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shear stresses corresponding to all the cases increase with 
the increase of Reynolds number and transpiration rate 
function. An interesting result is obtained in which a cyl-
inder moving with certain axial velocity function and at 
particular value of Reynolds number is axially stress free. 
The heat transfer coefficient increases with the increasing 
transpiration rate function, Reynolds number and Prandtl 
number. Interesting means of cooling and heating processes 
of cylinder surface are obtained using different rates of 
transpiration rate function. It is shown that a cylinder with 
certain type of exponential wall temperature exposed to a 
temperature difference has not heat transfer.

Keywords Unaxisymmetric stagnation flow · Axial 
movement · Non-uniform transpiration

List of symbols
a  Cylinder radius
r  Radial coordinate
z  Axial coordinate
u,w  Velocity components along (r, z)-axis
t  Time
T   Temperature
TW  Wall temperature
T∞  Free-stream temperature
k  Thermal conductivity
k̄  Free-stream strain rate
f (η, ϕ, τ)  Function related to u-component of velocity
H(η, ϕ, τ)  Function related to w-component of velocity
V(t)  Axial velocity of cylinder
U0(ϕ)  Transpiration
Re  Reynolds number
Pr  Prandtl number
Nu  Nusselt number
S(ϕ)  Transpiration rate function

Abstract The unsteady viscous flow and heat transfer in 
the vicinity of an unaxisymmetric stagnation-point flow 
of an infinite moving cylinder with time-dependent axial 
velocity and non-uniform normal transpiration U0(ϕ) are 
investigated. The impinging free stream is steady with a 
strain rate k̄. A reduction of the Navier–Stokes and energy 
equations is obtained by use of appropriate similarity trans-
formations. The semi-similar solution of the Navier–Stokes 
equations and energy equation has been obtained numeri-
cally using an implicit finite-difference scheme when the 
axial velocity of the cylinder and its wall temperature or 
its wall heat flux varies as specified time-dependent func-
tions. In particular, the cylinder may move with different 
velocity patterns. These solutions are presented for special 
cases when the time-dependent axial velocity of the cylin-
der is a step function, a ramp, and a non-linear function. All 
the solutions above are presented for Reynolds numbers, 
Re = k̄a

2/2υ, ranging from 0.1 to 100 for different values 
of Prandtl number and for selected values of transpiration 
rate function, S(ϕ) = U0(ϕ)/k̄a where a is cylinder radius 
and υ is kinematic viscosity of the fluid. Dimensionless 
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P  Non-dimensional fluid pressure
p  Fluid pressure
h  Heat transfer coefficient
qw  Heat flux at wall

Greek symbols
η  Similarity variable
ϕ  Angular coordinate
α  Thermal diffusivity
ρ  Fluid density
υ  Kinematic viscosity
µ  Dynamic viscosity
θ(η,ϕ, τ)  Non-dimensional temperature
σ  Shear stress
τ  Dimensionless time variable

1 Introduction

There are many solutions of the Navier–Stockes and energy 
Equations regarding the problem of stagnation-point flow 
and heat transfer in the vicinity of a flat plate or a cylin-
der. These studies started by Hiemenz [1], who obtained 
an exact solution of the Navier–Stokes equations govern-
ing the two-dimensional stagnation-point flow on a flat 
plate, and were continued by Homann [2] with an analo-
gous axisymmetric study and by Howarth [3] and Davey 
[4], whose results for stagnation flow against a flat plate 
for asymmetric cases were presented. Wang [5, 6] was the 
first to find an exact solution for the problem of axisym-
metric stagnation-point flow on an infinite stationary circu-
lar cylinder; this was continued by Gorla’s [7–11] works, 
which are a series of steady and unsteady flows and heat 
transfer over a circular cylinder in the vicinity of the stag-
nation-point for the cases of constant axial movement and 
the special case of axial harmonic motion of a non-rotating 
cylinder. Cunning et al. [12] have considered the stagna-
tion-point flow problem on a rotating circular cylinder with 
constant angular velocity; Grosch and Salwen [13] as well 
as Takhar et al. [14] studied special cases of unsteady vis-
cous flow on an infinite circular cylinder. The most recent 
works of the same types are the ones by Saleh and Rahimi 
[15] and Rahimi and Saleh [16, 17], which are exact solu-
tion studies of a stagnation-point flow and heat transfer on 
a circular cylinder with time-dependent axial and rotational 
movements, as well as studies by Abbasi and Rahimi [18–
21], which are exact solutions of stagnation-point flow and 
heat transfer but on a flat plate. Some existing compress-
ible flow studies but in the stagnation-point region of bod-
ies and using boundary layer equations include the study by 
Subhashini and Nath [22] as well as Kumari and Nath[23, 
24], which are in the stagnation region of a body, and work 
of Katz [25] as well as Afzal and Ahmad [26], Libby [27], 

