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We use the compatibility of D-brane action with linear T-duality, S-duality, and with S-matrix elements
as guiding principles to find all world volume couplings of one massless closed string and two open strings
at order α02 in type-II superstring theories. In particular, we find that the squares of second fundamental
form appear only in world volume curvatures and confirm the observation that the dilaton appears in the
string frame action via the transformation R̂μν → R̂μν þ ∇μ∇νΦ.
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I. INTRODUCTION AND RESULTS

The low-energy effective field theory of Dp-branes
in type-II superstring theories consists of the Dirac–
Born–Infeld (DBI) [1] and the Chern–Simons (CS) actions
[2], i.e.,

Sp ¼ SDBIp þ SCSp : ð1Þ

The curvature corrections to the DBI action have been
found in Ref. [3] by requiring the consistency of the
effective action with the Oðα02Þ terms of the corresponding
disk-level scattering amplitude [4,5]. For totally geodesic
embedding of the world volume in ambient spacetime in
which second fundamental form is zero, the corrections
in the string frame for a zero B-field and for a constant
dilaton are1

SDBIp ⊃ −
π2α02Tp

48

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p h
RabcdRabcd

− 2R̂abR̂
ab − RabijRabij þ 2R̂ijR̂

ij
i
; ð2Þ

where R̂ab¼ ~GcdRcadb, R̂ij¼ ~GcdRcidj, and ~G¼detð ~GabÞ,
where ~Gab is the pullback of the bulk metric onto the word
volume, i.e.,

~Gab ¼
∂Xμ

∂σa
∂Xν

∂σb Gμν:

The Riemann curvatures in (2) are the pullback of the
spacetime curvature onto tangent and normal bundles [3].
The curvature corrections to the CS part can be found by

requiring that the chiral anomaly on the world volume of
intersecting D-branes (I-brane) cancels with the anomalous

variation of the CS action [6–8]. These corrections involve
the quadratic order of the curvatures at order α02. However,
the consistency of the effective action with the S-matrix
elements of one Neveu-Schwarz Neveu-Schwarz (NSNS)
and one Ramond-Ramond (RR) vertex operator requires
the CS part at this order to have linear curvature corrections
as well [9], i.e.,

SCSp ⊃ −
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

ðpþ 1Þ!∇jF
ðpþ2Þ
ia0…ap

R̂ij

þ 1

2!p!
∇aF

ðpþ2Þ
ija1…ap

Ra0
aij

�
; ð3Þ

whereF nþ1 is the field strength of the RR potential n-form.
The S-matrix calculations produce also the couplings in the
CS part which involve linear field strength of B-field [9],
in which we are not interested in this paper.
For arbitrary embeddings, the couplings (2) have been

extended in Ref. [3] to

SDBIp ⊃ −
π2α02Tp

48

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p h
ðRTÞabcdðRTÞabcd

− 2ðR̂TÞabðR̂TÞab − ðRNÞabijðRNÞabij þ 2R̄ijR̄ij
i
;

ð4Þ

where the world volume curvature ðRTÞabcd and ðRNÞabij
obey the Gauss–Codazzi equations, i.e.,

ðRTÞabcd ¼ Rabcd þ δijðΩ ac
iΩ bd

j −Ω ad
iΩ bc

jÞ
ðRNÞabij ¼ Rab

ij þ gcdðΩ ac
iΩ bd

j −Ω ac
jΩ bd

iÞ; ð5Þ

where Ωi
ab is the second fundamental form [3]2 The

relation between ðR̂TÞab and the world volume curvature
is then*ali.jalali@stu‑mail.um.ac.ir

†garousi@ um.ac.ir
1Our index convention is that the Greek letters ðμ; ν;…Þ are the

indices of the spacetime coordinates, the Latin letters ða; d; c;…Þ
are the world volume indices, and the letters ði; j; k;…Þ are the
normal bundle indices.

2Note that there is a minus sign typo on the right-hand side of
ðRNÞabij in Ref. [3]. For totally geodesic embedding, ðRNÞabij
must be equal to Rab

ij.
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ðR̂TÞab ¼ R̂ab þ δijðΩc
ciΩab

j −Ωca
iΩb

cjÞ: ð6Þ

In Eq. (4), R̄ij ¼ R̂ij þ gabgcdΩ ac
iΩ bd

j þ � � �, where dots
stand for unknown terms which involve the trace of the
second fundamental form. They could not be fixed in
Ref. [3] because the couplings in Ref. [3] have been found
by requiring the consistency of the corresponding cou-
plings with the S-matrix element of one closed and two
open string vertex operators for which the trace of the
second fundamental form is zero. They may be fixed,
however, by requiring the consistency of the couplings with
dualities.
In the static gauge and to the linear order of fields, the

second fundamental form has the simple form

Ω ab
i ¼ ∂a∂bχ

i þ Γi
ab; ð7Þ

where χi is the massless transverse scalar field and Γi
ab is

the Levi-Civitá connection. The couplings of one graviton
and two transverse scalars in (4) have been shown to be
consistent with the corresponding S-matrix elements [3].
However, there are couplings in (4) which involve the trace
of the second fundamental form which cannot be checked
with the S-matrix element of one closed and two open
string vertex operators. We will show, among other things,
that the trace term in ðR̂TÞab is required by the consistency
of the couplings (4) with T-duality. Moreover, we will find
that the duality fixes the dots in R̄ij to be

R̄ij ¼ R̂ij þ gabgcdðΩ ac
iΩ bd

j −Ω ab
iΩ cd

jÞ; ð8Þ

where the last term is the trace of the second fundamen-
tal form.
It has been observed in Refs. [10,11] that the consistency

of the closed string couplings with T-duality requires the
couplings of nonconstant dilaton appear in the world
volume action via the transformation

R̂ab → Rab ¼ R̂ab þ ∂a∂bΦ R̂ij → Rij ¼ R̂ij þ ∂i∂jΦ:

ð9Þ

We will find that the transformation of the couplings (4)
under the above replacement produces the couplings of one
dilaton and two transverse scalars which are consistent with
the dualities and with the corresponding S-matrix elements.

In other worlds, the extension of the couplings (2) to
include the curvature, the dilaton, and the second funda-
mental form are

SDBIp ⊃ −
π2α02Tp

48

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½ðRTÞabcdðRTÞabcd

− 2ðR̂TÞabðR̂TÞab − ðRNÞabijðRNÞabij þ 2R̄ijR̄ij�;
ð10Þ

where ðR̂TÞab and R̄ij are the same as ðR̂TÞab and R̄ij,
respectively, in which the replacement (9) has been
performed. We will show that a similar extension exists
for the couplings (3); i.e., the consistency of the couplings
with dualities and with the S-matrix requires the following
extension of (3):

