence for syn-
chronous (or in close temporal relation) widespread
occurrence of oxygen deficient (anoxic) and hydrogen
sulfide-enriched (euxinic) marine regions.15-21 In addi-
tion, a possible fourth extinction event can be added to
this list, based on tentative evidence for sulfidic and
anoxic conditions during the end-Ordovician mass
extinction.22 In this brief review we want to extend on
our conclusions regarding our recent publication in Pro-
ceedings of the National Academy of Sciences (PNAS) of
the United States of America,23 in which we postulate a
prominent role for marine primary productivity, a side
effect of greenhouse warming, creating harmful marine
conditions during the end-Permian mass extinction. In
addition, we compare the ocean chemical state and
extinction dynamics of the latest Permian with condi-
tions during some of the other Phanerozoic major
extinction events as well as implications for the future
ocean if further affected by warming.

Metabolism and marine anoxia

A prominent mechanism inferred to induce the wide-
spread generation of anoxic and euxinic water masses is
water column stagnation24 and reduced O2 solubility
with increasing seawater temperature.19 Postulated
events of large-scale water column stagnation have been
regarded as an upscaled analog of the modern Black Sea
in which the water column is stratified in a large and
deep basin. This stratification was possibly initiated
»7500 years ago by an intrusion of saline water through
the Bosporus Strait.25,26 Besides physical processes, meta-
bolic activity above and below the sediment-water inter-
face plays a prominent role in determining seawater O2

and H2S levels, as marine dissolved oxygen is efficiently
depleted by remineralization of organic matter due to
oxygen consumption during aerobic respiration.27 Simi-
larly H2S is the by-product of microbial-sulfate reduction
(MSR), which uses sulfate as an electron acceptor
(instead of oxygen) in conjunction with their metabo-
lism. The control of these metabolic pathways on the
ambient chemical environment can be viewed and
mapped in modern open ocean environments, where
oxygen minimum zones (OMZs) occur at intermediate
water depths, e.g., at the coastal upwelling system zones
of Namibia and Peru. OMZs develop when O2 consump-
tion by respiration (forced by organic matter availability)
exceeds O2 addition formed during photosynthesis,
water column mixing and diffusion25,28 and are often
characterized with an episodic (often seasonal) nature of
oxygen depletion (or hypoxia: 0.5–2 ml of O2/liter).

29

This type of marine anoxia is geographically more wide-
spread than the “landlocked and stratified basin-type
anoxia,” as found in the Black Sea, cf. ref. 29. Moreover,
microbial sulfate reduction may take place even when
more favorable electron acceptors are available and
therefore, this metabolic pathway is not limited to anoxic
sediments but can occur in oxygen-rich sediments30,31 or
nitrate-rich seawater, such as OMZs.32 These environ-
ments can turn sulfidic (for prolonged time intervals or
as recurrent episodes) by increased MSR activity poten-
tially under increased organic carbon loading of the sedi-
ment and water column as observed in the OMZ of
Peru.33 It does not solely depend on the local sedimen-
tary environment as reported for the OMZ of Namibia,
where it was invoked that perhaps methane eruptions
release porewater H2S, creating a local water column
with an increased hydrogen sulfide pool.34 In addition, it
is suggested that organic carbon and the accompanying
biochemical reactions of (an)aerobic respiration act as
key drivers for the biogeochemical carbon and sulfur
cycles and, as such, as Earth’s thermostat.25,35-37 Notably,
eutrophication of the marine shelf is an expected climate
feedback mechanism (acting on a sub-million year time-
scale), as elevated temperatures induce continental
weathering and successive transport of excess nutrients
to the ocean (Figure 1). This productivity feedback,
which amplifies organic carbon production and subse-
quent burial, has been proposed to dampen the effect of
CO2 induced climate warming by sequestering excessive
atmospheric carbon in the form of sedimentary organic
matter.38,39 This suggests that productivity-driven anoxia
and euxinia are inevitable lethal feedbacks of greenhouse
warming which can potentially act adversely on marine
organisms through suffocation and sulfidic toxicity.16,40

