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D-brane action at order o’
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We use the compatibility of D-brane action with linear T-duality, S-duality, and with S-matrix elements
as guiding principles to find all world volume couplings of one massless closed string and two open strings
at order a’” in type-II superstring theories. In particular, we find that the squares of second fundamental
form appear only in world volume curvatures and confirm the observation that the dilaton appears in the
string frame action via the transformation Rﬂ,, - R,w +V,V,o.
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I. INTRODUCTION AND RESULTS

The low-energy effective field theory of D,-branes
in type-II superstring theories consists of the Dirac—
Born-Infeld (DBI) [1] and the Chern—Simons (CS) actions
[2], ie.,

Sy =Sp7 + 5% (1)

The curvature corrections to the DBI action have been
found in Ref. [3] by requiring the consistency of the
effective action with the O(a’?) terms of the corresponding
disk-level scattering amplitude [4,5]. For totally geodesic
embedding of the world volume in ambient spacetime in
which second fundamental form is zero, the corrections
in the string frame for a zero B-field and for a constant
dilaton are'
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where R, =GR uap: Rij = GCdRcidj, and G =det(G,),
where f}ab is the pullback of the bulk metric onto the word
volume, i.e.,
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The Riemann curvatures in (2) are the pullback of the
spacetime curvature onto tangent and normal bundles [3].

The curvature corrections to the CS part can be found by
requiring that the chiral anomaly on the world volume of
intersecting D-branes (I-brane) cancels with the anomalous
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variation of the CS action [6—8]. These corrections involve
the quadratic order of the curvatures at order a’>. However,
the consistency of the effective action with the S-matrix
elements of one Neveu-Schwarz Neveu-Schwarz (NSNS)
and one Ramond-Ramond (RR) vertex operator requires
the CS part at this order to have linear curvature corrections
as well [9], i.e.,
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where 7! is the field strength of the RR potential n-form.
The S-matrix calculations produce also the couplings in the
CS part which involve linear field strength of B-field [9],
in which we are not interested in this paper.

For arbitrary embeddings, the couplings (2) have been
extended in Ref. [3] to

mad*T

Tgp/ dPtlxe=® _G[<RT)abcd(RT)ade

= 2(Rp)ap(Rr)® = (o) (Ry) T + 2R, R
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where the world volume curvature (R7),,.;, and (Ry)®"
obey the Gauss—Codazzi equations, i.e.,

SDBI 5

(RT)abcd = Rabcd + 5ij(gacigbdj - Qadi'Q'bcj>
(RN)ap” = Rap"7 + g (Q 1" Qpd’ — Qot? Q") (5)

where Qi,, is the second fundamental form [3]* The

relation between (R;),, and the world volume curvature
is then

*Note that there is a minus sign typo on the right-hand side of

are the world volume indices, and the letters (i, j, k, ...) are the (Ry) 4" in Ref. [3]. For totally geodesic embedding, (Ry)ap"
normal bundle indices. must be equal to R ;Y.
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(ieT)ab = Rab =+ 5ij(QcCiQabj - QcainCj)' (6)

In Eq. (4), RV = RV 4 ¢*0¢*4Q . 'Q,,/ + - - -, where dots
stand for unknown terms which involve the trace of the
second fundamental form. They could not be fixed in
Ref. [3] because the couplings in Ref. [3] have been found
by requiring the consistency of the corresponding cou-
plings with the S-matrix element of one closed and two
open string vertex operators for which the trace of the
second fundamental form is zero. They may be fixed,
however, by requiring the consistency of the couplings with
dualities.

In the static gauge and to the linear order of fields, the
second fundamental form has the simple form

Qabi = aaab)(i + Fi,b, (7)

where ' is the massless transverse scalar field and I, is
the Levi-Civitd connection. The couplings of one graviton
and two transverse scalars in (4) have been shown to be
consistent with the corresponding S-matrix elements [3].
However, there are couplings in (4) which involve the trace
of the second fundamental form which cannot be checked
with the S-matrix element of one closed and two open
string vertex operators. We will show, among other things,
that the trace term in (RT)ab is required by the consistency
of the couplings (4) with T-duality. Moreover, we will find
that the duality fixes the dots in R¥/ to be

Rij = Rll + gabng(Qacindj - Qubigcdj)’ (8)

where the last term is the trace of the second fundamen-
tal form.

It has been observed in Refs. [10,11] that the consistency
of the closed string couplings with T-duality requires the
couplings of nonconstant dilaton appear in the world
volume action via the transformation

ieab - Rab = Rab + 8aabq> jeij - Rij = j\eij + 8181(I>
)

We will find that the transformation of the couplings (4)
under the above replacement produces the couplings of one
dilaton and two transverse scalars which are consistent with
the dualities and with the corresponding S-matrix elements.
|
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In other worlds, the extension of the couplings (2) to
include the curvature, the dilaton, and the second funda-
mental form are

md*T

2
Tgp/dp+1xe_q) _G[(RT>abcd(RT)ade
- 2(7%7)@ (7A3T)ab - (RN)abij(RN)abij + 27_€ij7_2ij]’
(10)
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where (R7),, and R, are the same as (Ry),, and R;;,
respectively, in which the replacement (9) has been
performed. We will show that a similar extension exists
for the couplings (3); i.e., the consistency of the couplings
with dualities and with the S-matrix requires the following
extension of (3):
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The coupling of the RR field strength and dilaton in the first
term above has been already shown in Ref. [10] to be
consistent with the linear T-duality and with the S-matrix.