SCSp ⊃ −
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

ðpþ 1Þ!∇jF
ðpþ2Þ
ia0…ap

R̄ij

þ 1

2!p!
∇aF

ðpþ2Þ
ija1…ap

ðRNÞa0aij
�
: ð11Þ

The coupling of the RR field strength and dilaton in the first
term above has been already shown in Ref. [10] to be
consistent with the linear T-duality and with the S-matrix.
In general, one expects that the consistency of the world

volume couplings with full nonlinear T-duality and S-
duality would fix all couplings at order α02 [11,12]; e.g., the
T-duality would relate the couplings (11) to the standard
CS couplings Cp−3ðRT∧RT − RN∧RNÞ at order α02. They
would involve also the world volume gauge field, the
spacetime B-field, and other RR-fields. In this paper,
however, we will use only linear T-duality and S-duality.
As a result, we will find many couplings which are
consistent with such simplified dualities. We are interested
in the couplings of one closed and two open string states in
this paper. Even the coefficients of such couplings cannot
be fully fixed by the linear dualities. To reduce the number
of arbitrary coefficients, we use the consistency of the
couplings with the corresponding S-matrix elements as
well. This latter condition fixes all unknown coefficients of
the couplings in the DBI part; i.e., we will find the
couplings (10) and the following couplings in the
string frame,

SDBIp ⊃ −
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p �
Rbdð∂aFab∂cFcd − ∂aFc

d∂cFabÞ þ 1

2
Rbdce∂cFab∂eFa

d

þ 1

4
Rd

dð∂aFab∂cFb
c þ ∂bFa

c∂cFabÞ þΩa
ai∂dHc

d
i∂bFbc

− Ωbai

�
∂bFa

c∂dHc
d
i þ ∂dFa

c∂iHbcd −
1

2
∂dFa

c∂cHbdi

��
; ð12Þ
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where the scalar curvatureRa
a ≡ ~GabR̂ab þ 2∂a∂aΦ is invariant under linear T-duality as the Ricci curvaturesRab andRij

in (9). The consistency of the couplings with the dualities and with the S-matrix elements fixes also the couplings in the CS
part to be those in (11) and the following couplings in the string frame:

SCSp ⊃
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

2!ðp − 2Þ! ∂
aFa1a2∂bFaa0∂bF ðp−2Þ

a3a4…ap

−
1

ðp − 1Þ!Ωa0
ai∂aFba1∂bF ðpÞ

ia2a3…ap
þ 1

2!ðp − 1Þ!Ω
bai∂aFa0a1∂bF

ðpÞ
ia2a3…ap

−
1

2!ðp − 1Þ!Ωa
ai∂bFa0a1∂iF

ðpÞ
ba2a3…ap

þ 1

p!
Ωa

ai∂bFba0∂iF
ðpÞ
a1a2…ap

−
1

p!
Ωbai∂aFba0∂iF

ðpÞ
a1a2…ap þ

1

ðp − 1Þ!Ωa0
ai∂bFba1∂iF

ðpÞ
aa2a3…ap

�
: ð13Þ

In the CS part, there is another multiplet of which the
coefficient cannot be fixed by the linear dualities and by the
S-matrix elements of one closed and two open strings. It
involves, however, the square of the second fundamental
form. On the other hand, as the couplings (10) and (11)
indicate, the square of the second fundamental form
combines with the appropriate curvatures to form world
volume curvatures RT and R̄. Since the coefficients of the
curvature terms are already fixed in (3), we expect the
coefficient of this multiplet to be zero.
An outline of the paper is as follows. In the next

section, we review the constraints that linear T-duality
and S-duality may impose on an effective world volume
action. In Sec. III, we review the contact terms of the
S-matrix element of one closed and two open strings at
order α02. In Sec. IV, we construct all couplings of one
NSNS and two NS strings with arbitrary coefficients
and find the coefficients by requiring the consistency
of the couplings with the linear dualities and with the
S-matrix elements. In Sec. V, we construct all couplings
of one RR and two NS strings with arbitrary coefficients
and find the coefficients by requiring the consistency
of the couplings with the linear dualities and with the
S-matrix elements.

II. LINEAR DUALITY CONSTRAINTS

The T-duality and S-duality transformations on a mass-
less field are in general nonlinear. Constraining the effec-
tive actions to be invariant under these nonlinear
transformations, which may fix all couplings of bosonic
fields including the nonperturbative effects [13], would be a
difficult task (see Refs. [11,12,14] for nonlinear T-duality).
In this paper, however, we are interested only in the world
volume couplings of one massless closed and two open
string states at order α02. Using the fact that the world
volume couplings of one closed string and the couplings of
one closed and one open string have no higher-derivative
corrections in the superstring theory, one realizes that the
higher-derivative couplings of one closed and two open

string states must be invariant under linear duality

transformations.
The full set of nonlinear T-duality transformations has

been found in Refs. [15–19]. We consider a background
consisting of a constant dilaton ϕ0 and a metric which is
flat in all directions except the Killing direction y,
which is a circle with radius ρ. Assuming quantum
fields are small perturbations around this background,

e.g., Gμν ¼ ημν þ 2hμν and Gyy ¼ ρ2

α0 ð1þ 2hyyÞ where
μ; ν ≠ y, the T-duality transformations for the back-

ground are e2 ~ϕ0 ¼ α0e2ϕ0
ρ2

, ~Gμν ¼ ημν, and ~Gyy ¼ α0
ρ2
, and

the quantum fluctuations at the linear order take the
following form3:

~ϕ ¼ ϕ −
1

2
hyy; ~hyy ¼ −hyy; ~hμy ¼ Bμy;

~Bμy ¼ hμy; ~hμν ¼ hμν; ~Bμν ¼ Bμν

~CðnÞ
μ…νy ¼ Cðn−1Þ

μ…ν ; ~CðnÞ
μ…ν ¼ Cðnþ1Þ

μ…νy : ð14Þ

The T-duality transformation of the world volume gauge
field when it is along the Killing direction is ~Ay ¼ χy,
where χy is the transverse scalar. Similarly, ~χy ¼ Ay.
When the gauge field and the transverse scalar field are
not along the Killing direction, they are invariant under
the T-duality. We are interested in applying the above
linear T-duality transformations on the quantum fluctu-
ations and apply the full nonlinear T-duality on the
background. The latter requires the CS part to have no
overall dilaton factor and the DBI part to have the

overall factor e−Φ
ffiffiffiffiffiffiffi
− ~G

p
.

3Note that if one considers full T-duality transformation for
background and quantum fluctuations then the effective action
would contain all couplings at order α02, e.g., H4 or ð∂FÞ2H2.
However, in this paper, we are interested only in the couplings
consisting of one closed and two open string fields, and hence we
consider only linear T-duality.
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Following Ref. [20], the effective couplings which
are invariant under the above linear T-duality can be
constructed as follows. We first write, in the static
gauge, all couplings on the world volume of the Dp-
brane involving one massless closed and two open
string states, in terms of the world volume indices
a; b;… and the transverse indices i; j;…. We call this
action Sp. Then, we reduce the action to the nine-
dimensional space. It produces two different actions. In
one of them, the Killing direction y is a world volume
direction, i.e., a ¼ ð ~a; yÞ, which we call Swp , and in the
other one, the Killing direction y is a transverse
direction, i ¼ ð~i; yÞ, which we call Stp. The transforma-
tion of Swp under the linear T-duality (14), which we
call SwTp−1, must be equal to Stp−1 up to some total
derivative terms, i.e.,

SwTp−1 − Stp−1 ¼ 0: ð15Þ

This constrains the unknown coefficients in the original
action Sp.
The S-duality of type-IIB theory produces another

set of constraints on the coefficients of Sp. Under the
S-duality, the graviton in the Einstein frame, i.e.,
GE

μν ¼ e−Φ=2Gμν; the transverse scalar fields; and the
RR 4-form are invariant, and the following objects trans-
form as doublets [21–23],