and Gersten et al. [28], which are all general studies in the 
stagnation region of a body.

The effects of cylinder movement with time-dependent 
axial velocity and non-uniform normal transpiration in gen-
eral, especially with different types of harmonic oscilla-
tion, which are of interest in certain special manufacturing 
processes, textile technology, Printing Industry, water show 
technology, cooling and centrifugal processes in industry, 
calcinations of cement and accelerating phases of rocket 
motors, have not yet been considered. Our motivation is 
originally to produce friction-less situations in fluids and 
insulated surfaces in heat transfer by means of certain types 
of movements and temperature difference. Since the decay 
of viscosity in a fluid and diffusion of heat in a medium is 
naturally exponential, selection of the corresponding func-
tion in this study serves appropriate examples. Besides, our 
study generalizes the problem of stagnation-point flow and 
heat transfer of a fluid on a moving cylinder.

All the studies mentioned above are regarding the 
axisymmetric flow and heat transfer and none has consid-
ered the effect of flow being unaxisymmetric. In the pre-
sent analysis, the problem of unsteady viscous flow and 
heat transfer in the vicinity of an unaxisymmetric stagna-
tion-point flow of an infinite cylinder with time-dependent 
axial movement and non-uniform normal transpiration is 
considered for the first time. A reduction of the Navier–
Stokes and energy equations is obtained by use of appro-
priate similarity transformations. The semi-similar solution 
of these equations is obtained numerically using an implicit 
finite-difference scheme when the axial velocity of the cyl-
inder and its wall temperature or its wall heat flux varies 
as specified time-dependent functions. In particular, the 
cylinder may move with different velocity patterns. These 
solutions are presented for special cases when the time-
dependent axial velocity of the cylinder is a step function, 
a ramp, and a non-linear function All the solutions above 
are presented for Reynolds numbers, Re = k̄a2/2υ, rang-
ing from 0.1 to 100 for different values of Prandtl num-
ber and for selected values of transpiration rate function, 
S(ϕ) = U0(ϕ)/k̄a where a is cylinder radius and υ is kin-
ematic viscosity of the fluid. Dimensionless shear stresses 
corresponding to all the cases increase with the increase of 
Reynolds number and transpiration rate function. An inter-
esting result is obtained in which a cylinder moving with 
certain axial velocity function and at particular value of 
Reynolds number is axially stress free. The heat transfer 
coefficient increases with the increasing transpiration rate 
function, Reynolds number and Prandtl number. Interest-
ing means of cooling and heating processes of cylinder 
surface are obtained using different rates of transpiration. 
It is shown that a cylinder with certain type of exponential 
wall temperature exposed to a temperature difference has 
not heat transfer.
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2  Problem formulation

Flow is considered in cylindrical coordinates (r, ϕ, z) with 
corresponding velocity components (u, v, w); see Fig. 1. An 
external axisymmetric radial stagnation-point flow of strain 
rate k̄ impinges on the cylinder of radius a, centered at r = 0

. Because of existence of a selected transpiration function 
shown below, a laminar unsteady incompressible flow and heat 
transfer of a viscous fluid in the neighborhood of an unaxisym-
metric stagnation-point of an infinite circular cylinder when it 
moves axially with a velocity that varies with time forms.