In general, one expects that the consistency of the world
volume couplings with full nonlinear T-duality and S-
duality would fix all couplings at order o> [11,12]; e.g., the
T-duality would relate the couplings (11) to the standard
CS couplings C*73(RyAR; — RyARy) at order o’?. They
would involve also the world volume gauge field, the
spacetime B-field, and other RR-fields. In this paper,
however, we will use only linear T-duality and S-duality.
As a result, we will find many couplings which are
consistent with such simplified dualities. We are interested
in the couplings of one closed and two open string states in
this paper. Even the coefficients of such couplings cannot
be fully fixed by the linear dualities. To reduce the number
of arbitrary coefficients, we use the consistency of the
couplings with the corresponding S-matrix elements as
well. This latter condition fixes all unknown coefficients of
the couplings in the DBI part; ie., we will find the
couplings (10) and the following couplings in the
string frame,

= 1
/ d11+lxe—(b -G |:Rbd(aaFabacFCd _ aachacFab) + ERbdceaCFabaeFad

1 :
+ 3 R (OaF POy + 0pF O F) + Q" 0gH 10,
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_ Qbai ((’)hFaL‘adHcdi + OUF ,CO;:H oy — EadFucachdi>:| , (12)
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where the scalar curvature R ,* = (N}”bf?ab + 200, is invariant under linear T-duality as the Ricci curvatures R, and R;;
in (9). The consistency of the couplings with the dualities and with the S-matrix elements fixes also the couplings in the CS
part to be those in (11) and the following couplings in the string frame:

Sp° D % / dP g4y {72! (pl_ i Fo 0,00 F aq @ FL2D 0,
_ﬁ Qu10,Fpo P FL +ﬁ D, O,
B ﬁﬂ “OF a0, 0 Y. %Qaa"ﬁbeaO@,-Fé’sz...%
- iﬂb‘”’@ﬁ by i F L + oo™ QO F i F Do (13)

In the CS part, there is another multiplet of which the
coefficient cannot be fixed by the linear dualities and by the
S-matrix elements of one closed and two open strings. It
involves, however, the square of the second fundamental
form. On the other hand, as the couplings (10) and (11)
indicate, the square of the second fundamental form
combines with the appropriate curvatures to form world
volume curvatures R; and R. Since the coefficients of the
curvature terms are already fixed in (3), we expect the
coefficient of this multiplet to be zero.

An outline of the paper is as follows. In the next
section, we review the constraints that linear T-duality
and S-duality may impose on an effective world volume
action. In Sec. III, we review the contact terms of the
S-matrix element of one closed and two open strings at
order o’?. In Sec. IV, we construct all couplings of one
NSNS and two NS strings with arbitrary coefficients
and find the coefficients by requiring the consistency
of the couplings with the linear dualities and with the
S-matrix elements. In Sec. V, we construct all couplings
of one RR and two NS strings with arbitrary coefficients
and find the coefficients by requiring the consistency
of the couplings with the linear dualities and with the
S-matrix elements.

II. LINEAR DUALITY CONSTRAINTS

The T-duality and S-duality transformations on a mass-
less field are in general nonlinear. Constraining the effec-
tive actions to be invariant under these nonlinear
transformations, which may fix all couplings of bosonic
fields including the nonperturbative effects [13], would be a
difficult task (see Refs. [11,12,14] for nonlinear T-duality).
In this paper, however, we are interested only in the world
volume couplings of one massless closed and two open
string states at order a’?. Using the fact that the world
volume couplings of one closed string and the couplings of
one closed and one open string have no higher-derivative
corrections in the superstring theory, one realizes that the
higher-derivative couplings of one closed and two open

|
string states must be invariant under linear duality

transformations.

The full set of nonlinear T-duality transformations has
been found in Refs. [15-19]. We consider a background
consisting of a constant dilaton ¢, and a metric which is
flat in all directions except the Killing direction Yy,
which is a circle with radius p. Assuming quantum
fields are small perturbations around this background,
e.g.. G, =n, +2h, and G,, =% (1 +2h,,) where
u,v#y, the T-duality transformations for the back—
aeh f;
the quantum fluctuations at the linear order take the
following form®:

ground are e — = N> and G = 27 and

- 1 -
b=¢- Ehyy’ hyy = —h,,, hyy = By,

wy = Py, Py = By, B, = By
“(n n—1 ~(n n+1

The T-duality transformation of the world volume gauge
field when it is along the Killing direction is Ay = Xy»
where y, is the transverse scalar. Similarly, y, = A,.
When the gauge field and the transverse scalar field are
not along the Killing direction, they are invariant under
the T-duality. We are interested in applying the above
linear T-duality transformations on the quantum fluctu-
ations and apply the full nonlinear T-duality on the
background. The latter requires the CS part to have no
overall dilaton factor and the DBI part to have the

overall factor e=®v/—G.

Note that if one considers full T-duality transformation for
background and quantum fluctuations then the effective action
would contain all couplings at order a?, e.g., H* or (OF)*H>.
However, in this paper, we are interested only in the couplings
consisting of one closed and two open string fields, and hence we
consider only linear T-duality.
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Following Ref. [20], the effective couplings which
are invariant under the above linear T-duality can be
constructed as follows. We first write, in the static
gauge, all couplings on the world volume of the D,-
brane involving one massless closed and two open
string states, in terms of the world volume indices
a,b, ... and the transverse indices i, j,.... We call this
action §,. Then, we reduce the action to the nine-
dimensional space. It produces two different actions. In
one of them, the Killing direction y is a world volume
direction, i.e., a = (a,y), which we call S}, and in the
other one, the Killing direction y is a transverse
direction, i = (f, y), which we call §),. The transforma-
tion of S} under the linear T-duality (14), which we
call S;ffl, must be equal to 52—1 up to some total
derivative terms, i.e.,

wT t
Sp_1 - Sp_1

=0. (15)
This constrains the unknown coefficients in the original
action §,.