These killing agents can potentially be accompanied by
other marine life impacting effects related to a sudden
increase of atmospheric CO2; notably ocean acidification
and the effects of thermal stress on the organism.41

Earth Scientists have a suite of geochemical tools at
their disposal to infer ancient ocean water column O2

and H2S concentrations, including redox sensitive trace
elements28,42 and organic biomarkers. An example of the
latter includes carotenoids isorenieratene and related
diagenetic products (aryl isoprenoids) which are organic
compounds produced by green sulfur bacteria (microbes
which employ H2S for photosynthesis).17,20-22 Applica-
tion of these ocean-chemistry proxies enabled robust
inferences on the spatial and temporal extent of ancient
anoxic and sulfidic intervals (see ref. 43 for possible com-
plications with certain redox sensitive trace elements).
The multiple occurrences of sediment enriched in
molybdenum and vanadium attests to the global signifi-
cance of oxygen-depleted and sulfide-bearing water,
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during the Late Devonian,17,44 end-Permian45-47 and
end-Triassic.21,48 On the contrary, some deposits in the
immediate aftermath of the EPME record a stark deple-
tion of redox sensitive trace elements; the authors of this
study relate this to a global depletion of these chemical
components due to widespread euxinia.49 Also, local H2S
enrichment of the photic zone (the upper sunlit 100
meter of the water column) seems to have occurred dur-
ing the Late Devonian,17 end-Permian20 and in the
immediate aftermath of the end-Triassic mass extinc-
tion,21 as indicated by the presence of green sulfur
bacteria.

In some instances geochemical investigations resulted
in the reconstruction of water column vertical redox pro-
files (at least for the latest Permian), leading to recogni-
tion that these anoxic intervals are (possibly) instigated
by intensification of OMZs, likely, due to proliferation of
marine carbon production.45,49-52 This observation can
be further supported by stratigraphic profiles of sedi-
mentary phosphorus and barium, which arguably trace
ancient nutrient content and organic carbon transport
though the water column, respectively.53,54 Finally, cir-
cumstantial evidence55,56 and quantitative indices57-59

suggest that these critical time intervals are connected
with climate warming and enhanced continental weath-
ering,60,61 thereby acknowledging the possible existence

of the previously outlined productivity feedback
(Figure 1). Controversy exists around the cause of green-
house warming during these time intervals. However,
the end-Permian and end-Triassic are time-equivalent
with LIPs, which are associated with massive outgassing
of carbon dioxide, serving as a possible driving force
behind climate change.9,62-64 Added together, these indi-
ces suggest that primary productivity might have
induced a critical control on some of the anoxic and
euxinic events that mark Earth history.

Sedimentary sulfate

The aforementioned geochemical analyses are in many
cases restricted to recording a local anoxic signal and do
not yield insight in global secular changes of ocean redox
chemistry (however see refs. 49, 65 for studies that elude
to the global extent of anoxia). Fortunately the cell inter-
nal process associated with MSR metabolism—the con-
duit of marine hydrogen-sulfide—is known to induce a
kinetic isotope fractionation on both sulfur and oxygen
of sulfate.66,67 In addition, sulfate is a conservative anion
due to a long oceanic mixing/residence time and there-
fore, a global change in MSR (due to global increase or
decrease in the extent of anoxic/euxinic waters or organic
matter availability) produces a signal recorded in the

Figure 1. A conceptual model for the productivity feedback as envisioned for the latest Permian. In the sketched scenario CO2-outgas-
sing associated with emplacement of the Siberian Trap basalt is held responsible for climate warming and consequential increased con-
tinental weathering by an amplified hydrological cycle but also massive destruction of vegetation. Increased river discharge (here
depicted as a braided river system) supplies the ocean with excess nutrients. Eutrophication of the ocean starts a vigorous carbon loop
driven by microbial respiration within the water column where, among other metabolic pathways, microbial-sulfate reduction plays a
pivotal role. Artwork by Mark Schobben.
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isotope composition of the global marine dissolved sul-
fate pool, which, in turn, can be recorded in the marine
sedimentary rock record.35,36,68-71