B≡
�

B

Cð2Þ

�
→ ðΛ−1ÞT

�
B

Cð2Þ

�

F ≡
� �F
GðFÞ

�
→ ðΛ−1ÞT

� �F
GðFÞ

�
; ð16Þ

where the matrix Λ ∈ SLð2; ZÞ and GðFÞ is a nonlinear
function of F, Φ, C. To the linear order of the quantum
fluctuations and nonlinear background which we call
linear S-duality,4 GðFÞ ¼ e−ϕ0F, where ϕ0 is the constant
dilaton background [21]. In the above equation, ð�FÞab ¼
ϵabcdFcd=2. The transformation of the dilaton and the RR
scalar C appears in the transformation of the SLð2; ZÞ
matrix M,

M ¼ eϕ
� jτj2 C

C 1

�
; ð17Þ

where τ ¼ Cþ ie−Φ. This matrix transforms as [21]

M → ΛMΛT: ð18Þ

To the zeroth and the first orders of quantum fluctuations
and the nonlinear order of the background field ϕ0, the
matrix M is

M0 ¼
�
e−ϕ0 0

0 eϕ0

�
; δM ¼

�
−e−ϕ0ϕ eϕ0C

eϕ0C eϕ0ϕ

�
:

ð19Þ

They transform as (18) under the SLð2; ZÞ
transformations.
Using the above transformations, it is obvious that there

must be no couplings in the Einstein frame between one
dilaton and two transverse scalars because it is impossible
to construct SLð2; ZÞ invariant from M0 and one δM, i.e.,
TrðM−1

0 δMÞ ¼ 0. This produces a set of constraints on the
coefficients of the effective action Sp.
One can easily find that the following structures are

invariant under the linear S-duality transformation:

∂ð�F TÞM0∂2B ¼ e−ϕ0∂F∂2B − ∂ð�FÞ∂2Cð2Þ

∂F TM0∂F ¼ e−ϕ0 ½∂ð�FÞ∂ð�FÞ þ ∂F∂F�
∂F T∂2M∂F ¼ e−ϕ0∂2Φ∂F∂F − e−ϕ0∂2Φ∂ð�FÞ∂ð�FÞ

þ ∂2C∂F∂ð�FÞ þ ∂2C∂ð�FÞ∂F:
ð20Þ

Up to total derivative terms then, the couplings of
one closed and two open string states on the world
volume of the D3-brane should appear in the structures
RΩΩ, ∂2Cð4ÞΩΩ, Ω∂ð�F TÞM0∂2B, R∂F TM0∂F , and
∂F T∂2M∂F , which are invariant under the linear S-
duality. They constrain the coefficients of the couplings
in Sp.

III. S-MATRIX CONSTRAINTS

Another set of constraints on the coefficients of Sp is
produced by comparing the couplings with the S-matrix
element of one closed and two open string states at order
α02. This S-matrix element has been calculated in [5]

A ∼
Γ½−2t�
Γ½1 − t�2 Kð1; 2; 3Þ; ð21Þ

where K is the kinematic factor and t ¼ −α0k1 · k2 is the
only Mandelstam variable in the amplitude. k1 and k2 are
the open string momenta. The low-energy expansion of the

gamma functions is Γ½−2t�
Γ½1−t�2 ¼ − 1

2t −
π2t
12

þ � � �. The first term
produces the couplings which is consistent with the
corresponding couplings in DBI and CS actions at order
α00 [24]. The second term produces the on-shell couplings
in the Einstein frame when the closed string is a NSNS
state [24],

4Note that we consider finite SLð2; ZÞ transformation but
infinitesimal quantum fluctuations.
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Aðχ; χ; hÞ ∼ ð2k1 · k2ζ1 · ε3 · ζ2 þ k1 · k2ζ1 · ζ2ε3aa þ ζ1 · p3ζ2 · p3ε3a
a

− 2k1 · ε3 · k2ζ1 · ζ2 þ 4ζ1 · ε3 · k1ζ2 · p3 þ ð1⟷2ÞÞðk1 · k2Þ2

Aðχ; χ;ϕÞ ∼ p − 3

2
ffiffiffi
2

p ðk1 · k2ζ1 · ζ2 þ ζ1 · p3ζ2 · p3 þ ð1⟷2ÞÞðk1 · k2Þ2

Aðχ; a; bÞ ∼ −2ið2ka1ζ1if2abεbi3 − ζ1 · p3f2abεab3 Þðk1 · k2Þ2

Aða; a; hÞ ∼ 2

�
ε3abf1acf2bc −

1

4
f1abf2abε3aa þ ð1⟷2Þ

�
ðk1 · k2Þ2

Aða; a;ϕÞ ∼ −
p − 7

4
ffiffiffi
2

p ðf1abf2ab þ ð1⟷2ÞÞðk1 · k2Þ2;

where ζ1, ζ2 are the polarizations of the open string states and ε3 is the polarization of the closed string. For the RR state, the
couplings in the momentum space are [24]

Aðχ; χ; cðpþ1ÞÞ ∼ −
2

ðpþ 1Þ! ðζ1 · p3ζ2 · p3ε3
a0…ap þ 2ðpþ 1Þζi1ka01 ζ2 · p3ε3i

a1…ap

þ pðpþ 1Þζi1ζj2ka01 ka12 ε3ij
a2…apÞϵva0…apðk1 · k2Þ2 þ ð1⟷2Þ

Aðχ; a; cðp−1ÞÞ ∼ −
2

ðp − 1Þ! ðζ1 · p3f
a0a1
2 ε3

a2…ap þ ðp − 1Þζi1fa0a12 ka21 ε3i
a3…apÞϵva0…apðk1 · k2Þ2

Aða; a; cðp−3ÞÞ ∼ −
1

2ðp − 3Þ! f1
a0a1f2a2a3ε3a4…apϵva0…apðk1 · k2Þ2 þ ð1⟷2Þ:

Compatibility of the couplings with the above amplitudes
constrains the coefficients in Sp.
It has been argued in Ref. [12] that to construct the

effective action for probe branes one has to impose the bulk
equations of motion at order α00 into Sp. Since we are
interested in the world volume couplings which have linear
closed string fields, we have to impose the supergravity
equations of motion at linear order, i.e.,

Rþ 4∇2Φ ¼ 0

Rμν þ 2∇μνΦ ¼ 0

∇ρHρμν ¼ 0

∇μ1F ðnÞ
μ1μ2…μn ¼ 0; ð22Þ

where μ, ν, ρ are the bulk indices. Using these equations,
one finds

Rμ
i
νi ¼ −2∇μνΦ − Rc

μ νc

∇i
iΦ ¼ −∇a

aΦ

∇iHiμν ¼ −∇aHaμν

∇iF ðnÞ
iμ2…μn

¼ −∇aF ðnÞ
aμ2…μn ; ð23Þ

which indicates that the terms on the left-hand side are
not independent. In other words, the coefficients of the

couplings in Sp which involve the terms on the left-hand
side above must be zero.

IV. DBI COUPLINGS

In this section, using the mathematica package “xAct”
[25], we are going to write all couplings of one closed string
NSNS state and two open strings with unknown coeffi-
cients. We then constrain the coefficients by imposing the
consistency of the couplings with the linear dualities and
with the corresponding S-matrix element. Since all such
couplings are too many to write at once, we consider the
couplings with a specific closed string NSNS state and
open string Neveu-Schwarz (NS) states.