The S-duality of type-IIB theory produces another
set of constraints on the coefficients of S,. Under the
S-duality, the graviton in the Einstein frame, i.e.,
GE, = e2G,,; the transverse scalar fields; and the
RR 4-form are invariant, and the following objects trans-
form as doublets [21-23],

b= (Ci>> - <A_1)T<ci>>

= (oim) = (g 09

where the matrix A € SL(2,Z) and G(F) is a nonlinear
function of F, ®, C. To the linear order of the quantum
fluctuations and nonlinear background which we call
linear S-duality, G(F) = e~ F, where ¢ is the constant
dilaton background [21]. In the above equation, (xF),, =
€apeaF€?/2. The transformation of the dilaton and the RR
scalar C appears in the transformation of the SL(2,Z)
matrix M,

2 C
M:e(ﬁ<|fcl 1), (17)

where 7 = C + ie~®. This matrix transforms as [21]

M = AMAT. (18)

“Note that we consider finite SL(2,Z) transformation but
infinitesimal quantum fluctuations.
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To the zeroth and the first orders of quantum fluctuations
and the nonlinear order of the background field ¢, the
matrix M is

e_¢0 O _e_¢0¢ e¢0 C
MO = s 5/\/1 = .
0 g¢0 e¢0 C e¢0¢
(19)
They transform as (18) wunder the SL(2,Z)

transformations.

Using the above transformations, it is obvious that there
must be no couplings in the Finstein frame between one
dilaton and two transverse scalars because it is impossible
to construct SL(2, Z) invariant from M, and one 6M, i.e.,
Tr(Mg'6M) = 0. This produces a set of constraints on the
coefficients of the effective action S,,.

One can easily find that the following structures are
invariant under the linear S-duality transformation:

I(*FTYMO*B = e OFI*B — O(xF)9*C?
OFT MoOF = e~M[D(+F)O(+F) + OFOF)]
OFTPMOF = e~ hPDOFOF — e~ 0> DA(+F)O(+F)
+ PCOFO(xF) + 0?CO(xF)OF.
(20)

Up to total derivative terms then, the couplings of
one closed and two open string states on the world
volume of the Ds-brane should appear in the structures
RQQ, *CYQQ, QIO(*FT)Md*B, ROFT MydF, and
OFTRMOIF, which are invariant under the linear S-
duality. They constrain the coefficients of the couplings
inS,.

III. S-MATRIX CONSTRAINTS

Another set of constraints on the coefficients of S, is
produced by comparing the couplings with the S-matrix
element of one closed and two open string states at order
2. This S-matrix element has been calculated in [5]

ﬁl{(l,m), (21)

where K is the kinematic factor and t = —d’k, - k, is the
only Mandelstam variable in the amplitude. k; and k, are

the open string momenta. The low-energy expansion of the

-2 2 .
F[[l_t?z = —5. — %4 - The first term

produces the couplings which is consistent with the
corresponding couplings in DBI and CS actions at order
a® [24]. The second term produces the on-shell couplings
in the Finstein frame when the closed string is a NSNS
state [24],

gamma functions is

106004-4



D-BRANE ACTION AT ORDER o
Ay, h) ~

Al x. ) ~ z\f

Ay, a,b) ~ _21(2ka§11f2ab83

PHYSICAL REVIEW D 92, 106004 (2015)

(2ky - kol - &3 -8y + kg - kol - $oe3, " + &1 - p3la - P3ess”
—2k1 &3kl G+ 4L ey

kils - 3+ (1+=2)) (ky - ky)?

( 1kl 8+ 81 pala s py 4 (1652)) (ky - ky)?

C1 - pafaanes?) (ki - ko)

A(a,a, h) ~ 2<€3abf1“”f2bc - ZflubfZabSSaa + (1<—’2)> (ky - ky)?

Ala,a,¢) ~— (fmhfz

4f

+(1e=2))(ky - k).

where {, {, are the polarizations of the open string states and &5 is the polarization of the closed string. For the RR state, the

couplings in the momentum space are [24]

2
AQ X C(pr1)) ST
+p(p+
2
A()(, a, C(p_1>) ~ = (p )
1
Ala,a, c(p_3>) ~ —72(17 T

Compatibility of the couplings with the above amplitudes
constrains the coefficients in §,.

It has been argued in Ref. [12] that to construct the
effective action for probe branes one has to impose the bulk
equations of motion at order o® into S,. Since we are
interested in the world volume couplings which have linear
closed string fields, we have to impose the supergravity
equations of motion at linear order, i.e.,

R+ 4V2d =0
R, +2V,®=0
V’H,, =0

VA F e, = O, (22)

where p, v, p are the bulk indices. Using these equations,
one finds

R}, =-2V,®-RS,
Vib = —Va,b
ViH,, =-V'H,,
VFI/Q My vafﬂﬂz Hn> (23)

which indicates that the terms on the left-hand side are
not independent. In other words, the coefficients of the

D EKCKS 20 )eb o (ky - kp)?

) (&1 - p3la - paes® % +2(p 4 1)Lk L, - paey; @

+ (12)

(C1- pafa™ e + (p = DO k3™ )€l a, (ki - k2)?

frioh fr e treg o (ky - ky)? + (1e552).

couplings in S, which involve the terms on the left-hand
side above must be zero.

IV. DBI COUPLINGS

In this section, using the mathematica package “xAct”
[25], we are going to write all couplings of one closed string
NSNS state and two open strings with unknown coeffi-
cients. We then constrain the coefficients by imposing the
consistency of the couplings with the linear dualities and
with the corresponding S-matrix element. Since all such
couplings are too many to write at once, we consider the
couplings with a specific closed string NSNS state and
open string Neveu-Schwarz (NS) states.

