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ABSTRACT
We present an iterative method based on the Hermitian and skew-
Hermitian splitting (HSS) for solving the continuous Sylvester equation. By
using the HSS of the coefficient matrices A and B, we establish a method
which is practically inner/outer iterations, by employing a conjugate gra-
dient on the normal equations (CGNR)-like method as inner iteration to
approximate each outer iterate, while each outer iteration is induced by a
convergent splitting of the coefficientmatrices. Via thismethod, a Sylvester
equationwith coefficientmatrices SA and SB (which are the skew-Hermitian
part of A and B, respectively) is solved iteratively by a CGNR-like method.
Convergence conditions of this method are studied and numerical exam-
ples show the efficiency of this method. In addition, we show that the
quasi-Hermitian splitting can induce accurate, robust and effective precon-
ditioned Krylov subspace methods.
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1. Introduction

The Sylvester equation is ubiquitous in many areas of applied mathematics and plays vital roles in a
number of applications such as control and system theory, model reduction and image processing,
see [9–11] and references therein. The continuous Sylvester equation is possibly the most broadly
employed linear matrix equation (see [2,8,9,11–13,18,20,22,23,26]), and is given as

AX + XB = C, (1)

where A ∈ R
n×n, B ∈ R

m×m and C ∈ R
n×m are defined matrices and X ∈ R

n×m is an unknown
matrix. In general, the dimensions ofA andBmay be orders ofmagnitude different, and this fact is key
in selecting the most appropriate numerical solution strategy. The continuous Sylvester equation (1)
has a unique solution if and only if A and −B have no common eigenvalues, which will be assumed
throughout this paper.

Standard methods for numerical solution of the Sylvester equation (1) are the Bartels-Stewart [7]
and the Hessenberg–Schur [15] methods, which consist of transforming coefficient matrices A and
B into triangular or Hessenberg form by an orthogonal similarity transformation and then solving
the resulting system directly by a back-substitution process. These methods are classified as direct
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2 M. KHORSAND ZAK AND F. TOUTOUNIAN

methods and are applicable and effective for general Sylvester equations of reasonably small size.
When the coefficient matrices A and B are large and sparse, iterative methods such as the alter-
nating direction implicit (ADI) method [8], the Krylov subspace based algorithms [13,18,19,26],
the Hermitian and skew-Hermitian splitting (HSS) method [2,3], and the inexact variant of HSS
(IHSS) iteration method [2,5] are often the methods of choice for efficiently and accurately solving
the Sylvester equation (1). In [22,23], authors presented matrix variants of nested splitting conjugate
gradient (NSCG) method which was first proposed in [1] for solving large sparse linear systems of
equations. Recently, a preconditioned version of theNSCGmethod for generalized Sylvester equation
is presented in [20].

In [23], the authors presented a class of NSCG method for the continuous Sylvester equation, in
which both coefficientmatrices are (non-Hermitian) positive semi-definite, and at least one of them is
positive definite. This method is practically inner/outer iterations, which employs the Sylvester con-
jugate gradient method as inner iteration to approximate each outer iterate, while each outer iteration
is induced by a convergent and Hermitian positive-definite splitting of the coefficient matrices. The
NSCGmethod is suitable for problems with strong Hermitian part and it is not effective for problems
with strong skew-Hermitian part [22,23].

In this paper, we present a new iterative method based on the HSS for solving the continuous
Sylvester equation by emphasizing the role of skew-Hermitian part of the coefficient matrices. Sim-
ilar to the NSCG method [23] by using the HSS of the coefficient matrices A and B, we establish a
method which is inner/outer iterations, by employing a conjugate gradient on the normal equations
(CGNR)-like method [32] as inner iteration to approximate each outer iterate, while each outer iter-
ation is induced by a convergent splitting of the coefficient matrices. Via this method, which can
abbreviate as NS-CGNR, a Sylvester equation with coefficient matrices SA and SB (which are the
skew-Hermitian part of A and B, respectively) is solved iteratively by a CGNR-like method [32].
Convergence conditions of this method are studied and numerical experiments show the efficiency of
this method. In addition, we show that the quasi-Hermitian splitting can induce accurate, robust and
effective preconditioned Krylov subspace methods such as the BiCGSTAB method and the GMRES
method.

The organization of this paper is as follows. Section 2 contains a brief preliminaries. Section 3
presents our own contribution, i.e., the NS-CGNRmethod for the continuous Sylvester equation and
its convergence properties. Section 4 is devoted to numerical experiments. Finally, we present our
conclusions in Section 5.

2. Preliminaries

In this section, we recall some necessary notations and useful results, which will be used in the
following section. In this paper, we use λ(M), ‖M‖2, ‖M‖F and In to denote the eigenvalue, the
spectral norm, the Frobenius norm of a matrix M ∈ R

n×n, and the identity matrix with dimen-
sion n, respectively. Note that ‖.‖2 is also used to represent the 2-norm of a vector. For nonsingular
matrix B, we denote by κ(B) = ‖B‖2‖B−1‖2 its spectral condition number, and for a symmet-
ric a positive-definite matrix B, we define the ‖ · ‖B norm of a vector x ∈ R

n as ‖x‖B =
√
xHBx.