A. One graviton and two transverse scalar fields

We begin with the couplings of one graviton and two
transverse scalar fields. The transverse scalar fields should
appear in the action through the pullback of bulk tensors,
through the Taylor expansion of bulk tensors, or through
the second fundamental form. Since there is no higher-
derivative correction to the couplings of one closed string
and one open string in type-II superstring theories, e.g.,
there is no coupling with structure DRΩ or RDΩ, the
pullback operator and Taylor expansion would produce no
coupling between two scalars and one curvature fromDRΩ
or RDΩ. Therefore, the only possibility for the two trans-
verse scalars is through the second fundamental form. All
such couplings at order α02 are
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Shχχ ¼
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½w1Rbc

bcΩa
aiΩd

d
i þ 2w2Rbj

bjΩa
aiΩc

c
i þ w3Rij

ijΩa
akΩb

b
k

þ w4Rb
ibjΩa

aiΩc
cj þ w5Ri

j
kjΩa

aiΩb
bk þ w6Rbc

bcΩdaiΩdai

þ 2w7Rbj
bjΩcaiΩcai þ w8Rkj

kjΩbaiΩbai þ w9Rb
ibjΩca

jΩcai

þ w10Ri
j
kjΩba

kΩbai þ w11Rd
c
bcΩb

aiΩdai þ w12Rc
j
bjΩb

aiΩcai

þ w13RcbijΩb
a
jΩcai þ w14RcibjΩb

a
jΩcai − w15RcjbiΩb

a
jΩcai

þ w16Rd
c
bcΩa

aiΩbd
i þ w17Rc

j
bjΩa

aiΩbc
i þ w18RcibjΩa

aiΩbcj

þ w19RabdcΩcb
iΩdai�; ð24Þ

where wi with i ¼ 1; 2;…; 19 are the unknown constants
that must be determined by imposing various constraints.
All the above couplings are not independent. In fact, by

applying the cyclic symmetry of the Riemann curvature,
one can neglect some of the constants. For example, one
finds the couplings in (24) with coefficients w13, w14, and
w15 are not independent, i.e.,

w13RcbijΩb
a
jΩcai þ w14RcibjΩb

a
jΩcai − w15RcjbiΩb

a
jΩcai

¼ ðw13 þ w15ÞRcbijΩb
a
jΩcai

þ ðw14 − w15ÞRcibjΩb
a
jΩcai; ð25Þ

so the coupling with coefficient w15 is not independent and
may be ignored from the list (24) before imposing various
constraints. Alternatively, one may keep all couplings in
(24) and impose the constraints to find appropriate relations
between the coefficients and at the end impose the cyclic
symmetry. The final result of course must be identical in
both methods. However, we find the latter method is easier
to apply by computer, so we do it in this paper. In fact, after

imposing the constraints, we write the Riemann curvature
in terms of the metric. Then, all terms that are related by the
cyclic symmetry would be canceled. So the coefficients of
all such terms can easily be set to zero.
By comparing the above couplings with (4), we find

w9 ¼ 1,w11 ¼ 1, w16 ¼ −1, andw19 ¼ 1. These constraints
are in fact the S-matrix constraints because the couplings
in (4) are fixed in Ref. [3] by comparing them with the
corresponding S-matrix elements. Furthermore, the con-
straint that the bulk equations of motion (23) have to be
imposed on the brane couplings fixes the coefficients
w2 ¼ w3 ¼ w5 ¼ w7 ¼ w8 ¼ w10 ¼ w12 ¼ w17 ¼ 0.

B. One graviton and two gauge fields

Under T-duality, the transverse scalar field along the
Killing direction transforms to the gauge field; i.e., Ω
transform to ∂F. So consistency of the couplings (24)
with T-duality requires the couplings of one graviton and
two gauge fields to have structure R∂F∂F. All such
couplings are

Shaa ¼
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½z1Rcd

cd∂aFae∂bFe
b þ 2z2Rci

ci∂aFad∂bFd
b

þ z3Rij
ij∂aFac∂bFc

b þ z4Re
d
cd∂aFae∂bFbc þ z5Rd

i
ci∂aFad∂bFbc þ z6Re

d
cd∂aFb

c∂bFae

þ z7Rd
i
ci∂aFb

c∂bFad þ z8Rcd
cd∂bFae∂eFab þ 2z9Rci

ci∂bFad∂dFab þ z10Rij
ij∂bFac∂cFab

þ z11Rcd
cd∂bFae∂bFae þ 2z12Rci

ci∂bFad∂bFad þ z13Rij
ij∂bFac∂bFac þ z14Re

d
cd∂bFa

c∂bFae

þ z15Rd
i
ci∂bFa

c∂bFad þ z16Raecd∂bFcd∂bFae þ z17Raced∂bFcd∂bFae þ z18Rb
d
cd∂bFae∂cFae

þ z19Rb
i
ci∂bFad∂cFad þ z20Re

d
cd∂bFae∂cFab þ z21Rd

i
ci∂bFad∂cFab þ z22Rb

d
cd∂aFae∂cFe

b

þ z23Rb
i
ci∂aFad∂cFd

b þ z24Rebcd∂bFae∂dFa
c þ z25Recbd∂bFae∂dFa

c þ z26Redbc∂bFae∂dFa
c

þ z27Raecd∂bFae∂dFb
c þ z28Raced∂bFae∂dFb

c þ z29Rebcd∂aFae∂dFbc þ z30Redbc∂aFae∂dFbc�; ð26Þ

where zi with i ¼ 1; 2;…; 30 are constants that must be
determined by imposing the constraints and Fab is field
strength of the gauge field. Here also one may impose the
cyclic symmetry and the Bianchi identity dF ¼ 0 before
imposing the constraints to cancel some of the couplings in

(26) before. However, we prefer to impose the cyclic
symmetry and the Bianchi identity after imposing the
constraints. The bulk equations of motion (23) constrain
z2 ¼ z3 ¼ z5 ¼ z7 ¼ z9 ¼ z10 ¼ z12 ¼ z13 ¼ z15 ¼ z19 ¼
z21 ¼ z23 ¼ 0.
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C. One dilaton and two transverse scalar fields

The same reason as in Sec. IV. A leads one to conclude that the couplings of one dilaton and two transverse scalar fields
have structure ∂∂ΦΩΩ. All such couplings are

SΦχχ ¼
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½t1Ωa

a
iΩb

bi∂c∂cΦþ t2Ωa
a
iΩbc

i∂c∂bΦþ t3Ωa
c
iΩabi∂c∂bΦ

þ t4ΩabiΩabi∂c∂cΦþ t5Ωa
a
iΩb

bi∂j∂jΦþ t6ΩabiΩabi∂j∂jΦ

þ t7Ωa
a
iΩb

b
j∂j∂iΦþ t8Ωab

jΩabi∂j∂iΦ�; ð27Þ
where ti with i ¼ 1; 2;…; 8 are the unknown constants that we must determined. The bulk equations of motion (23)
constrain t5 ¼ t6 ¼ 0.