The unsteady Navier–Stokes and energy equations in 
cylindrical polar coordinates governing the unaxisymmetric 
incompressible flow and heat transfer are as follows:

Mass:

r-Momentum:

z-Momentum:

Energy:

(1)
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∂r
+
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+
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where p, ρ, υ and T  are the fluid pressure, density, kine-
matic viscosity, and temperature inside the boundary layer 
and after the impingement has occurred, respectively. The 
boundary conditions for the velocity field are:

And the two boundary conditions with respect to ϕ are:

In which Eq. (5) represents no-slip conditions on the 
cylinder wall, and the relations of Eq. (6) show that the vis-
cous flow solution approaches, in a manner analogous to 
the Hiemenz flow, the potential flow solution as r → ∞. 
This can be confirmed by starting from continuity equation 
as the following:

− 1
r

∂
∂r
(ru) = ∂w

∂z
= Constant and = 2k̄z integrating in 

r and z directions with boundary conditions: w = 0 when 
z = 0 and u = −U0(ϕ) when r = a

For the temperature field, we have

And the two boundary conditions with respect to ϕ are

where k is the thermal conductivity of the fluid and Tw(t) 
and qw(t) are temperature and heat flux at the wall cylinder, 

(5)r = a : u = −U0(ϕ) w = a · V(t)

(6)r → ∞:
∂u

∂r
= −k̄, w = 2k̄z

(7)

u(r, 0, t) = u(r, 2π , t)

∂u(r, 0, t)

∂ϕ
=

∂u(r, 2π , t)

∂ϕ

r = a : (i) T = Tw(t) for defined wall temperature

(ii)
∂T

∂r
= −

qw(t)

k
for defined wall heat flux

(8)r → ∞: T → T∞

(9)

T(r, 0, τ) = T(r, 2π , τ)

∂T(r, 0, τ)

∂ϕ
=

∂T(r, 2π , τ)

∂ϕ

Fig. 1  Schematic diagram of an 
axially moving cylinder under 
radial stagnation flow
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respectively, and T∞ is the free stream temperature. A 
reduction of the Navier–Stokes equations is obtained by 
applying the following transformations:

where τ = 2k̄t and η =
(

r
a

)2 is dimensionless time and 
radial variable and prime denotes differentiation with 
respect to η. Transformations (10) satisfy Eq. (1) automati-
cally and their insertion into Eq. (2) and (3) yields a cou-
pled system of differential equations in terms of f (η, ϕ, τ) 
and H(η, ϕ, τ) and an expression for the pressure:

(10)
u = −

k̄a
√
η
f (η, ϕ, τ),

w = 2k̄f
′(η, ϕ, τ)z + H(η, ϕ, τ)

η =
( r

a

)2
, τ = 2k̄t, p = ρk̄2a2P

(11)

P − P0 = −
1

2

(

f
2

η

)

−
(

f
′

Re

)

−
1

4Re

∫ η

1

1

η2

∂2f

∂ϕ2
dη − 2

(

z

a

)2

In these equations, Re = k̄a2/2υ is the Reynolds num-
ber and prime indicates differentiation with respect to η. 
From conditions (5), (6) and (7), the boundary conditions 
for Equations (12) and (13) are as follows:

(12)

ηf ′′′ + f ′′ +
1

4η

∂2f ′

∂ϕ2
+ Re

[

1+ ff ′′ − (f ′)2 −
∂f ′

∂τ

]

= 0

(13)ηH ′′ + H ′ +
1

4η

∂2H

∂ϕ2
+ Re

[

fH ′ − f ′H −
∂H

∂τ

]

= 0

(14)
η = 1 : f (1, ϕ, τ) = S(ϕ), f

′(1, ϕ, τ) = 0,

H(1, ϕ, τ) = V(τ )