Recently, we inferred that a stark increase of the areal
extent of marine euxinic regions occurred coevally with
the end-Permian mass extinction, based on a temporal
record of sulfate-sulfur and sulfate-oxygen isotopes in
limestone spanning the P-Tr boundary sections in
Iran.23 Mainly the oxygen isotope composition of sulfate
is directly tied to MSR, as the cell internal biochemical
reaction during metabolism results in the loss of the sul-
fate-oxygen and serves as a net-sink for the light oxygen
isotope (see also ref. 72). On the other hand, the sulfur
compound of sulfate leaves the Earth surface system
through burial as sedimentary sulfides. Globally perva-
sive euxinia, but limited sedimentary sulfide burial (due
to a reactive iron limitation), can thereby explain a posi-
tive sulfate-oxygen isotope trend and a concomitant neg-
ative trend in sulfate-sulfur isotopes. By coupling these
results to a box-model we could show that an increased
supply of organic carbon—possibly stimulated by flour-
ishing plankton communities—could drive this scenario
of intense MSR activity. The study sketches a greenhouse
world in which marine life blooms but at the expense of
many of the common Permian “higher” taxa (e.g., bra-
chiopods and ammonites). The scenario contradicts
extinction models of reduced primary productivity, e.g.
ref. 73. More stringently this notion suggests that MSR
can be a catalyst involved in the deterioration of the
marine (chemical) environment. Critically one should
note that not all instances of widespread anoxia and
euxinia in Earth history are marked by increased extinc-
tion risk (among higher taxa), most notably the Meso-
zoic Ocean Anoxic Events (OAEs) are only associated
with none- or somewhat-amplified extinction rates
among higher taxa. However, this is also true for all pre-
vious proposed triggers, e.g., LIPs and asteroid impacts,
which occur more frequently in the geological record
than large extinction events.7,62,74 A combination of fac-
tors, e.g., the locus of environmental stress and certain
thresholds in ecosystem stability, should all be accounted
for when trying to explain these critical events in the evo-
lution of life. An end-Permian example of the former
concept would be that marine anoxia impinged the shal-
low water coastal systems which happened to be the
locus of Paleozoic marine biodiversity.19 However, the
latter concept can be formulated as the idea of a plane-
tary state shift,75,76 which suggests that the sum of desta-
bilising disturbances (e.g., ocean anoxia, global warming
and excess nutrients) can push the Earth system across a
boundary (or “tipping point”) causing a cascade accumu-
lating in a mass extinction, cf. ref. 10. In addition, other
synergistic effects of increased atmospheric CO2, such as

ocean acidification and the effects of thermal stress could
have been equally important for the demise of marine
taxa and have been proposed as drivers behind some of
the extinction events, based on quantitative analysis of
the marine fossil record (e.g. selective loss among higher
marine taxa)77-79 and geochemical proxy data.80-82

The previously sketched scenario for productivity-
driven anoxia at the EPME might be a more common
causal mechanism behind mass extinctions and chal-
lenges the concept of reduced primary productivity lead-
ing into these events, e.g., ref. 73 and corroborates with
modeling studies that invoked increased productivity as
a driver of marine anoxia, e.g., refs. 27 and 83. If the idea
of eutrophication as an important driver for extinctions
withstands the test of future studies, it would make the
end-Cretaceous biodiversity crisis and related primary
productivity crash, rather, an oddity among the other
extinction events.

Dynamic of mass extinctions

A productivity increase during these biodiversity crises
might be linked to changes in the plankton community,
as inferred for the Late Devonian,17 end-Permian84,85

and end-Triassic.21 A much cited change in plankton
composition is the domination of bacterial heterotrophs
(e.g., sulfate reducing microbes) and autotrophs (e.g. cya-
nobacteria and green sulfur bacteria) over eukaryotes.84

A dominance of hopane over sterane abundances in Late
Devonian and Permian-Triassic sedimentary rocks, the
diagenetic products of organic compounds produced by
bacteria (hopanoids) and eukaryotes (sterols), respec-
tively, lend robust support to this suggestion of a plank-
ton turnover.17,84 More specifically, 2-methylhopanes
have been assigned a cyanobacterial origin,86 and strati-
graphic distribution patterns can, therefore, be appor-
tioned with great confidence to an increased importance
of cyanobacteria during the latest Permian.87