Then the induced ‖ · ‖B norm of a matrix M ∈ R
n×n is define as ‖M‖B = ‖B1/2MB−1/2‖2. In

addition it holds that ‖Mx‖B ≤ ‖M‖B‖x‖B , ‖M‖B ≤ √
κ(B)‖M‖2 and ‖I‖B = 1, where I is the

identity matrix. For any matrices A = [aij] and B = [bij], A ⊗ B denotes the Kronecker product
defined as A ⊗ B = [aijB]. For the matrix X = (x1, x2, . . . , xm) ∈ R

n×m, vec(X) denotes the rvec
operator defined as vec(X) = (xT1 , x

T
2 , . . . , x

T
m)T. Moreover, for a matrix M ∈ R

n×n and the vector
vec(M) ∈ R

nm, we have ‖M‖F = ‖vec(M)‖2.
For matrix A ∈ R

n×n, A = B − C is called a splitting of the matrix A if B is nonsingular. This
splitting is a convergent splitting if ρ(B−1C) < 1; and a contractive splitting if ‖B−1C‖ < 1 for some
matrix norm.
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Now, consider the continuous Sylvester equation (1). It is mathematically equivalent to the linear
system of equations

Ax = c, (2)

where x = vec(X), c = vec(C) and the matrixA is of dimension nm × nm and is given by

A = Im ⊗ A + BT ⊗ In. (3)

Consider the HSSA = H + S , where

H = A + AH

2
, S = A − AH

2
, (4)

are the Hermitian and skew-Hermitian parts of matrix A, respectively, see [3,4]. Since the matrix S
may be singular, we introduce a shift (α > 0) and define quasi-Hermitian splitting

A = (H − αI) + (S + αI) = Hα + Sα . (5)

Then the system of linear equations (2) is equivalent to the fixed-point equation

Sαx = c − Hαx.

Now, with given an initial guess x(0) ∈ R
n, assume that we have computed approximations

x(1), x(2), . . . , x(l) to the solution x∗ ∈ R
n of the system (2). Therefore, the next approximation x(l+1)

may be defined as either an exact or an inexact solution of the system of linear equations

Sαx = c − Hαx(l). (6)

Now, we can solve the linear system of equations (6) by the CGNR method [27]. Similar to [1], we
can establish and prove the following theorem about the convergence properties of thismethodwhich
can named as NS-CGNR method.

Theorem 2.1: Let A ∈ R
nm×nm be a nonsingular and non-symmetric matrix, and A = Hα + Sα a

contractive (with respect to the ‖ · ‖ST
αSα

-norm). Suppose that the NS-CGNR method is started from
an initial guess x(0) ∈ R

nm, and produces an iterative sequence {x(l)}∞l=0, where x
(l) ∈ R

nm is the lth
approximation to the solution x∗ ∈ R

nm of the system of linear equations (2), obtained by solving the
linear system (6) with kl steps of CGNR iterations. Then

(a) ‖x(l) − x∗‖ST
αSα

≤ γ (l)‖x(l−1) − x∗‖ST
αSα

, l = 1, 2, 3, . . . ,
(b) ‖c − Ax(l)‖ST

αSα
≤ γ̃ (l)‖c − Ax(l−1)‖ST

αSα
, l = 1, 2, 3, . . . ,

where

γ (l) = 2
(

κ(Sα) − 1
κ(Sα) + 1

)kl
(1 + �) + �, γ̃ (l) = γ (l)κ(Sα)

1 + �

1 − �
, l = 1, 2, 3, . . .

and � = ‖S−1
α Hα‖ST

αSα
= ‖HαS−1

α ‖2.
Moreover, for some γ ∈ (�, �1) with �1 = min{1, 2 + 3�}, and

kl ≥ ln((γ − �)/(2(1 + �)))

ln((κ(Sα) − 1)/(κ(Sα) + 1))
, l = 1, 2, 3, . . . ,

we have γ (l) ≤ γ (l = 1, 2, 3, . . .), and the sequence {x(l)}∞l=0 converges to the solution x∗ of the system
of linear equations (2). For � ∈ (0, r), in which r is the positive root of quadratic equation κ(Sα)�2 +
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4 M. KHORSAND ZAK AND F. TOUTOUNIAN

(κ(Sα) + 1)� − 1 = 0, and some γ̃ ∈ ((1 + �)�κ(Sα)/(1 − �), 1), and

kl ≥ ln(((1 − �)γ̃ − �(1 + �)κ(Sα))/(2(1 + �)2κ(Sα)))

ln((κ(Sα) − 1)/(κ(Sα) + 1))
, l = 1, 2, 3, . . . ,

we have γ̃ (l) ≤ γ̃ (l = 1, 2, 3, . . .), and the residual sequence {c − Ax(l)}∞l=0 converges to zero.

Proof: See Appendix. �

From the work of Golub and Vandrestraeten [16], If

λmin(H)λmax(H) > min
λ∈�(S)

|λ(S)|, (7)

then there exists an α for which ρ(S−1
α Hα) < 1. Moreover, using

α = λmin(H) + λmax(H)

2
, (8)

can cause to decrease the upper bound of ρ(S−1
α Hα), see [16].