A. One graviton and two transverse scalar fields

We begin with the couplings of one graviton and two
transverse scalar fields. The transverse scalar fields should
appear in the action through the pullback of bulk tensors,
through the Taylor expansion of bulk tensors, or through
the second fundamental form. Since there is no higher-
derivative correction to the couplings of one closed string
and one open string in type-II superstring theories, e.g.,
there is no coupling with structure DRQ or RDCQ, the
pullback operator and Taylor expansion would produce no
coupling between two scalars and one curvature from DRQ
or RDQ. Therefore, the only possibility for the two trans-
verse scalars is through the second fundamental form. All
such couplings at order o> are

106004-5
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/dpﬂxe_q) V=G w R Q, Q% + 2wyRY ), Q,4Q.¢; + w3 R Q% Qb

+ W4RbiijaachCj + WsRijkaaainbk + WeRP Qi Q21

+ 2wy R Q0 Q4 + W RN Q) QP+ woRP QT Q4
+ WioR 1/ Qp QP + w11 R Qi QY+ winR S QP Q4
+ W3R QI QN + Wiy R iy Q0 QN — wisR i QS QO
+ WieR 5 Q' QM + W17 R j Q1 Q + wigR iy, Q1 QP

+ WigR1pa P Q41],

where w; with i = 1,2, ..., 19 are the unknown constants
that must be determined by imposing various constraints.

All the above couplings are not independent. In fact, by
applying the cyclic symmetry of the Riemann curvature,
one can neglect some of the constants. For example, one
finds the couplings in (24) with coefficients w3, w4, and
wys are not independent, i.e.,

Wl3Rcbiijanmi + W14Rcibjgbajgcai - WISchbinancai
= (w3 + W]S)Rcbijgbajgcai
+ (Wig = wis)Rip; QP QA (25)

so the coupling with coefficient w5 is not independent and
may be ignored from the list (24) before imposing various
constraints. Alternatively, one may keep all couplings in
(24) and impose the constraints to find appropriate relations
between the coefficients and at the end impose the cyclic
symmetry. The final result of course must be identical in
both methods. However, we find the latter method is easier
to apply by computer, so we do it in this paper. In fact, after
|

2.2
rd°T,
12

Shaa =

(24)

imposing the constraints, we write the Riemann curvature
in terms of the metric. Then, all terms that are related by the
cyclic symmetry would be canceled. So the coefficients of
all such terms can easily be set to zero.

By comparing the above couplings with (4), we find
weg = 1,w;; = 1,w; = —1,and w9 = 1. These constraints
are in fact the S-matrix constraints because the couplings
in (4) are fixed in Ref. [3] by comparing them with the
corresponding S-matrix elements. Furthermore, the con-
straint that the bulk equations of motion (23) have to be
imposed on the brane couplings fixes the coefficients
Wy = W3 =Ws = w7 =wg = Wwjg=wpp =wy; =0.

B. One graviton and two gauge fields

Under T-duality, the transverse scalar field along the
Killing direction transforms to the gauge field; i.e., Q
transform to OF. So consistency of the couplings (24)
with T-duality requires the couplings of one graviton and
two gauge fields to have structure ROFOF. All such
couplings are

/ d" ' xe=®V =Gz, R y3,F*D, F," + 22,R¢! ;0,F0,F ;*

+ 23R 0, F O F P + 24R . g0a F“Op F* 4 25Ry' 0o F O, F" + 2R, (g0 F , 0" F*

+ 7R (0, Fp 0" Fl + 2gR 0P F D, F oy 4 229R ;0P FU D F o), + 219RY ;0" F*O F o

+ 211RY (qOp F 4e 0" F* + 221,R% ;0 F 4q0" F* + 23RV 10, F 4 0" F*“ 4 214R g0y F . 0P F¢

+ 215R i F o 0" F + 216R 10caOp F 10" F* 4 217Raea@p F/O" F* + 215 R}, (yOPF“O°F o,

+ 219Ry ;OPFUO°F 1y + 250R 4 g0 FO°F oy + 251 Ry ;0P FOO°F oy + 200 R},% .40, F € O°F°

+ 203Ry ;O F O F b + 204R e g0 FOUF ¢ + 295R o epgO° FU“OUF ,° + 236 R oy O° F4“OUF ¢

+ 227RecaO"F“ O F 1, 4 208 R1cea@ F“OF, 4 229R o0 F* O FP + 230R 0q1pc g F O F°], (26)

where z; with i = 1,2,...,30 are constants that must be
determined by imposing the constraints and F“ is field
strength of the gauge field. Here also one may impose the
cyclic symmetry and the Bianchi identity dF = O before
imposing the constraints to cancel some of the couplings in

[
(26) before. However, we prefer to impose the cyclic
symmetry and the Bianchi identity after imposing the
constraints. The bulk equations of motion (23) constrain
=23 =235=237=29=210 =212 =213 =215 =219 —
21 =223 =0.
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C. One dilaton and two transverse scalar fields

The same reason as in Sec. I'V. A leads one to conclude that the couplings of one dilaton and two transverse scalar fields
have structure 90PQQ. All such couplings are

?a?T,
T

/ dexe_q’ V —é[[lgaaithiE)caC@ + ZZQ“ainCiﬁcabCD + t3QaciQ"biacab(I)
+ 14Q Q00D + 157,100 0,V + 160, Q10,0/D
+ 17Q°,/QP 10,0, + 15Q,,/Q' 9,0, 9], (27)

where #; with i = 1,2, ...,8 are the unknown constants that we must determined. The bulk equations of motion (23)
constrain ts = tg = 0.