(15)η → ∞: f ′(∞, ϕ, τ) = 1, H(∞, ϕ, τ) = 0

Fig. 2  a Sample profiles of H(η, ϕ, τ) distributions on the cylinder 
for various mesh sizes at Re = 1.0, S(ϕ) = Cos(ϕ) and axial velocity 
functions V(τ ) = τ 2. b Sample of grid system

Fig. 3  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ in terms of a η, b ϕ at Re = 10, S(ϕ) = Cos(ϕ) and for 
selected values of time steps
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In which, S(ϕ) = U0(ϕ)/k̄a is the transpiration rate func-
tion. Note that Equations (11), (12) and (13) are the com-
plete form of Equations (9) and (12), (13) in Ref. [15]. These 
equations are the same if transpiration rate is constant.

For the sake of brevity, only results for selected values 
of S(ϕ) = Cos(ϕ), S(ϕ) = Ln(ϕ) are shown in this paper.

To transform the energy equation into a non-dimensional 
form for the case of defined wall temperature, we introduce

Making use of Equations (10) and (17), the energy equation, 
with neglecting the small dissipation terms, may be written as:

(16)

f (η, 0, τ) = f (η, 2π , τ),
∂f (η, 0, τ)

∂ϕ
=

∂f (η, 2π , τ)

∂ϕ

(17)θ(η, ϕ, τ) =
T(η, ϕ, τ)− T∞
TW(τ )− T∞

With boundary conditions as:

For the case of defined wall heat flux, we introduce

Now making use of Equations (10) and (21), the energy 
equation may be written as:

(18)

ηθ ′′ + θ ′ +
1

4η

∂2θ

∂ϕ2
+ Re · Pr

(

f θ ′ −
∂θ

∂τ
−

∂Tw
∂τ

Tw − T∞
θ

)

= 0

(19)
η = 1 : θ(1,ϕ, τ) = 1

η → ∞ : θ(∞,ϕ, τ) = 0

(20)
θ(r, 0, τ) = θ(r, 2π , τ),

∂θ(r, 0, τ)

∂ϕ
=

∂θ(r, 2π , τ)

∂ϕ

(21)θ(η, ϕ, τ) =
T(η, ϕ, τ)− T∞

aqw(τ )/2k

Fig. 4  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ 2 in terms of a η, b ϕ at Re = 10, S(ϕ) = Cos(ϕ) and for 
selected values of time steps

Fig. 5  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ

1

2 in terms of a η, b ϕ at Re = 1.0, S(ϕ) = Cos(ϕ) and for 
selected values of time steps
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With boundary conditions as:

Note that Equations (18) and (22) are the complete form 
of equations (20) in Ref. [15]. These equations are the same 
if transpiration rate is constant.

Equations (12), (13), (18) and (22), along with bound-
ary conditions (14), (15), (16), (19), (20), (23) and (24), 

(22)
ηθ ′′ + θ ′ +

1

4η

∂2θ

∂ϕ2
+ Re · Pr

(

f θ ′ −
∂θ

∂τ
−

∂qw
∂τ

qw
θ

)

= 0

(23)
η = 1 : θ ′(1,ϕ, τ) = −1

η → ∞: θ(∞,ϕ, τ) = 0

(24)
θ(r, 0, τ) = θ(r, 2π , τ),

∂θ(r, 0, τ)

∂ϕ
=

∂θ(r, 2π , τ)

∂ϕ

have been solved numerically by an implicit, iterative tri-
diagonal finite difference method similar to that discussed 
by Blottner [29]. To assess the grid independence of the 
numerical scheme, the distributions of the H(η, ϕ, τ) 
function against η on the cylinder were initially tested with 
different (η, ϕ) mesh sizes of 51× 18, 92× 32, 166× 58,  
299× 104 and 538× 187 in Fig. 2a. In this set of mesh 
sizes, as can be seen, the coefficient of 1.8 was used in each 
test to increase the number of mesh grids in both direc-
tions of η and ϕ. It was found that the variations of the 
H(η, ϕ, τ) function distributions on the cylinder were not 
significant, between (η, ϕ) and mesh sizes of (166× 58), 
(299× 104) and (538× 187). Hence, a (299× 104) grid in 
η − ϕ directions was applied for the computational domain 
in the cylinder. Fine, non-uniform grid spacing is used in 
the η-direction to capture the rapid changes, such as grid 