D. One dilaton and two gauge fields

The consistency of the couplings (27) with T-duality requires the couplings of one dilaton and two gauge fields to have
the structure ∂∂Φ∂F∂F. All such couplings are

SΦaa ¼
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½x1∂aFcd∂bFcd∂b∂aΦþ x2∂b∂aΦ∂cFa

c∂dFb
d

þ x3∂a∂aΦ∂bFbc∂dFc
d þ x4∂bFa

c∂b∂aΦ∂dFc
d þ x5∂bFcd∂b∂aΦ∂dFa

c

þ x6∂b∂aΦ∂cFbd∂dFa
c þ x7∂b∂aΦ∂dFbc∂dFa

c þ x8∂a∂aΦ∂cFbd∂dFbc

þ x9∂a∂aΦ∂dFbc∂dFbc þ x10∂aFab∂cFb
c∂i∂iΦþ x11∂bFac∂cFab∂i∂iΦ

þ x12∂cFab∂cFab∂i∂iΦ�; ð28Þ

where the constants xi with i ¼ 1; 2;…; 12 must be determined by imposing the constraints. The bulk equations of
motion (23) constrain x10 ¼ x11 ¼ x12 ¼ 0.

E. One B-field, one transverse scalar field, and one gauge field

The final list of couplings in the DBI part is the couplings of one B-field, one transverse scalar field, and one gauge field,
which is

Sbaχ ¼
π2α02Tp

12

Z
dpþ1xe−Φ

ffiffiffiffiffiffiffi
− ~G

p
½γ1Ωabi∂aFcd∂bHcdi þ γ2Ωabi∂bHadi∂cFcd

þ γ3Ωabi∂aFcd∂dHbci þ γ4Ωabi∂cFa
c∂dHb

d
i þ γ6Ωabi∂bFa

c∂dHc
d
i

þ γ5Ωa
a
i∂bFbc∂dHc

d
i þ γ7Ωabi∂bHcdi∂dFa

c þ γ8Ωabi∂cHbdi∂dFa
c

þ γ9Ωabi∂dHbci∂dFa
c þ γ10Ωa

a
i∂cHbdi∂dFbc þ γ11Ωa

a
i∂dHbci∂dFbc

þ γ12Ωabi∂aFcd∂iHbcd þ γ13Ωabi∂dFa
c∂iHbcd þ γ14Ωa

a
i∂dFbc∂iHbcd

− γ15Ωabi∂cFa
c∂jHbi

j − γ17Ωabi∂bFa
c∂jHci

j − γ16Ωa
a
i∂bFbc∂jHci

j�; ð29Þ

where γi with i ¼ 1; 2;…; 17 are the unknown constants. The equations of motion (23) fix γ15 ¼ γ16 ¼ γ17 ¼ 0.
We now consider the sum of the couplings in (24), (26), (27), (28), and (29), i.e.,

SDBIp ¼ Shχχ þ Shaa þ SΦχχ þ SΦaa þ Sbaχ ; ð30Þ

and apply the T-duality constraint (15). It gives the following relations between the constants:

t8 ¼ 1; t3 ¼ −t2; t1 ¼ −
t2
2
−
x4
2
− x3; t4 ¼

t2
2
þ x4

2
þ x8 − 2x9

t7 ¼ −1 − z14 − z4 − z6; w1 ¼
1

4
−
x3
2
−
x4
4
; w15 ¼ 2þ w14 − 2γ1 þ γ3 þ 2γ6 þ γ7 − γ9
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w18 ¼ 2þ 2z14 − z29 þ 2z30 þ 2z6; w4 ¼ −1 − z14 − z4 − z6; x5 ¼ 2x1 − x4 þ x7

z20 ¼ −z14 − 2z18 þ z22; γ13 ¼ w14 þ 2γ12 þ γ3 þ γ6 − γ9; γ5 ¼ z14 þ z4 þ z6 − γ6

z28 ¼ 2z14 þ 4z16 þ 2z17 þ z24 − z26 − 2z27 þ 2z6 þ 2γ1 − γ3 − 2γ6 − γ7 þ γ9

γ8 ¼
1

2
− γ4 − γ9; w6 ¼ −

1

4
þ x4

4
þ x8

2
þ x9; z1 ¼

x3
2
þ x4

4
−
z22
4

; z25 ¼
1

2
þ z22

2
− z26

z8 ¼
x4
4
þ x8

2
−
z22
4

þ x9 − 2z11; γ2 ¼ −
z29
2

þ z14 þ z30 þ z6 − γ6

γ11 ¼
z14
2

−
z29
4

þ z30
2

þ z6
2
−
γ10
2

−
γ6
2
; x6 ¼ −x2 − x7 þ z14 þ z4 þ z6: ð31Þ

As can be seen, not all coefficients of the DBI part are fixed
by imposing the consistency of the couplings with the
linear T-duality, so we need further constraints which may
be the consistency with S-duality.
In general, S-duality connects the DBI couplings con-

taining the NSNS states to the CS couplings containing RR
states. However, the S-duality constrains even the cou-
plings in the DBI part. For example, the world volume
couplings of the D3-brane in the Einstein frame must have
no coupling with the structure ΦΩΩ. This produces the
following constraints:

γ9 ¼ 2− 2γ1 þ γ3 þ 2γ6 þ γ7; x9 ¼
1

4
−
x4
4
−
x8
2

z4 ¼
1

2
þ x3 þ

x4
2
−
z29
2

þ z30; z6 ¼ −1− z14 − z30 þ
z29
2
:

ð32Þ

Another constraint from the S-duality in the DBI part is that
up to total derivative terms the couplings of one graviton
and two gauge fields in the D3-brane action must appear
in the S-duality invariant structure R∂F TM0∂F ¼
e−ϕ0Rð∂ð�FÞ∂ð�FÞ þ ∂F∂FÞ. This produces the following
constraints:

z14 ¼ 0; x4 ¼ 1 − 2x3: ð33Þ
The S-duality constrains the couplings of one dilaton and
two gauge fields. It also connects them to the couplings
of one RR scalar and two gauge fields. This results from
the fact that the S-duality invariant structure which contains
the couplings of one dilaton and two gauge fields is
∂F T∂2M∂F ¼ e−ϕ0∂2Φð−∂ð�FÞ∂ð�FÞ þ ∂F∂FÞ þ � � �,
where dots refer to the RR scalar couplings. This constraint
on the couplings of one dilaton and two gauge fields
produces the following relation:

x8 ¼ x3:

The S-duality connects the DBI couplings of one B-field,
one gauge field, and one transverse scalar field to the CS
couplings of one RR 2-form, one gauge field, and one
transverse scalar. In the next section, we will write all

couplings in the CS part and impose the T-duality condition
(15). Then, we will impose the above S-duality condition.
It produces the following relation between the coefficients
in the DBI part,

γ6 ¼ −1þ 2γ1 − γ3; ð34Þ

and many relations between the coefficients in the CS part
[see the constraints in (43)].
Imposing the above relations between the coefficients

in SDBIp , we find that the action (30) is consistent with the
S-matrix elements in (22) except the following terms:

w14ðRbicjΩbaiΩc
a
j − RbjciΩbaiΩc

a
j þΩbai∂dFa

c∂iHbcdÞ:
ð35Þ

They are not consistent with the couplings in (4) and with
the corresponding S-matrix elements, so

w14 ¼ 0: ð36Þ

As can be seen, there are still many coefficients which are
not fixed by the linear dualities and with the S-matrix
elements.
We have considered all couplings in SDBIp which

contain the Riemann curvature and the first derivative
of the field strengths of the gauge field and the B-field.
The Riemann curvature satisfies the cyclic symmetry,
and the field strengths satisfy the Bianchi identities. So
we have to impose these symmetries in SDBIp . To perform
this step, we write all field strengths in terms of their
corresponding potentials and write the Riemann curvature
in terms of

Rabcd ¼ ∂b∂chad þ ∂a∂dhbc − ∂b∂dhac − ∂a∂chbd: ð37Þ

Then, we find the coefficients γ1, γ3, γ7, γ9, x4, x8, x9, z4,
z6, z14, disappear from the action. As a result, the terms
with these coefficients represent only the cyclic symmetry
and the Bianchi identity. So we ignore such terms in the
DBI part. Finally, we find that the couplings with
coefficients γ4, t2, x2, x3, z22, z29, z30 are total derivative
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terms, so they can be eliminated from the DBI part. too.
The final result for the DBI part has no unknown
coefficients. The couplings are those that appear in
(10) and (12).