D. One dilaton and two gauge fields
The consistency of the couplings (27) with T-duality requires the couplings of one dilaton and two gauge fields to have
the structure JO0PIFIF. All such couplings are
So, = *a?T,
12

+ x30,0°PO, FP O F .4 + x,0,F ,C0°0°®O F ¢ + x50, F .q0"0* DO'F

+ x60P PO F 0UF ;¢ + x70° 0 PO F  OUF ,¢ + x30,0° P, F 1, 0V F"¢

+ x90, PO F O FPC + x100,F* 0, F,c0,0'® + x,,0,F ,,0°F0,0'®
+ X120, F 1, 0°F% 0,0/ D], (28)

/ dp-er_q) —G[xlaaFCdabFCd(?ba“@ + X28baaq)aCFaCaded

where the constants x; with i = 1,2, ..., 12 must be determined by imposing the constraints. The bulk equations of
motion (23) constrain x;g = x;; = x1, = 0.

E. One B-field, one transverse scalar field, and one gauge field
The final list of couplings in the DBI part is the couplings of one B-field, one transverse scalar field, and one gauge field,
which is

*a”T,
Sba;( = 12

/ d’tlxe™® _G[}’lgabiaaFCdabHcdi +72Q% 0, H ;0 F

+ 73QP 0, F D4 H i + 74 QO F COgH 4 16Q 0, F, 0 H 4,

+75Q%, 0y FP04H A + 17Q 0, H ;0 F . + ysQ“ 0. H g0 F ¢

+19QP 04 H i 0F ,C + 7109 4 O H i O F + 711Q%,' DgH i O F*¢

+712QP 0, F U0 H g + 71320 0iHpeq + 1149 ' OUF 0 H g

- 7159abiacFaCaijij - 717Qabi8bFaCachij - 716Qaaiabecachij]v (29)

where y; with i = 1,2, ..., 17 are the unknown constants. The equations of motion (23) fix y;5 = 716 = 717 = 0.
We now consider the sum of the couplings in (24), (26), (27), (28), and (29), i.e.,

SOBU = 810 + Shaa + Sayy + Staa + Shay (30)

and apply the T-duality constraint (15). It gives the following relations between the constants:

Iy X4 ty X4
13 =1, ty = —t, Hh=—%—%—x3, t=—=2+2 -2
8 3 2 1 ) X3 4 2+2+x8 Xg
I x3 xy4
t7=—1 =214 — 24 — %, WIZST5 T Wis =24+wi =2y +73+2r6 77— 79
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wig =2+ 2214 — 209 + 2230 + 226,

220 = —214 — 2218 + 2225

W4:—1—Z14—Z4—Zﬁ,

Y13 =Wia + 212+ 73+ Y6 — ¥os

PHYSICAL REVIEW D 92, 106004 (2015)

X5 =2x1 —X4+X7

Ys =214+ 24+ 26 — Ve

208 = 2214 + 4216 + 2217 + 204 — 206 — 2207+ 226 + 2v1 — V3 = 2¥6 — V7 t 7o

1 b x| xg X3 X4 Ip I,
},8_2 Y4 — Yo, We = 4+4+2+x9, Z1—2 44 Z25—2+2 226
Xq4  Xg 222 229
ZS:Z+?_T+X9_2ZH’ 72:_7+Z14+Z30+Z6_}/6
Z Z Z Z
yll:ﬁ_£+ﬂ+_6_m_ﬁ X = —Xp — X7+ 214+ 24 + Z6- (31)

2 4 2 2 2 2

As can be seen, not all coefficients of the DBI part are fixed
by imposing the consistency of the couplings with the
linear T-duality, so we need further constraints which may
be the consistency with S-duality.

In general, S-duality connects the DBI couplings con-
taining the NSNS states to the CS couplings containing RR
states. However, the S-duality constrains even the cou-
plings in the DBI part. For example, the world volume
couplings of the D5-brane in the Einstein frame must have
no coupling with the structure ®QQ. This produces the
following constraints:

1 X4 Xg
=2-2 2 N e
79 Y1 +7r3+2ve v, Xo 171 9
1 X4 Z z
Z4:§+X3+34—%9+Z30, 252—1—214—2304'%-
(32)

Another constraint from the S-duality in the DBI part is that
up to total derivative terms the couplings of one graviton
and two gauge fields in the Ds-brane action must appear
in the S-duality invariant structure ROF!T M 0F =
e P R(O(xF)9(xF) + OFOF). This produces the following
constraints:

214 = O, Xq4 = 1 —2X3. (33)
The S-duality constrains the couplings of one dilaton and
two gauge fields. It also connects them to the couplings
of one RR scalar and two gauge fields. This results from
the fact that the S-duality invariant structure which contains
the couplings of one dilaton and two gauge fields is
OFTPMOF = e ®(=0(xF)O(+F) + OFOF) + - - -,
where dots refer to the RR scalar couplings. This constraint
on the couplings of one dilaton and two gauge fields
produces the following relation:

Xg = X3.

The S-duality connects the DBI couplings of one B-field,
one gauge field, and one transverse scalar field to the CS
couplings of one RR 2-form, one gauge field, and one
transverse scalar. In the next section, we will write all

|

couplings in the CS part and impose the T-duality condition
(15). Then, we will impose the above S-duality condition.
It produces the following relation between the coefficients
in the DBI part,

Yo = —1+2y — 73, (34)

and many relations between the coefficients in the CS part
[see the constraints in (43)].