3. The NS-CGNRmethod for the Sylvester equation

In this section, we establish the NS-CGNRmethod for solving the Sylvester equation (1).We suppose
that both coefficient matrices in Equation (1) are (non-Hermitian) positive semi-definite, and at least
one of them is positive definite. Consider the quasi-HSSA = Hα + Sα . From Equations (3) and (4),
by using the Kronecker product’s properties [17,25], we have

Hα = Im ⊗ HA(α) + HBT(α) ⊗ In, (9)

Sα = Im ⊗ SA(α) + SBT(α) ⊗ In, (10)

where HA(α) = HA − αIn, SA(α) = SA + αIn,HBT(α) = HBT − αIm, SBT(α) = SBT + αIm and HA,
SA,HBT , SBT are the Hermitian and skew-Hermitian parts of A and BT, respectively. By using the
relations (9) and (10), we obtain the following linear system of equations:

(Im ⊗ SA(α) + SBT(α) ⊗ In)x = c − (Im ⊗ HA(α) + HBT(α) ⊗ In)x(l), (11)

which can be arranged equivalently as

SA(α)X + XSB(α) = C − HA(α)X(l) − X(l)HB(α). (12)

The eigenvalues of a skew-Hermitian matrix are pure imaginary. So, we have Re(λ(SA(α))) = α and
Re(λ(−SB(α))) = −α. Due to this, we can easily see that there is no common eigenvalue between
the matrices SA(α) and−SB(α), so the Sylvester equation (12) has unique solution for all given right-
hand side matrices. For obtaining X(l+1), we can solve the matrix equation (12) iteratively by the
Sylvester version of the CGNR method. Now, based on the above observations, we can establish the
following algorithm for the NS-CGNR method for solving the continuous Sylvester equation (1).

3.1. Implementation of the NS-CGNRmethod

An implementation of the NS-CGNR method is given by the following algorithm. In the following
algorithm, kmax and jmax are the largest admissible number of the outer and the inner iteration steps,
respectively. X(0) is an initial guess for the solution, and the outer and the inner stopping tolerances
are denoted by ε and η, respectively.
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INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 5

Algorithm 3.1 The NS-CGNR algorithm for the continuous Sylvester equation

1. X(0,0) = X(0)

2. R(0) = C − AX(0) − X(0)B
3. For k = 0, 1, 2, . . . , kmax Do:
4. Ĉ = C − HA(α)X(k,0) − X(k,0)HB(α)

5. R̂(0) = Ĉ − SA(α)X(k,0) − X(k,0)SB(α)

6. Z(0) = STA(α)R̂(0) + R̂(0)STB(α), and P(0) = Z(0)

7. For j = 0, 1, 2, . . . , jmax Do:
8. W(j) = SA(α)P(j) + P(j)SB(α)

9. αj = ‖Z(j)‖2F
‖W(j)‖2F

10. X(k,j+1) = X(k,j) + αjP(j)

11. R̂(j+1) = R̂(j) − αjW(j)

12. If ‖R̂(j+1)‖F ≤ η‖R̂(0)‖F GoTo 17
13. Z(j+1) = STA(α)R̂(j+1) + R̂(j+1)STB(α)

14. βj = ‖Z(j+1)‖2F
‖Z(j)‖2F

15. P(j+1) = Z(j+1) + βjP(j)

16. End Do
17. X(k+1) = X(k,j)

18. R(k+1) = C − AX(k+1) − X(k+1)B
19. If ‖R(k+1)‖F ≤ ε‖R(0)‖F Stop
20. X(k+1,0) = X(k+1)

21. End Do

3.2. Convergence analysis

In the sequel, we need the following lemmas.

Lemma 3.2 ([21]): Let A ∈ R
n×n be a symmetric positive-definite matrix. Then for all x ∈ R

n, we
have ‖A1/2x‖2 = ‖x‖A and√

λmin(A)‖x‖A ≤ ‖Ax‖2 ≤
√

λmax(A)‖x‖A.

Lemma 3.3 ([25]): Suppose that A,B ∈ R
n×n be two Hermitian matrices, and denote the minimum

and the maximum eigenvalues of a matrixM with λmin(M) and λmax(M), respectively. Then

λmax(A + B) ≤ λmax(A) + λmax(B),

λmin(A + B) ≥ λmin(A) + λmin(B).

Lemma 3.4: For matrix Sα = Im ⊗ SA(α) + SBT(α) ⊗ In, we have

‖Sα‖2 ≤ max |λ(SA(α))| + max |λ(SB(α))|.

Proof: For skew-Hermitian matrix SA, we have

‖SA(α)‖22 = λmax(SA(α)HSA(α))

= λmax((SA + αI)H(SA + αI))

= λmax(SHASA + α2I)

= |λmax(SA + αI)|2.
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6 M. KHORSAND ZAK AND F. TOUTOUNIAN

Therefore, ‖SA(α)‖2 = |λmax(SA + αI)| and ‖SB(α)‖2 = |λmax(SB + αI)|. Moreover, we have

‖S(α)‖2 = ‖Im ⊗ SA(α) + STB(α) ⊗ In‖2
≤ ‖Im ⊗ SA(α)‖2 + ‖STB(α) ⊗ In‖2
= ‖SA(α)‖2 + ‖STB(α)‖2.

Therefore, ‖Sα‖2 ≤ max |λ(SA(α))| + max |λ(SB(α))|. �

Lemma 3.5 ([25]): Let A,B ∈ R
n×n, and λ and μ be the eigenvalues of A and B, and x and y be

the corresponding eigenvectors, respectively. Then λμ is an eigenvalue of A ⊗ B corresponding to the
eigenvector x ⊗ y.

For the linear system of Equations (2) when the coefficient matrix is non-Hermitian positive
definite,Wang andBai [29] presented sufficient conditions for the convergent splittings. Also, the con-
vergence conditions for splitting iteration methods for non-Hermitian coefficient matrix are studied
in [30]. Some similar results were presented in [22,23] in the case of matrix equations. In the follow-
ing lemma, we state and prove a result for splitting (5) in the case of matrix equations for the Sylvester
equation (1).