In terms of global marine biomass, rather than marine
species richness, one may argue about the severeness of
these mass extinctions where it seems that life flourishes.
Interestingly, the modern marine microbial food web has
been reported to respond to warming seawater by an
amplification of bacterial production and respiration.88

So we postulate the idea that the end-Permian mass
extinction (linked with greenhouse warming) is a change
between 2 equilibrium states, i.e. from a high-diversity
eukaryotic to a high-biomass microbe dominated ocean.
This also corroborates with a study by Bambach and co-
authors4, in which they state that the “Big Five” mass
extinctions should rather be referred to as; “mass deple-
tions of marine diversity.” This interpretation does not
make these events less significant as these processes
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shaped the course of evolution by physiological selectiv-
ity, annihilating antecedent ecosystems and thereby
paved the way for modern ecosystems.2,4 The vast
amount of organic carbon produced by marine hetero-
trophic microbes, among which sulfate reducing
microbes belong, make them an important driver of the
global carbon cycle.88 As mentioned in our PNAS
paper,23 increased amounts of easily degradable bacterial
organic matter could shunt carbon in a microbial food
web with a high turnover rate and result in a decreased
export of organic carbon to the seabed. Hypothetically
this could lead to a more permanent state shift of the
Earth system,75,76 as it would inhibit the productivity
feedback (Figure 1) argued to dampen greenhouse
warming (see above). This would help explain the per-
sisting heat during a long interval in the Early Triassic
world,89,90 but, on the other hand, permits reoccurring
widespread marine anoxia and euxinia.91 The impetus
for this change between equilibrium states is being pro-
vided by climate change (warming) and the successive
productivity feedback as well as plankton community
turnover.

Lessons for the future ocean

The acknowledgment of human-driven global change as
a new geological epoch—the Anthropocene75,76,92—and
a possible impending sixth mass extinction,93 justifies a
reflection on societal relevance of studying mass extinc-
tion events and ancient ocean chemistry. Ancient global
eutrophication events could be important lessons for the
future ocean, especially as the causes are interchangeable
between the past extinction events and current biodiver-
sity loss.92,94 According to the current prognosis, future
projected climate change will be forced by human-
induced carbon release, as stated in the fifth report of the
Inter-governmental Panel on Climate Change.95 Also,
human action has already adversely affected coastal sys-
tems as documented by Diaz and Rosenberg29 who
showed a spread of anoxic zone in shelf seas, such as the
Baltic Sea, already underway since the early 20th century.
The causes of this spread of so-called ocean anoxic
“dead” zones have been related to the use of fertilizers in
agriculture combined with insufficient care to prevent
soil erosion on croplands. In addition, these authors
noted that climate change (warming) will further exacer-
bate eutrophication by increasing the riverine influx of
nutrients by continental weathering and increased river
discharge. A certain amount of fertilization might be
beneficial for fish stocks,96 but conversely an unchecked
and unbalanced addition can have grave and possibly
not easily reversible consequences for marine ecosys-
tems, e.g., mass mortality of benthic communities and

increased microbial growth. In light of the former
notions, it is troublesome that some “climate engineers”
propose to stimulate the natural weathering of silicate
rock. Weathering of silicate rock is known to sequester
atmospheric CO2 by the chemical reaction associated
with the breakdown of silicates. Stimulating this process
of chemical weathering, i.e., by exposing a larger surface
area of silicates, is proposed by climate engineers as a
tool to mitigate anthropogenic induced greenhouse
warming, e.g. ref. 97, but will likely also increase the flux
of nutrients to marine coastal systems.

The ancient examples (e.g., end-Permian mass extinc-
tion) provide evidence of how intense greenhouse warm-
ing creates lethal feedback mechanisms (e.g. increased
weathering and subsequent ocean fertilization) that then
will lead to a reduction in biodiversity, alters ecosystems
and influences evolutionary processes. These findings
urge to limit the input of nutrients into the ocean as the
widespread occurrence of marine anoxic “dead” zones
could become a more permanent feature of the future
Earth.
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