Imposing the above relations between the coefficients
in SBB!, we find that the action (30) is consistent with the
S-matrix elements in (22) except the following terms:

W14(Rbicjgbaigcaj - ijcigbaigcaj + QbaiadFacaiHbcd)'
(35)

They are not consistent with the couplings in (4) and with
the corresponding S-matrix elements, so

Wig = 0. (36)

As can be seen, there are still many coefficients which are
not fixed by the linear dualities and with the S-matrix
elements.

We have considered all couplings in SPP' which
contain the Riemann curvature and the first derivative
of the field strengths of the gauge field and the B-field.
The Riemann curvature satisfies the cyclic symmetry,
and the field strengths satisfy the Bianchi identities. So
we have to impose these symmetries in S)5. To perform
this step, we write all field strengths in terms of their
corresponding potentials and write the Riemann curvature
in terms of

Rabcd = 6bachad + aaadhbc - 8badhac - aaachbd' (37)

Then, we find the coefficients yy, y3, 77, Y9, X4, X3, X9, Z4,
Z6> 214, disappear from the action. As a result, the terms
with these coefficients represent only the cyclic symmetry
and the Bianchi identity. So we ignore such terms in the
DBI part. Finally, we find that the couplings with
coefficients yy, 5, X5, X3, 222, 229, 230 are total derivative
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terms, so they can be eliminated from the DBI part. too.
The final result for the DBI part has no unknown
coefficients. The couplings are those that appear in
(10) and (12).

V. CS COUPLINGS

In this section, using the mathematica package “xAct”
[25], we are going to write all couplings of one closed string
RR state and two open NS strings with unknown coef-
ficients. We then constrain the coefficients by imposing the
consistency of the couplings with the linear dualities and
with the corresponding S-matrix element. The S-matrix
elements (22) indicate that the world volume couplings of

|
P dp+1x€aoal...a,, |:
/ (p—2)!

+ k304, F g, 0“F" +mmeWF%+

mad*T
12

caa —

1
-+ 5K6aana28bFaoal -+ K7(9be008a2F“al

1
(p—3)!

+ Kl()aalFaaoaa3Faa2 + =

11

+ 212!

ahf(p_z)bm”.up <

2!
Lo
(p-3)!
1 iy 11
+2|K14aalF aoa aas +52,
1

oo

aa4-7:aa3a5 .a, (2'

PHYSICAL REVIEW D 92, 106004 (2015)

the D -brane in the CS part has three parts. One is the
couplings of one C,,_3 and two gauge fields, and another
one is the couplings of one C,,_;, one gauge field, and one
transverse scalar field, and the last one is the couplings of
one C, ;| and two transverse scalar fields. Let us consider
each case separately.

A. One RR and two gauge fields

In this section, we construct all possible couplings
of one C,_3; and two gauge fields. Using the bulk
equations of motion (23), one finds there are 23 nonzero
couplings, i.e.,

1
0 fa;zu .a, <5K18bFala28bFaao +K‘2840Fbaaa2Fbal

1
KsauzFb 8 Faou]

+ ZKSabeaoaaFm@)
K9a Fazagaa apa,
1
Klla Fa0a18a3Faa2
1
0 Fha4 .a, (KIZaalFbaoaa3Faa2 +§K13803FaazabFaoa]
_KIS8 Faoa]aaFa2u3)

K160pF 4,0,0" F 4y + k1700, Fpa, 0" F 4,

+K18aa0Fbaaa2Fbal +K19aa2]7hu]aa]:bao +K208h]7ba08azF‘aal

1
KZlaazFb 8 F

+2|

apd

2!

where k; with i = 1,...23 are the unknown constants that
have to be found. In the above equation, 7?2 is the field
strength of the RR potential C,,_3. One can easily verify
that the above couplings are consistent with the T-duality
transformations (14) when the Killing index y is a world
volume index which is carried only by the RR field
strength. When it is carried by the field strength of the
gauge field, the consistency with T-duality requires the
|

Za/ZT
12

cay —

1
K228 Fbaza Faou] +

1
P 41,0004y ...a,
fartacs | o

(38)

1
Z'KZSabF a(,a Fa|a2>:| )

|
couplings of one C,,_;, one gauge field, and one transverse
scalar field, which we consider next.

B. One RR, one gauge field, and one transverse
scalar field

All possible nonzero couplings of one RR potential
Cp_,-form, one gauge field, and one transverse scalar
fields are

1
21

(p)

iayas...a,

é Qbma Fuoal + gZQuOh 0 Fual

+ C3'Q'a0aiaana] =+ C4Qbai8a1Faao =+ CSanaiaalFab + §6Qa0aiabFaal
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. 1 .
+ C7Qaalaa1Fbao + Z§89aalabFaoa]>

1
(p—2)!

1 (p) i a 1 ina
+ (P _ 2), 817‘7:i5a3a4‘..ap <Cllgaob aazF a =+ ié’IZQaOb 0 Fa1a2

. 1 )
+ Cl?agaomaazFbal +2'€14an(118171:0]“2)

+

1 ; i
ahf(p)ib@mu.ui’ <2!¢9anmauFalaz + é’logaoalaazFam)

1 (p) ai 1 ai

+ (p — 3)‘ 8{14-7:[2[;03(15.“% <§159a0 aangal + aﬁsgao 8bFa1a2)
1 (p) i a 1 ai

+ (p — 2)' aa4fill7)a2u3a5.“ap <C]7Qa0b aaF a + 5€18Qb aaFaOal

+ Clggbaiaa]Fuao + gZOQuaiaulFba0§219a0aiaanal + CZZQaniau]Fab

) 1 .
=+ §Z3Qa0 8bFaa1 +ZC24QQ 8bFa0a1)
1 . ) )
+ Wawfgi)aza;asma,, (£25Q, 10y F? 4y + 26RO F oy + 27820, 70, F )
1
(p—2)!