Lemma 3.6: Suppose thatHα and Sα are as in Equations (9) and (10), respectively. If

λmax(HA(α)) + λmax(HB(α))

min |λ(SA(α))| + min |λ(SB(α))| <
1
θ4

,

where θ = (max |λ(SA(α))| + max |λ(SB(α))|)/(min |λ(SA(α))| + min |λ(SB(α))|), thenA = Hα +
Sα is a contractive splitting (with respect to the ‖ · ‖ST

αSα
-norm), i.e., ‖S−1

α Hα‖ST
αSα

< 1.

Proof: From Equations (9) and (10), by Lemmas 3.2–3.4, we have

‖Hα‖2 = λmax(Hα) ≤ λmax(HA(α)) + λmax(HB(α)),

and

‖Sα‖2 ≤ max |λ(SA(α))| + max |λ(SB(α))|,
where �(Sα) is the set of all eigenvalues of Sα . Therefore, it follows that

‖S−1
α Hα‖ST

αSα
≤
√

κ(ST
αSα)‖S−1

α Hα‖2

=
√

κ(ST
αSα)‖(ST

αSα)−1ST
αHα‖2

≤
√

κ(ST
αSα)‖(ST

αSα)−1‖2‖ST
α ‖2‖Hα‖2.

Therefore, we have

‖S−1
α Hα‖ST

αSα
≤ (κ(ST

αSα))3/2
‖ST

α ‖2‖Hα‖2
‖ST

αSα‖2 . (13)

Again, the use of Lemmas 3.2 and 3.4 implies that

κ(ST
αSα) = λmax(ST

αSα)

λmin(ST
αSα)

= maxλ∈�(Sα) |λ(Sα)|2
minλ∈�(Sα) |λ(Sα)|2

≤
(
max |λ(SA(α))| + max |λ(SB(α))|
min |λ(SA(α))| + min |λ(SB(α))|

)2
.

D
ow

nl
oa

de
d 

by
 [

M
oh

am
m

ad
 K

ho
rs

an
d 

Z
ak

] 
at

 0
7:

56
 2

4 
Ja

nu
ar

y 
20

16
 



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 7

So, we can write √
κ(ST

αSα) ≤ max |λ(SA(α))| + max |λ(SB(α))|
min |λ(SA(α))| + min |λ(SB(α))| = θ . (14)

Moreover, we have

‖ST
αSα‖2 = max

λ∈�(Sα)
|λ(Sα)|2

≥ min
λ∈�(Sα)

|λ(Sα)|2

≥ (min |λ(SA(α))| + min |λ(SB(α))|)2.

(15)

Therefore,

‖S−1
α Hα‖ST

αSα
≤
(
max |λ(SA(α))| + max |λ(SB(α))|
min |λ(SA(α))| + min |λ(SB(α))|

)4
λmax(HA(α)) + λmax(HB(α))

min |λ(SA(α))| + min |λ(SB(α))|

= θ4
λmax(HA(α)) + λmax(HB(α))

min |λ(SA(α))| + min |λ(SB(α))| .
(16)

This clearly proves the lemma. �

Let

η = θ4
λmax(HA(α)) + λmax(HB(α))

min |λ(SA(α))| + min |λ(SB(α))| ,

and � = ‖S−1
α Hα‖ST

αSα
. When η < 1, from the proof of Lemma 3.5 (relation (16)), we have � ≤ η <

1. Therefore,A = Hα + Sα is a contractive (in the ‖ · ‖STS norm). In this case, Lemma 3.1 and part
(a) of Theorem 2.1 imply that

1√
λmax(ST

αSα)
‖ST

αSα(x(l) − x∗)‖2 ≤ ‖x(l) − x∗‖ST
αSα

≤ γ (l)‖x(l−1) − x∗‖ST
αSα

≤ γ (l)√
λmin(ST

αSα)
‖ST

αSα(x(l−1) − x∗)‖2,

where

γ (l) = 2
(

κ(Sα) − 1
κ(Sα) + 1

)kl
(1 + �) + �.

So, part (a) in Theorem 2.1 can be written as

‖ST
αSα(x(l) − x∗)‖2 ≤ γ (l)

√
λmax(ST

αSα)√
λmin(ST

αSα)
‖ST

αSα(x(l−1) − x∗)‖2. (17)

Furthermore, from Equation (14)

γ (l) ≤ 2
(

θ − 1
θ + 1

)kl
(1 + η) + η.

Now, by using

ST
αSα = Im ⊗ STA(α)SA(α) + SBT(α) ⊗ STA(α) + STBT(α) ⊗ SA(α) + STBT(α)SBT(α) ⊗ In,
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8 M. KHORSAND ZAK AND F. TOUTOUNIAN

and notation

Ê(l) = STA(α)SA(α)E(l) + STA(α)E(l)STBT(α) + SA(α)E(l)SBT(α) + E(l)STBT(α)SBT(α), (18)

where E(l) = X(l) − X∗, the relation (17) can be arranged equivalently as

‖Ê(l)‖F ≤ ω(l)‖Ê(l−1)‖F , (19)

where

ω(l) =
(
2
(

θ − 1
θ + 1

)kl
(1 + η) + η

)
θ .