Fig. 6  Sample profiles of H(η, ϕ, τ) for step-function axial velocity 
in terms of a η, b ϕ at τ = 0.1, S(ϕ) = Cos(ϕ) and for selected values 
of Reynolds numbers

Fig. 7  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ 2 in terms of a η, b ϕ at Re = 1.0 and for selected values of 
transpiration rate function
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lines, being closer packed near the walls. On the other 
hand, a uniform mesh was implemented in the ϕ-direction. 
Figure 2b illustrates a sample of computational meshes 
used in this investigation.

3  Shear stress

The shear stress at the cylinder surface is calculated from:

where µ is the fluid viscosity. Using definition (10), the 
shear stress at the cylinder surface for semi-similar solu-
tions becomes:

(25)σ = µ

[

∂w

∂r

]

r=a

(26)
σ = µ

2

a

[

2k̄zf ′′(1, ϕ, τ)+ H ′(1, ϕ, τ)
]

Results for σa
/

2µ against ϕ for different values of Reyn-
olds numbers and transpiration rate function in z = 0 are 
presented later.

4  Heat transfer coefficient

The local heat transfer coefficient and rate of heat transfer 
for defined wall temperature case are given by:

where

In terms of Nusselt number:

And for defined wall heat flux case

where

In terms of Nusselt number:

5  Presentation of results

In this section, solution of semi-similar Equations (12), 
(13), (18) and (22) along with surface shear stresses for dif-
ferent function of axial velocity prescribed values of sur-
face temperature or surface heat flux and selected values of 
Reynolds and Prandtl numbers and transpiration rate func-
tion are presented. For the sake of brevity, only results for 
selected values of S(ϕ) = Cos(ϕ), S(ϕ) = Ln(ϕ) are shown 
in this paper.

a) S(ϕ) = Cos(ϕ)

Figures 3, 4 and 5 present the semi-similar solution for 
different forms of time-dependent axial velocity in which 
the function H(η,ϕ, τ) is shown in terms of η and ϕ for 
different non-dimensional time values and Reynolds num-
bers for transpiration rate function S(ϕ) = Cos(ϕ). The 
solution of ramp function with time steps at Re = 10 and 

(27)h =
qw

Tw − T∞
=

−k
(

∂T
∂r

)

r=a

Tw − T∞
= −

2k

a

∂θ(1, ϕ, τ)

∂η

(28)qw = −
2k

a

∂θ(1, ϕ, τ)

∂η
(Tw − T∞)

(29)Nu =
ha

2k
= −θ ′(1, ϕ, τ)

(30)h =
qw

Tw − T∞
=

−k
(

∂T
∂r

)

r=a

Tw − T∞
=

2k

a

1

θ(1, ϕ, τ)

(31)qw =
2k

a

1

θ(1, ϕ, τ)
(Tw − T∞)

(32)Nu =
ha

2k
=

1

θ(1, ϕ, τ)
Fig. 8  Sample profiles of σ ·a

2µ
 (shear stress) at S(ϕ) = Cos(ϕ) and for 

selected values of Reynolds numbers a for axial velocity functions 
V(τ ) = 1

1+τ
. b for step-function axial velocity
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S(ϕ) = Cos(ϕ) is shown in Fig. 3, the solution of nonlinear 
function, the axial velocity of the cylinder at τ 〈0 is equal to 
zero and at τ ≥ 0 its value becomes V(τ ) = τ 2 suddenly, 
with time steps at Re = 10 and S(ϕ) = Cos(ϕ) is shown in 
Fig. 4, the solution of nonlinear function, the axial velocity 
of the cylinder at τ 〈0 is equal to zero and at τ ≥ 0 its value 
becomes V(τ ) = τ

1
2 suddenly, with time steps at Re = 10 

and S(ϕ) = Cos(ϕ) is shown in Fig. 5. In all these forms 
which as time passes and along with increasing velocity, 
the thickness of the boundary layer increases.