1 . .
+ Waif(biz%%wap (C309aoblaaFaal + C31QbmaaFaoal

+ C329baiaa1Faa0 + C33Qaaiaa1Fba0 + C34Qa0aiaanal + €3Sanaiaa1Fah

+ aif5112213a4,,,ap (§289a0aiaa2Fbal + nggaoaiabFalaz)

) 1 )
+ C36Qa[,alabFual +§€37QaalabFa0al>
Lo.F) Q,4,F" Qbig, F Q,P0,F ), 39
+p' iFaras...a,($38Q, " Op FP ) + 39 b F aay + C40204," 0, Fp%) |, (39)

where we have also imposed the bulk equations of motion (23). In the above equation ¢; with i = 1, ...40 are the unknown
constants that have to be found by consistency with dualities and with the S-matrix elements. One can easily verify that the
above couplings are consistent with the T-duality transformations (14) when the Killing index y is a world volume index
which is carried only by the RR field strength. This index cannot be carried by the transverse scalar field. When it is carried
by the field strength of the gauge field, the consistency with T-duality requires the couplings of one C),,; and two transverse
scalar fields, which we consider next.

C. One RR and two transverse scalar fields

All possible nonzero couplings of one RR potential C,, -form and two scalar fields after imposing the bulk equations of
motion (23) are

2 2
S _ T TP APt xetoai---a, 1 b ]:'(PJFZ) (/) QeaiQb 4 p Q ainc')
cxx 12 (p + 1)‘ b capa;...a,\F1 ai 29¢4q i

1 (p+2) io ¢ cai
_mahfbl;oal...a[, (P32, Q. + s Q)

! 2 i J iOcai
O b PSR + o)

1 ) ) ) ) )
+ —~ 8bj:(17+2) (P7Qa0meaI + pSQameaoj) + p_‘iQaaO:chiacf(F+2)
p: p!

ijay...a, aba,...a,
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becaya;...a,

2 . .
p 8C7: (p42) (plogaoalgbai + 112,40, )

+ 8 F 2 (pIZanainaj + pl3gaaigba0j)

jbaia,...a,

+ 8 F (pt2) (pl4Qa0anhai + plSQauijaoi)

jbaya;...a,

2) 2)
+ T (1697, 'R, 70, ]-“lj’,; a, TP Q1D fl;’,;t,z )
1 (p+2) Q aiQb Q aiQb j
+ (p _ 1)! ay ijbala2g3a5,,.ap (plg agp a +pl9 a aop )
£20 (p+2) P21 (p+2)
+ <p _ 1) Qﬂlalanaj8C ljpcaz .a, + (P _ 1)!9‘ dllQbaolac‘;raIl:cao .a, (40)

where p; with i = 1, ...21 are the unknown constants. One can easily verify that the above couplings are consistent with the

T-duality transformations (14) when the Killing index y is a world volume index. So there is no D,-brane coupling

involving the RR potential C),, 3. The above couplings are also consistent with the S-duality of the D3-brane action.
Now, consider the sum of couplings (38), (39), and (40), i.e.,

SSS = Scaa + Seay + Sepy- (41)

They are not invariant under the linear T-duality transformations (14) for arbitrary coefficients. Imposing the invariance
under T-duality (15), one finds the following relations between the constants in the CS part:

P1 _Pr
27 p4*2’
P15 =817+ 818 — €19 — oo + &1 + o3+ Los — C30 — C31 + 830 + 833 — {34 — {36 — €37 — P12 — P13 — P1a
fs==C1 =8 =81 —Cis + 819+ 80— o1 — o3 —Coa — 3+ 84 — L6 + &7,

K¢ = Lo — 1o — K1 + 2K9 + 2K19 — 2K + K12 — K13 — Ki4 +Ki5 +Kjg — K17 + K3 — K9

P2 = —P1> P9 = P10> pP3 = — P11 = —P10»

1
+K4+K22+§(§1 =+ 8=+ Cu+lis—Cio—Cn =8~ =8 — ).
1
P17 :E(_Cll + 82+ 83— C1a = Cis + C1o = 8a1 — $o3 = 2008 + 2829 + $31 = C30 + $3a + {36 + P12 + P14),
1

P19 :E(C“ =i+ 83— C1a — Lis + G190 + 280

= {01 = 823 = 2804 + $31 — 830 — 2833 + $3a + (36 + 2837 + p12 + 2p13 + pra + 2p16)
P20 *%( 2010 =81+ 81— 83+ C1a + s = 1o = Ca1 — 823 — {31 + 832 + $3a + 836 + 289 + P12 — P14 — 2016 — 2p18)s
Ps :%(51 — 2005 + 83+ 831 = 830+ 83u + 836 + 2033 = Ca + L6 + P12 + P1a)s
P6 :%(_Cl — 2856 = 83— 831 + {30 — (34 = $36 + 2830 + 84— L6 — P12 — P1a)s

%(51 + 3 =831+ 8+ Gag + 836 + 8o+ {6 + P12 — P1a)s

%(—Cl = 2017 = 2818 + 2819 — 205 + 2850 — 28091 — 2003 — 2804 — &3 + {31 — $32 — 2833 + {34 + (36

+ 2837 + 84 = Lo+ P12+ 2013 + p1a),

Kg = Kip — K13 — K14 + K15 — Kyg + K3 + k7 — o — L7

1
+§(—Cl =l =83+ lu—Cis+ 89— =8 =83+ s —C6). (42)
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The above constraints make the CS action to be consistent
with the T-duality. There are still many constants that are
not fixed yet.