It is obvious that, for η ∈ (0, 1/θ) and ω ∈ (ηθ , 1), we will have ω(l) ≤ ω if

kl ≥ ln((ω − ηθ)/2θ(1 + η))

ln((θ − 1)/(θ + 1))
, l = 1, 2, 3, . . . ,

Under this restriction, from Equation (19), we have

‖Ê(l)‖F ≤ ω(l)‖Ê(l−1)‖F
≤ �l

k=0ω
(k)‖Ê(0)‖F

≤ ωl+1‖Ê(0)‖F .

Therefore, the sequence {X(l)}∞l=0 converges to the solution X∗ of the system of linear equations (1).
Similarly, by using part (b) of Theorem 2.1, for residual r(l) = c − Ax(l), we obtain

‖ST
αSαr(l)‖2 ≤ γ̃ (l)

√
λmax(ST

αSα)√
λmin(ST

αSα)
‖ST

αSαr(l−1)‖2, (20)

where γ̃ (l) = γ (l)κ(Sα)(1 + �)/(1 − �), and

γ̃ (l) ≤ θ

(
2
(

θ − 1
θ + 1

)kl
(1 + η) + η

)
1 + η

1 − η
.

Now, by using notation

R̂(l) = STA(α)SA(α)R(l) + STA(α)R(l)STBT(α) + SA(α)R(l)SBT(α) + R(l)STBT(α)SBT(α), (21)

where R(l) = C − AX(l) − X(l)B, the relation (20) can also be arranged equivalently as

‖R̂(l)‖F ≤ ω̃(l)‖R̂(l−1)‖F , (22)

where

ω̃(l) = θω(l) 1 + η

1 − η
.

As we observe, for η ∈ (0, (
√

(θ2 + 1)2 + 4θ2 − (θ2 + 1))/2θ2) we have 0 < (1 + η)ηθ2/(1 − η) <

1. So, for ω̃ ∈ ((1 + η)ηθ2/(1 − η), 1), we have ω̃(l) ≤ ω̃ if

kl ≥ ln((ω̃(1 − η) − ηθ2(1 + η))/2θ2(1 + η)2)

ln((θ − 1)/(θ + 1))
, l = 1, 2, 3, . . . ,
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Under this restriction, from Equation (22), we have

‖R̂(l)‖F ≤ ω̃(l)‖R̂(l−1)‖F
≤ �l

k=0ω̃
(k)‖R̂(0)‖F

≤ ω̃l+1‖R̂(0)‖F .

Therefore, the residual sequence {R(l)}∞l=0 converges to zero matrix.
The above analysis is summarized in the following theorem.

Theorem 3.7: Consider the Sylvester equation (1). Let HA(α) = HA − αIn, SA(α) = SA + αIn,
HB(α) = HB − αIm, SB(α) = SB + αIm and HA, SA, HB, SB are the Hermitian and skew-Hermitian
parts of coefficient matrices A and B, respectively. Suppose that η < 1, and the NS-CGNR method
is started from an initial guess X(0) ∈ R

n×m, and produces an iterative sequence {X(l)}∞l=0, where
X(l) ∈ R

n×m is the lth approximation to the solution X∗ ∈ R
n×m of the Sylvester equations (1), by solv-

ing the Sylvester equation (12) with kl steps of the Sylvester CGNR iterations. If Ê(l) and R̂(l) are as in
(18) and (21), respectively, then

(a) ‖Ê(l)‖F ≤ ω(l)‖Ê(l−1)‖F , l = 1, 2, 3, . . . ,
(b) ‖R̂(l)‖F ≤ ω̃(l)‖R̂(l−1)‖F , l = 1, 2, 3, . . . ,

where

ω(l) =
(
2
(

θ − 1
θ + 1

)kl
(1 + η) + η

)
θ , ω̃(l) = θω(l) 1 + η

1 − η
, l = 1, 2, 3, . . . ,

θ = max |λ(SA(α))| + max |λ(SB(α))|
min |λ(SA(α))| + min |λ(SB(α))| and η = θ4

λmax(HA(α)) + λmax(HB(α))

min |λ(SA(α))| + min |λ(SB(α))| .

Moreover, if η ∈ (0, 1/θ) then for some ω ∈ (ηθ , 1), and

kl ≥ ln((ω − ηθ)/(2θ(1 + η)))

ln((θ − 1)/(θ + 1))
, l = 1, 2, 3, . . . ,

we haveω(l) ≤ ω(l = 1, 2, 3, . . .), and the sequence {X(l)}∞l=0 converges to the solutionX
∗ of the Sylvester

equation (1). For η ∈ (0, (
√

(θ2 + 1)2 + 4θ2 − (θ2 + 1))/2θ2) and some ω̃ ∈ ((1 + η)ηθ2/(1 −
η), 1), and

kl ≥ ln((ω̃(1 − η) − θ2η(1 + η))/(2θ2(1 + η)2))

ln((θ − 1)/(θ + 1))
, l = 1, 2, 3, . . . ,

we have ω̃(l) ≤ ω̃(l = 1, 2, 3, . . .), and the residual sequence {R(l)}∞l=0 converges to zero matrix.