V. CS COUPLINGS

In this section, using the mathematica package “xAct”
[25], we are going to write all couplings of one closed string
RR state and two open NS strings with unknown coef-
ficients. We then constrain the coefficients by imposing the
consistency of the couplings with the linear dualities and
with the corresponding S-matrix element. The S-matrix
elements (22) indicate that the world volume couplings of

the Dp-brane in the CS part has three parts. One is the
couplings of one Cp−3 and two gauge fields, and another
one is the couplings of one Cp−1, one gauge field, and one
transverse scalar field, and the last one is the couplings of
one Cpþ1 and two transverse scalar fields. Let us consider
each case separately.

A. One RR and two gauge fields

In this section, we construct all possible couplings
of one Cp−3 and two gauge fields. Using the bulk
equations of motion (23), one finds there are 23 nonzero
couplings, i.e.,

Scaa ¼
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

ðp − 2Þ! ∂aF
ðp−2Þ
a3a4…ap

�
1

2!
κ1∂bFa1a2∂bFa

a0 þ κ2∂a0F
ba∂a2Fba1

þ κ3∂a2Fba1∂aFb
a0 þ κ4∂a2Fba1∂bFa

a0 þ
1

2!
κ5∂a2Fb

a∂bFa0a1

þ 1

2!
κ6∂aFba2∂bFa0a1 þ κ7∂bFb

a0∂a2F
a
a1 þ

1

2!
κ8∂bFb

a0∂aFa1a2

�

þ 1

ðp − 3Þ! ∂
bF ðp−2Þ

ba4…ap

�
1

2!

1

2!
κ9∂aFa2a3∂aFa0a1

þ κ10∂a1F
a
a0∂a3Faa2 þ

1

2!
κ11∂aFa0a1∂a3Faa2

�

þ 1

ðp − 3Þ! ∂aF
ðp−2Þ
ba4…ap

�
κ12∂a1F

b
a0∂a3F

a
a2 þ

1

2!
κ13∂a3F

a
a2∂bFa0a1

þ 1

2!
κ14∂a1F

b
a0∂aFa2a3 þ

1

2!

1

2!
κ15∂bFa0a1∂aFa2a3

�

þ 1

ðp − 3Þ! ∂a4F
ðp−2Þ
aa3a5…ap

�
1

2!
κ16∂bFa1a2∂bFa

a0 þ κ17∂a2Fba1∂bFa
a0

þ κ18∂a0F
ba∂a2Fba1 þ κ19∂a2Fba1∂aFb

a0 þ κ20∂bFb
a0∂a2F

a
a1

þ 1

2!
κ21∂a2Fb

a∂bFa0a1 þ
1

2!
κ22∂aFba2∂bFa0a1 þ

1

2!
κ23∂bFb

a0∂aFa1a2

��
; ð38Þ

where κi with i ¼ 1;…23 are the unknown constants that
have to be found. In the above equation, F ðp−2Þ is the field
strength of the RR potential Cp−3. One can easily verify
that the above couplings are consistent with the T-duality
transformations (14) when the Killing index y is a world
volume index which is carried only by the RR field
strength. When it is carried by the field strength of the
gauge field, the consistency with T-duality requires the

couplings of one Cp−1, one gauge field, and one transverse
scalar field, which we consider next.

B. One RR, one gauge field, and one transverse
scalar field

All possible nonzero couplings of one RR potential
Cp−1-form, one gauge field, and one transverse scalar
fields are

Scaχ ¼
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

ðp − 1Þ! ∂bF
ðpÞ
ia2a3…ap

�
1

2!
ζ1Ωbai∂aFa0a1 þ ζ2Ωa0

bi∂aFa
a1

þ ζ3Ωa0
ai∂aFb

a1 þ ζ4Ωbai∂a1Faa0 þ ζ5Ωa0
ai∂a1Fa

b þ ζ6Ωa0
ai∂bFaa1
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þ ζ7Ωa
ai∂a1F

b
a0 þ

1

2!
ζ8Ωa

ai∂bFa0a1

�

þ 1

ðp − 2Þ! ∂
bF ðpÞ

iba3a4…ap

�
1

2!
ζ9Ωa0

ai∂aFa1a2 þ ζ10Ωa0
ai∂a2Faa1

�

þ 1

ðp − 2Þ! ∂bF
ðpÞ
iaa3a4…ap

�
ζ11Ωa0

bi∂a2F
a
a1 þ

1

2!
ζ12Ωa0

bi∂aFa1a2

þ ζ13Ωa0
ai∂a2F

b
a1 þ

1

2!
ζ14Ωa0

ai∂bFa1a2

�

þ 1

ðp − 3Þ! ∂a4F
ðpÞ
iaba3a5…ap

�
ζ15Ωa0

ai∂a2F
b
a1 þ

1

2!
ζ16Ωa0

ai∂bFa1a2

�

þ 1

ðp − 2Þ! ∂a4F
ðpÞ
iba2a3a5…ap

�
ζ17Ωa0

bi∂aFa
a1 þ

1

2!
ζ18Ωbai∂aFa0a1

þ ζ19Ωbai∂a1Faa0 þ ζ20Ωa
ai∂a1F

b
a0ζ21Ωa0

ai∂aFb
a1 þ ζ22Ωa0

ai∂a1Fa
b

þ ζ23Ωa0
ai∂bFaa1 þ

1

2!
ζ24Ωa

ai∂bFa0a1

�

þ 1

ðp − 1Þ! ∂a4F
ðpÞ
ia1a2a3a5…ap

ðζ25Ωa
ai∂bFb

a0 þ ζ26Ωbai∂bFaa0 þ ζ27Ωa0
bi∂aFb

aÞ

þ 1

ðp − 2Þ! ∂iF
ðpÞ
aba3a4…ap

ðζ28Ωa0
ai∂a2F

b
a1 þ ζ29Ωa0

ai∂bFa1a2Þ

þ 1

ðp − 1Þ! ∂iF
ðpÞ
ba2a3a4…ap

�
ζ30Ωa0

bi∂aFa
a1 þ ζ31Ωbai∂aFa0a1

þ ζ32Ωbai∂a1Faa0 þ ζ33Ωa
ai∂a1F

b
a0 þ ζ34Ωa0

ai∂aFb
a1 þ ζ35Ωa0

ai∂a1Fa
b

þ ζ36Ωa0
ai∂bFaa1 þ

1

2!
ζ37Ωa

ai∂bFa0a1

�

þ 1

p!
∂iF

ðpÞ
a1a2…apðζ38Ωa

ai∂bFb
a0 þ ζ39Ωbai∂bFaa0 þ ζ40Ωa0

bi∂aFb
aÞ
�
; ð39Þ

where we have also imposed the bulk equations of motion (23). In the above equation ζi with i ¼ 1;…40 are the unknown
constants that have to be found by consistency with dualities and with the S-matrix elements. One can easily verify that the
above couplings are consistent with the T-duality transformations (14) when the Killing index y is a world volume index
which is carried only by the RR field strength. This index cannot be carried by the transverse scalar field. When it is carried
by the field strength of the gauge field, the consistency with T-duality requires the couplings of one Cpþ1 and two transverse
scalar fields, which we consider next.