Imposing the constraints (42), one finds the cou-
plings (39) are not consistent with S-duality for the
|

Go=1++83—Cu+8+ 4
{s=1=2y;+ {53
Co=1-Cni+Cln—-80 ¢

30=1=-2y; +{i3=Ca + {17
{36 = —2+2r1 +Cu

— 8o + {9

PHYSICAL REVIEW D 92, 106004 (2015)

Ds-brane case. The S-duality requires, up to some total
derivative terms, the couplings in (39) to be in the form
of QO(xFT)My0*B. Using the expansion (20), one
finds the relation between the constants in the CS part
and the DBI part,

— g+ Co9 + 31 — (32
—Cut+t&O+ i+ + 0y
—ig+ 19— G
Co="Cro+ 13— Cia = Cig + 819 — Log + o9 + 31 —

— &g+ Co9 + {34 — 35 — Cao
=83 — (3

— 8o + o9 + 831 —Cn
{3

=l =813+l + g =819+ 8o + 8o + 2008 — 2009 — C31 +E3p —

3 =1—=y3=Cii + &2 — a0+ Coa — Cog + o9 + E33
C3s =1=2y1 + 813 =Cia+ 8o + 17 + a5 — Cas + 8o

{39 =—1+2p,

as well as the constraint (34). Imposing the above con-
straints, one finds not only the couplings (39) but also
the couplings (38) become consistent with the S-duality
for Ds-brane; i.e., the couplings 00C,OFJF in (38) and
the couplings 00POFJF in the DBI part combine into the
S-duality invariant structure (20).

We now compare the couplings with the S-matrix
elements. Imposing the constraints (42) and (43) into the
action SSS, one finds the resulting couplings are consistent
with the S-matrix elements (22) provided that

P14 = —P12» =1 (44)

The final step is to ignore the couplings which are total
derivative terms or the couplings which can be eliminated
by the Bianchi identities. Imposing the constraints (42),
(43), and (44) into the action, we find the terms with
|

2d*T
12
=73

(p—1)!

SCS D

ijbajazay...a,

where we have also used the following identity in the
second term:

aQ, big, F\I?)

ibaya,...a,

(p + 1ot~

— ¢fodi - PQ b/a J:'P+2

iagaas...a,

(40)

In proving the above identity, we have used the totally
antisymmetric property of the RR field strength which can

=13+ s — 8o = Gi7 + o6 + $as — oo,

P 41 .., 73 i b (p) 73 b (p+2)
/dﬁ xedodi---a, |:2!(p_ 1)zQ“ala F“laoaifbaz...a,, _|_p Q,4Q, Ja Y

—73

ai (p+2)
Q90 Y19, F —

(43)

coefficient p 3 in (40) are total derivative terms, so p;3 can
be eliminated from the physical couplings. The terms with
coefficients py, P10, P12, P13> P21 10 (40) can be canceled by
the Bianchi identity. When we write the field strengths in
(39) in terms of corresponding potentials, we find the terms
with coefficients {; with i = 1, 3, 7, 10, 20, 23, 24, 25, 26,
33 disappear, so these constants can be eliminated from
(39) by the Bianchi identity. Moreover, we find that terms
with coefficients {; with i = 2, 11, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22, 27, 28, 29, 31, 32, 34, 35, 40 are total
derivative terms. As a result, these terms can be ignored,
too. In the couplings (38), the constants k; with i = 7, 10,
11, 20, 23 can be ignored by the Bianchi identities, and the
constants k; with i = 1,2, 3,4, 5,6, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22 can be ignored by total derivative terms.

The final results for the CS part are the couplings which
appear in (11), (13), and the couplings

iag...a,

Q,4Q,Y9,FL >

ija...a,

(45)

be used to replace the world volume index b on the left-
hand side by a,. Using a similar relation and writing the RR
field strength in terms of the RR potential, one can prove
the following identity:

ai (p+2)
-pQ,Q, o, FV

l]ha|a2a4 .ap

+Q,9Q, M0, Fil?, =0,
(47)
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Using the above identity, one finds that couplings in
the second line of (45) are zero. The couplings in the
first line of (45) are consistent with the linear T-duality
and the S-duality and are zero when the scalar fields
are on shell. Note that the coupling in the first term
for the case of the D;-brane can be written as an S-

dual multiplet because Q,%0"F Cdal-ch)d is zero by the
Bianchi identity of the gauge field strength. Therefore,
the coefficient y; cannot be fixed by the linear dual-
ities and by the S-matrix element of one closed and
two open strings. It may be fixed by the open string
pole of the S-matrix element of two closed strings and
one open string at order &> or by the contact terms
of the S-matrix element of three closed strings. We
expect the square of the second fundamental form
appears in the world volume curvatures as in (5), (6),
and (8). The second fundamental forms in the second
term of (45) cannot be extended to the curvature (8),
so we speculate the coefficient of this term is zero,
ie.,

PHYSICAL REVIEW D 92, 106004 (2015)
y3 =0. (48)

It would be interesting to analyze in details the S-
matrix element of two closed strings and one open
string or the S-matrix element of three closed strings
to confirm the above relation.

Requiring the consistency of the D-brane effective action
at order o2 with S-matrix and with the linear dualities, we
have found the couplings of one NSNS and two NS states
in the DBI part to be (10) and (12) and the couplings of one
RR and two NS states in the CS part to be (11) and (13). On
the other hand, the D-brane effective action at order o2
should be invariant under supersymmetry and x symmetry.
It would be interesting to verify the above couplings to be
consistent with the supersymmetry and x symmetry.
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