3.3. Using the quasi-Hermitian splitting as a preconditioner

From the fact that any matrix splitting can naturally induce a splitting preconditioner for the Krylov
subspace methods (see [6]), in Section 4, by numerical computation, we show that the quasi-
Hermitian splitting (5) can be used as a splitting preconditioner and induce accurate, robust and
effective preconditioned Krylov subspace iteration methods for solving the continuous Sylvester
equation.
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10 M. KHORSAND ZAK AND F. TOUTOUNIAN

4. Numerical experiments

All numerical experiments presented in this section were computed in double precision with a num-
ber of MATLAB codes. All iterations are started from the zero matrix for initial X(0) and terminated
when the current iterate satisfies ‖R(k)‖F ≤ 10−8‖R(0)‖F , where R(k) = C − AX(k) − X(k)B is the
residual of the kth iterate. In all problems, the right-hand sidematrixC is chosen such that the solution
of the Sylvester equation be a matrix with all entries equal to one. Also, we use the tolerance η = 0.01
for inner iterations in the NS-CGNR method. Inspired by the work of Golub and Vandrestraeten
[16], we choose the parameter α similar to Equation (8). For each experiment we report the number
of outer iterations denoted by ‘out-itr’, the number of total iterations denoted by ‘tot-itr’ and the aver-
age number of inner iterations denoted by ‘av-initr’. The CPU time of each method is reported, too.
Notation ‘†’ in tables shows that the corresponding method is divergent. We compare the NS-CGNR
method with some iterative methods. The iterative methods which used in this section are presented
in Table 1.

Example 4.1: Consider the matrices

A = B = M + 2rN + 100
(n + 1)2

I,

whereM = tridiag(−1, 2,−1),N = tridiag(0.5, 0,−0.5) and n = 128 [2]. When the preconditioned
Krylov subspace iteration methods are used to solve the systems of linear equations resulting from
the finite difference or the Sinc-Galerkin discretization of various differential equations and boundary
value problems, this class of problems may arise [2].

We apply the methods to this problem for two values r = 0.01 and r = 1, and the results are given
in Tables 2 and 3, respectively.

The case r = 0.01, is a problem of strongHermitian part [24,31], but in the NS-CGNRmethod the
skew-Hermitian part is emphasized. Therefore, we anticipate theNS-CGNRmethod has no efficiency
or is divergent for this problem. The results in Table 2 have confirmed this idea. In this case the NSCG
method is more effective versus the other methods.

The case r = 1, is a problem of strong skew-Hermitian part [24,31]. For this problem the NSCG
method is divergent. Because, in the NSCG method the Hermitian part of coefficient matrices is

Table 1. Description of the used iterative methods.

Method Description

NS-CGNR Newmethod described in Section 3
NSCG Nested splitting conjugate gradient method described in [23]
HSS Hermitian and skew-Hermitian splitting method described in [2]
IHSS Inexact HSS method described in [2]
BiCGSTAB BiCGSTAB method for the Sylvester equation, see [14,32]
PreBiCGSTAB BiCGSTAB preconditioned by NS-CGNR
GMRES GMRES(m) method for the Sylvester equation withm = 10, see [19,26]
FGMRES FGMRES(m) preconditioned by NS-CGNR withm = 10

Table 2. Results for Example 4.1 with r = 0.01.

Method CPU time out-itr tot-itr av-initr

NS-CGNR 63.898 9430 9430 1
NSCG 1.045 7 452 64.57
HSS 54.910 192 5415 28.20
IHSS 14.570 209 1244 5.95
BiCGSTAB 3.447 146 – –
GMRES 4.196 52 520 10
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Table 3. Results for Example 4.1 with r = 1.

Method CPU time out-itr tot-itr av-initr

NS-CGNR 4.492 724 909 1.25
NSCG † † † †

HSS 721.832 172 43186 251.08
IHSS 173.043 179 10127 56.57
BiCGSTAB 11.494 501 – –
PreBiCGSTAB 5.803 225 – –
GMRES 3.104 39 390 10
FGMRES 4.041 29 290 10

emphasized [22,23]. Respect to the results presented in Table 3, we can observe that the NS-CGNR
method ismore effective than the othermethods except theGMRESmethod.Moreover, the use of the
quasi-Hermitian splitting as a preconditioner can improve the efficiency of the BiCGSTAB method,
and reduce the number of iterations in the GMRES method. Figure 1 represents the effect of using
the quasi-Hermitian splitting as a preconditioner in this problem.

Example 4.2: Consider symmetric matrix Hn = n2pentadiag(−1,−1, 4,−1,−1) ∈ R
n×n. Suppose

that the skew-symmetric matrix Sn ∈ R
n×n is a block diagonal matrix where every block is given by

Sii = 2n × tridiag(−1, 0, 1) for i = 1, 2, . . . , n.

Now, let A = Hn + 105Sn and B = Hm − 103Sm with n = 512 andm = 8.

The results of this problem are given in Table 4.

0 100 200 300 400 500 600
−10

−5

0

5

10

15

20

iterations

lo
g 10

||R
(k

) || F

 BiCGSTAB

 PreBiCGSTAB

 FGMRES

 GMRES

Figure 1. Effect of using the quasi-Hermitian splitting as a preconditioner in problem 4.1 with r = 1.
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Figure 2. Effect of using the quasi-Hermitian splitting as a preconditioner in problem 4.2.

Table 4. Results for Example 4.2.

Method CPU time out-itr tot-itr av-initr

NS-CGNR 1.965 59 4067 68.93
NSCG † † † †

HSS † † † †

IHSS † † † †

BiCGSTAB † † † †

PreBiCGSTAB 52.743 1196 – –
GMRES 2.558 346 3458 9.99
FGMRES 4.231 10 100 10

For this test problem, Table 4 shows that the NSCG, the HSS, the IHSS and the BiCGSTAB methods
were diverging. According to the results presented in the Table 4, we can assert that the NS-CGNR
is the most effective method among the considered methods. Especially, predominance is obvious in
term of CPU time.Moreover, the use of the quasi-Hermitian splitting as a preconditioner can improve
the efficiency of the BiCGSTABmethod, and reduce the number of iterations in the GMRESmethod.
We can observe desirableness and efficiency of using the quasi-HSS as a preconditioner splitting for
the BiCGSTAB and the GMRES methods for this problem in Figure 3.