C. One RR and two transverse scalar fields

All possible nonzero couplings of one RR potential Cpþ1-form and two scalar fields after imposing the bulk equations of
motion (23) are

Scχχ ¼
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
1

ðpþ 1Þ! ∂bF
ðpþ2Þ
ca0a1…apðρ1ΩcaiΩb

ai þ ρ2Ωa
aiΩbc

iÞ

−
1

ðpþ 1Þ! ∂
bF ðpþ2Þ

ba0a1…ap
ðρ3Ωa

aiΩc
c
i þ ρ4ΩcaiΩcaiÞ

þ 1

ðpþ 1Þ! ∂jF
ðpþ2Þ
ia0a1…ap

ðρ5Ωa
aiΩc

cj þ ρ6Ωca
jΩcaiÞ

þ 1

p!
∂bF

ðpþ2Þ
ija1…ap

ðρ7Ωa0
aiΩb

a
j þ ρ8Ωa

aiΩb
a0

jÞ þ ρ9
p!

Ωa
a0

iΩcb
i∂cF

ðpþ2Þ
aba1…ap
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þ 1

p!
∂cF ðpþ2Þ

bca1a2…ap
ðρ10Ωa0

aiΩb
ai þ ρ11Ωa

aiΩb
a0iÞ

þ 1

p!
∂iF

ðpþ2Þ
jba1a2…ap

ðρ12Ωa0
aiΩb

a
j þ ρ13Ωa

aiΩb
a0

jÞ

þ 1

p!
∂iF

ðpþ2Þ
jba1a2…ap

ðρ14Ωa0
ajΩb

a
i þ ρ15Ωa

ajΩb
a0

iÞ

þ 1

ðp − 1Þ! ðρ16Ω
a
a1

iΩb
a0

j∂aF
ðpþ2Þ
ijba2…ap

þ ρ17Ωa
a1

jΩb
a0

i∂jF
ðpþ2Þ
iaba2…ap

Þ

þ 1

ðp − 1Þ! ∂a4F
ðpþ2Þ
ijba1a2a3a5…ap

ðρ18Ωa0
aiΩb

a
j þ ρ19Ωa

aiΩb
a0

jÞ

þ ρ20
ðp − 1Þ!Ωa1

aiΩa0a
j∂cF ðpþ2Þ

ijca2…ap
þ ρ21
ðp − 1Þ!Ω

a
a1iΩ

b
a0

i∂cF ðpþ2Þ
abca2…ap

�
; ð40Þ

where ρi with i ¼ 1;…21 are the unknown constants. One can easily verify that the above couplings are consistent with the
T-duality transformations (14) when the Killing index y is a world volume index. So there is no Dp-brane coupling
involving the RR potential Cpþ3. The above couplings are also consistent with the S-duality of the D3-brane action.
Now, consider the sum of couplings (38), (39), and (40), i.e.,

SCSp ¼ Scaa þ Scaχ þ Scχχ : ð41Þ

They are not invariant under the linear T-duality transformations (14) for arbitrary coefficients. Imposing the invariance
under T-duality (15), one finds the following relations between the constants in the CS part:

ρ2 ¼ −ρ1; ρ9 ¼ ρ10; ρ3 ¼ −
ρ1
2
; ρ4 ¼

ρ1
2
; ρ11 ¼ −ρ10;

ρ15 ¼ ζ17 þ ζ18 − ζ19 − ζ20 þ ζ21 þ ζ23 þ ζ24 − ζ30 − ζ31 þ ζ32 þ ζ33 − ζ34 − ζ36 − ζ37 − ρ12 − ρ13 − ρ14

ζ8 ¼ −ζ1 − ζ2 − ζ17 − ζ18 þ ζ19 þ ζ20 − ζ21 − ζ23 − ζ24 − ζ3 þ ζ4 − ζ6 þ ζ7;

κ6 ¼ ζ9 − ζ10 − κ1 þ 2κ9 þ 2κ10 − 2κ11 þ κ12 − κ13 − κ14 þ κ15 þ κ16 − κ17 þ κ3 − κ19

þ κ4 þ κ22 þ
1

2
ðζ1 − ζ11 þ ζ12 − ζ13 þ ζ14 þ ζ18 − ζ19 − ζ21 − ζ23 − ζ3 − ζ4 − ζ6Þ;

ρ17 ¼
1

2
ð−ζ11 þ ζ12 þ ζ13 − ζ14 − ζ18 þ ζ19 − ζ21 − ζ23 − 2ζ28 þ 2ζ29 þ ζ31 − ζ32 þ ζ34 þ ζ36 þ ρ12 þ ρ14Þ;

ρ19 ¼
1

2
ðζ11 − ζ12 þ ζ13 − ζ14 − ζ18 þ ζ19 þ 2ζ20

− ζ21 − ζ23 − 2ζ24 þ ζ31 − ζ32 − 2ζ33 þ ζ34 þ ζ36 þ 2ζ37 þ ρ12 þ 2ρ13 þ ρ14 þ 2ρ16Þ;

ρ20 ¼
1

4
ð−2ζ10 − ζ11 þ ζ12 − ζ13 þ ζ14 þ ζ18 − ζ19 − ζ21 − ζ23 − ζ31 þ ζ32 þ ζ34 þ ζ36 þ 2ζ9 þ ρ12 − ρ14 − 2ρ16 − 2ρ18Þ;

ρ5 ¼
1

2
ðζ1 − 2ζ25 þ ζ3 þ ζ31 − ζ32 þ ζ34 þ ζ36 þ 2ζ38 − ζ4 þ ζ6 þ ρ12 þ ρ14Þ;

ρ6 ¼
1

2
ð−ζ1 − 2ζ26 − ζ3 − ζ31 þ ζ32 − ζ34 − ζ36 þ 2ζ39 þ ζ4 − ζ6 − ρ12 − ρ14Þ;

ρ7 ¼
1

2
ðζ1 þ ζ3 − ζ31 þ ζ32 þ ζ34 þ ζ36 þ ζ4 þ ζ6 þ ρ12 − ρ14Þ;

ρ8 ¼
1

2
ð−ζ1 − 2ζ17 − 2ζ18 þ 2ζ19 − 2ζ2 þ 2ζ20 − 2ζ21 − 2ζ23 − 2ζ24 − ζ3 þ ζ31 − ζ32 − 2ζ33 þ ζ34 þ ζ36