Example 4.3: Consider the matrices

A = B = Hn + 106Sn,

where Hn and Sn are as in Example 4.2 and n = 256.
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Figure 3. Effect of using the quasi-Hermitian splitting as a preconditioner in problem 4.3.

Table 5. Results for Example 4.3.

Method CPU time out-itr tot-itr av-initr

NS-CGNR 1468.343 1219 121664 99.80
NSCG † † † †

HSS † † † †

IHSS † † † †

BiCGSTAB † † † †

PreBiCGSTAB † † † †

GMRES † † † †

FGMRES 756.745 42 392 9.33

For this problem we have ‖H‖2 = 29.7446 and ‖S‖2 = 1.4745e + 07, i.e., ‖S‖2 >> ‖H‖2. There-
fore, this is a problem with strong skew-Hermitian part [22,23] and is a more challenging problem.
The results of this problem are given in Table 5.

For this test problem, Table 5 shows that all methods, except the NS-CGNRmethod, were diverg-
ing. According to the results presented in the Table 5, we can assert that the use of the quasi-Hermitian
splitting as a preconditioner cannot improve the efficiency of the BiCGSTABmethod, but improve the
efficiency of the GMRESmethod.We can observe desirableness and efficiency of using the quasi-HSS
as a preconditioner splitting for the GMRES method for this problem in Figure 3.

5. Conclusion

In this paper, we have proposed an efficient iterative method for solving the continuous Sylvester
equation AX + XB = C, by emphasizing the role of skew-Hermitian part of the coefficient matrices.
This method which named NS-CGNRmethod, is suitable for problems with strong skew-Hermitian
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14 M. KHORSAND ZAK AND F. TOUTOUNIAN

part. The NS-CGNR employs a CGNR-like method as inner iteration to approximate each outer iter-
ate, while each outer iteration is induced by a convergent splitting of the coefficient matrices. Via this
method, a Sylvester equation with coefficient matrices SA and SB (which are the skew-Hermitian part
of A and B, respectively) is solved iteratively by a CGNR-like method.

Wehave compared theNS-CGNRmethodwith some iterativemethods such as theNSCGmethod,
the HSS and the IHSS method, the BiCGSTAB method, and the GMRES method for some prob-
lems. We have observed that, for the problems with strong skew-Hermitian part, the NS-CGNR is
superior the other iterative methods. However, we observe that the NS-CGNR method is not suit-
able for problems with the strong Hermitian part. In addition, numerical computations showed that
the quasi-Hermitian splitting can induce the accurate, robust and effective preconditioned Krylov
subspace method.
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Appendix
To prove Theorem 2.1, we need the following lemmas.

Lemma A.1 ([28]): If F is an n × n matrix with ‖F‖ < 1, then (I + F)−1 exists and satisfies

‖(I + F)−1‖ ≤ 1
1 − ‖F‖ .

Lemma A.2 ([27]): Let A ∈ R
n×n be a symmetric positive definite matrix, and assume that the system of linear equa-

tions (2) is solved by the conjugate gradient method. If x(0) ∈ R
n is the starting vector, x(k) ∈ R

n the kth iterate, and
x∗ ∈ R

n the exact solution of the linear system of equations (2), then

‖x(k) − x∗‖A ≤ 2
(√

κ(A) − 1√
κ(A) + 1

)k

‖x(0) − x∗‖A.

Evidently, by making use of Lemma .2, we can obtain the following corollary:

Corollary A.3: LetA ∈ R
n×n, and assume that the system of linear equations (2) is solved by the CGNRmethod. If x(0) ∈

R
n is the starting vector, x(k) ∈ R

n the kth iterate, and x∗ ∈ R
n the exact solution of the system of linear equations (2),

then

‖x(k) − x∗‖ATA ≤ 2
(

κ(A) − 1
κ(A) + 1

)k
‖x(0) − x∗‖ATA.

Now, we can prove the Theorem 2.1 as follows:

Proof of Theorem 2.1: Let x(∗,l) be the exact solution of the system of linear equations (6). Then it satisfies

x(∗,l) = S−1
α c − S−1

α Hαx(l−1).

On the other hand, since x∗ is the exact solution of the system of linear equations (2), it obeys

x∗ = S−1
α c − S−1

α Hαx∗.
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16 M. KHORSAND ZAK AND F. TOUTOUNIAN

Let μ(Sα) = (κ(Sα) − 1)/(κ(Sα) + 1). Then according to Corollary .3, we have

‖x(l) − x(∗,l)‖ST
αSα

≤ 2μ(Sα)kl‖x(l−1) − x(∗,l)‖ST
αSα

= 2μ(Sα)kl‖x(l−1) − (S−1
α c − S−1

α Hαx(l−1))‖ST
αSα

= 2μ(Sα)kl‖(I + S−1
α Hα)x(l−1) − (I + S−1

α Hα)x∗‖ST
αSα

= 2μ(Sα)kl‖(I + S−1
α Hα)(x(l−1) − x∗)‖ST

αSα

≤ 2μ(Sα)kl (1 + ‖S−1
α Hα‖ST

αSα
)‖x(l−1) − x∗‖ST

αSα

= 2μ(Sα)kl (1 + �)‖x(l−1) − x∗‖ST
αSα

.

Furthermore, we can obtain

‖x(l) − x∗‖ST
αSα

= ‖(x(l) − x(∗,l)) − (x(∗,l) − x∗)‖ST
αSα

≤ ‖x(l) − x(∗,l)‖ST
αSα

+ ‖x(∗,l) − x∗‖ST
αSα

≤ 2μ(Sα)kl (1 + �)‖x(l−1) − x∗‖ST
αSα

+ ‖S−1
α Hα(x(l−1) − x∗)‖ST

αSα

≤ 2μ(Sα)kl (1 + �)‖x(l−1) − x∗‖ST
αSα

+ �‖x(l−1) − x∗‖ST
αSα

= (2μ(Sα)kl (1 + �) + �)‖x(l−1) − x∗‖ST
αSα

= γ (l)‖x(l−1) − x∗‖ST
αSα

.

This proves the validity of (a). We now turn to the proof of (b). Since

‖c − Ax(l)‖ST
αSα

= ‖A(x(l) − x∗)‖ST
αSα

≤ ‖A‖ST
αSα

‖x(l) − x∗‖ST
αSα

,

making use of (a) we have

‖c − Ax(l)‖ST
αSα

≤ γ (l)‖A‖ST
αSα

‖x(l−1) − x∗‖ST
αSα

≤ γ (l)‖A‖ST
αSα

‖A−1(c − Ax(l−1))‖ST
αSα

≤ γ (l)‖A‖ST
αSα

‖A−1‖ST
αSα

‖c − Ax(l−1)‖ST
αSα

.

We easily obtain

‖A‖ST
αSα

= ‖Hα + Sα‖ST
αSα

= ‖Sα(S−1
α Hα + I)‖ST

αSα

≤ ‖Sα‖ST
αSα

(1 + ‖S−1
α Hα‖ST

αSα
),

and since ‖S−1
α Hα‖ST

αSα
< 1, by Lemma .1, we can obtain

‖A−1‖ST
αSα

= ‖(Hα + Sα)−1‖ST
αSα

= ‖(S−1
α Hα + I)−1S−1

α ‖ST
αSα

≤ ‖S−1
α ‖ST

αSα
‖(S−1

α Hα + I)−1‖ST
αSα

≤ ‖S−1
α ‖ST

αSα

1 − ‖S−1
α Hα‖ST

αSα

.

On the other hand, we have ‖Sα‖ST
αSα

= ‖Sα‖2 and ‖S−1
α ‖ST

αSα
= ‖S−1

α ‖2. Therefore, we have:

‖A‖ST
αSα

≤ ‖Sα‖2(1 + ‖S−1
α Hα‖ST

αSα
) and ‖A−1‖ST

αSα
≤ ‖S−1

α ‖2
1 − ‖S−1

α Hα‖ST
αSα

.
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Therefore, it follows that

‖c − Ax(l)‖ST
αSα

≤ γ (l) ‖Sα‖2(1 + ‖S−1
α Hα‖ST

αSα
)‖S−1

α ‖2
1 − ‖S−1

α Hα‖ST
αSα

‖c − Ax(l−1)‖ST
αSα

= γ (l)κ(Sα)
1 + ‖S−1

α Hα‖ST
αSα

1 − ‖S−1
α Hα‖ST

αSα

‖c − Ax(l−1)‖ST
αSα

= γ̃ (l)‖c − Ax(l−1)‖ST
αSα

This shows the validity of (b).
It is obvious that, for γ ∈ (�, �1) with �1 = min{1, 2 + 3�}, γ (l) ≤ γ (l = 1, 2, . . .) holds under condition

kl ≥ ln((γ − �)/2(1 + �))

ln((κ(Sα) − 1)/(κ(Sα) + 1))
, l = 1, 2, . . . ,

and the estimates

‖x(l) − x∗‖ST
αSα

≤ γ (l)‖x(l−1) − x∗‖ST
αSα

≤ �l
k=0γ

(k)‖x(0) − x∗‖ST
αSα

≤ γ l+1‖x(0) − x∗‖ST
αSα

→ 0, l → ∞,

hold in accordance with (a). Therefore, the sequence {x(l)}∞l=0 converges to the solution x∗ of the system of linear
equations (2).

In addition, for � ∈ (0, r), where r is the positive root of quadratic equation κ(Sα)�2 + (κ(Sα) + 1)� − 1 = 0 and
0 < r < 1, we have 0 < (1 + �)�κ(Sα)/(1 − �) < 1. So, for

γ̃ ∈
(

(1 + �)�

(1 − �)
κ(Sα), 1

)
,

γ̃ (l) ≤ γ̃ (l = 1, 2, 3, . . .) holds under condition

kl ≥ ln(((1 − �)γ̃ − �(1 + �)κ(Sα))/2(1 + �)2κ(Sα))

ln((κ(Sα) − 1)/(κ(Sα) + 1))
, l = 1, 2, 3, . . . ,

and the estimates

‖c − Ax(l)‖ST
αSα

≤ γ̃ (l)‖c − Ax(l−1)‖ST
αSα

≤ �l
k=0γ̃

(k)‖c − Ax(0)‖ST
αSα

≤ γ̃ l+1‖c − Ax(0)‖ST
αSα

→ 0, l → ∞,

hold in accordance with (b). �
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