þ 2ζ37 þ ζ4 − ζ6 þ ρ12 þ 2ρ13 þ ρ14Þ;
κ8 ¼ κ12 − κ13 − κ14 þ κ15 − κ20 þ κ23 þ κ7 − ζ2 − ζ17

þ 1

2
ð−ζ1 − ζ11 þ ζ12 − ζ13 þ ζ14 − ζ18 þ ζ19 − ζ21 − ζ23 − ζ3 þ ζ4 − ζ6Þ: ð42Þ
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The above constraints make the CS action to be consistent
with the T-duality. There are still many constants that are
not fixed yet.
Imposing the constraints (42), one finds the cou-

plings (39) are not consistent with S-duality for the

D3-brane case. The S-duality requires, up to some total
derivative terms, the couplings in (39) to be in the form
of Ω∂ð�F TÞM0∂2B. Using the expansion (20), one
finds the relation between the constants in the CS part
and the DBI part,

ζ4 ¼ 1þ ζ1 þ ζ13 − ζ14 þ ζ2 þ ζ17 − ζ28 þ ζ29 þ ζ31 − ζ32

ζ5 ¼ 1 − 2γ1 þ ζ13 − ζ14 þ ζ2 þ ζ17 þ ζ3 þ ζ27 − ζ28 þ ζ29 þ ζ34 − ζ35 − ζ40

ζ6 ¼ 1 − ζ11 þ ζ12 − ζ2 − ζ17 − ζ18 þ ζ19 − ζ21 − ζ23 − ζ3 − ζ28 þ ζ29 þ ζ31 − ζ32

ζ9 ¼ ζ10 þ ζ13 − ζ14 − ζ18 þ ζ19 − ζ28 þ ζ29 þ ζ31 − ζ32

ζ30 ¼ 1 − 2γ1 þ ζ13 − ζ14 þ ζ17 − ζ28 þ ζ29

ζ36 ¼ −2þ 2γ1 þ ζ11 − ζ12 − ζ13 þ ζ14 þ ζ18 − ζ19 þ ζ21 þ ζ23 þ 2ζ28 − 2ζ29 − ζ31 þ ζ32 − ζ34

ζ37 ¼ 1 − γ3 − ζ11 þ ζ12 − ζ20 þ ζ24 − ζ28 þ ζ29 þ ζ33

ζ38 ¼ 1 − 2γ1 þ ζ13 − ζ14 þ ζ2 þ ζ17 þ ζ25 − ζ28 þ ζ29

ζ39 ¼ −1þ 2γ1 − ζ13 þ ζ14 − ζ2 − ζ17 þ ζ26 þ ζ28 − ζ29; ð43Þ

as well as the constraint (34). Imposing the above con-
straints, one finds not only the couplings (39) but also
the couplings (38) become consistent with the S-duality
for D3-brane; i.e., the couplings ∂∂C0∂F∂F in (38) and
the couplings ∂∂Φ∂F∂F in the DBI part combine into the
S-duality invariant structure (20).
We now compare the couplings with the S-matrix

elements. Imposing the constraints (42) and (43) into the
action SCSp , one finds the resulting couplings are consistent
with the S-matrix elements (22) provided that

ρ14 ¼ −ρ12; γ1 ¼ 1: ð44Þ

The final step is to ignore the couplings which are total
derivative terms or the couplings which can be eliminated
by the Bianchi identities. Imposing the constraints (42),
(43), and (44) into the action, we find the terms with

coefficient ρ13 in (40) are total derivative terms, so ρ13 can
be eliminated from the physical couplings. The terms with
coefficients ρ1, ρ10, ρ12, ρ18, ρ21 in (40) can be canceled by
the Bianchi identity. When we write the field strengths in
(39) in terms of corresponding potentials, we find the terms
with coefficients ζi with i ¼ 1, 3, 7, 10, 20, 23, 24, 25, 26,
33 disappear, so these constants can be eliminated from
(39) by the Bianchi identity. Moreover, we find that terms
with coefficients ζi with i ¼ 2, 11, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22, 27, 28, 29, 31, 32, 34, 35, 40 are total
derivative terms. As a result, these terms can be ignored,
too. In the couplings (38), the constants κi with i ¼ 7, 10,
11, 20, 23 can be ignored by the Bianchi identities, and the
constants κi with i ¼ 1, 2, 3, 4, 5, 6, 12, 13, 14, 15, 16, 17,
18, 19, 21, 22 can be ignored by total derivative terms.
The final results for the CS part are the couplings which

appear in (11), (13), and the couplings

SCS ⊃
π2α02Tp

12

Z
dpþ1xϵa0a1…ap

�
γ3

2!ðp − 1Þ!Ωa
ai∂bFa1a0∂iF

ðpÞ
ba2…ap

þ γ3
p!

Ωa
aiΩb

bj∂jF
ðpþ2Þ
ia0…ap

−
1 − γ3
ðp − 1Þ!Ωa

aiΩa0
bj∂a3F

ðpþ2Þ
ijba1a2a4…ap

þ 1 − γ3
p!

Ωa
aiΩa0

bj∂bF
ðpþ2Þ
ija1…ap

�
; ð45Þ

where we have also used the following identity in the
second term:

ðpþ 1Þϵa0a1…apΩa0
bj∂jF

ðpþ2Þ
iba1a2…ap

¼ ϵa0a1…apΩb
bj∂jF

ðpþ2Þ
ia0a1a2…ap

: ð46Þ
In proving the above identity, we have used the totally
antisymmetric property of the RR field strength which can

be used to replace the world volume index b on the left-
hand side by a0. Using a similar relation and writing the RR
field strength in terms of the RR potential, one can prove
the following identity:

−pΩa
aiΩa0

bj∂a3F
ðpþ2Þ
ijba1a2a4…ap

þΩa
aiΩa0

bj∂bF
ðpþ2Þ
ija1…ap

¼ 0:

ð47Þ
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Using the above identity, one finds that couplings in
the second line of (45) are zero. The couplings in the
first line of (45) are consistent with the linear T-duality
and the S-duality and are zero when the scalar fields
are on shell. Note that the coupling in the first term
for the case of the D3-brane can be written as an S-

dual multiplet because Ωa
ai∂bFcd∂iH

ð3Þ
bcd is zero by the

Bianchi identity of the gauge field strength. Therefore,
the coefficient γ3 cannot be fixed by the linear dual-
ities and by the S-matrix element of one closed and
two open strings. It may be fixed by the open string
pole of the S-matrix element of two closed strings and
one open string at order α02 or by the contact terms
of the S-matrix element of three closed strings. We
expect the square of the second fundamental form
appears in the world volume curvatures as in (5), (6),
and (8). The second fundamental forms in the second
term of (45) cannot be extended to the curvature (8),
so we speculate the coefficient of this term is zero,
i.e.,

γ3 ¼ 0: ð48Þ

It would be interesting to analyze in details the S-
matrix element of two closed strings and one open
string or the S-matrix element of three closed strings
to confirm the above relation.
Requiring the consistency of the D-brane effective action

at order α02 with S-matrix and with the linear dualities, we
have found the couplings of one NSNS and two NS states
in the DBI part to be (10) and (12) and the couplings of one
RR and two NS states in the CS part to be (11) and (13). On
the other hand, the D-brane effective action at order α02
should be invariant under supersymmetry and κ symmetry.
It would be interesting to verify the above couplings to be
consistent with the supersymmetry and κ symmetry.
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