Sample profiles of the H(η,ϕ, τ) function against η 
and ϕ for selected time-dependent axial velocity and for 
selected values of Reynolds numbers are presented in 
Fig. 6. As Reynolds number increases, the depth of dif-
fusion of the fluid velocity field in radial and angular 
direction increases. Effects of transpiration rate function 

on H(η,ϕ, τ) function against η and ϕ for selected time-
dependent axial velocity and for selected value of Reyn-
olds number Re = 1.0 are shown in Fig. 7. For S(ϕ) = 0,  
axisymmetric stagnation-point flow, the results of Saleh 
[15] are extracted. In this figure, negative S(ϕ) is blow-
ing rate and positive S(ϕ) is the suction rate. It is evi-
dent from this figure that, as transpiration rate function 
increases, the H(η,ϕ, τ) function increases and if S(ϕ) 
decreases, the H(η,ϕ, τ) function decreases. It is interest-
ing to note that, as S(ϕ) increases, the depth of diffusion 
of the fluid velocity field in radial and angular direction 
increases.

Sample profiles of surface shear stress against ϕ for 
Re = 1.0, Pr = 1.0 and S(ϕ) = Cos(ϕ) are shown in Fig. 8, 
for different axial velocity functions and for selected values 
of Reynolds numbers. The increase of Reynolds number 

Fig. 9  Sample profiles of θ(η, ϕ, τ) for wall temperature, varying 
exponentially with time in Re = 1.0, Pr = 1.0 and S(ϕ) = Cos(ϕ) in 
terms of a η, b ϕ

Fig. 10  Sample profiles of θ(η, ϕ, τ) for wall heat flux, varying 
exponentially with time in Re = 1.0, Pr = 1.0 and S(ϕ) = Cos(ϕ) in 
terms of a η, b ϕ
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increases the wall shear stress in ϕ direction and, on the 
other hand, causes that the value of fluid velocity in this 
direction approaches its value in inviscid flow, rapidly. In 
fact the increase of Reynolds number decreases the thick-
ness of the boundary layer.

Sample profiles of the θ(η,ϕ, τ) function for wall tem-
perature and wall heat flux, both varying exponentially 
with time at Re = 1.0, Pr = 1.0 and S(ϕ) = Cos(ϕ), are 
presented in Figs. 9 and 10, for selected values of γ. From 
Fig. 9, it is seen that for γ 〉0 the absolute value of the initial 
slope of the temperature increases with increasing values of 
γ, and considering Eq. (27), in fact the coefficient of heat 
transfer increases. Also, from Fig. 10, the temperature on 
the surface of the cylinder decreases with increasing values 
of γ, and considering Eq. (30), in fact the coefficient of heat 

Fig. 11  Sample profiles of Nu (Nusselt number) for Re = 1.0, 
Pr = 1.0 and S(ϕ) = Cos(ϕ). a for wall temperature, varying expo-
nentially with time. b for wall heat flux, varying exponentially with 
time S(ϕ) = Ln(ϕ)

Fig. 12  Schematic diagram of the transpiration function. S(ϕ) = Ln(ϕ)

Fig. 13  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ in terms of a η, b ϕ at Re = 10, S(ϕ) = Ln(ϕ) and for 
selected values of time steps
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transfer increases. Further, as transpiration rate function 
increases, the effect of variation of γ fades away. Therefore, 
it can be concluded that suction provides a means for cool-
ing the surface, and blowing provides a means for heating 
the surface of the cylinder. This is rather obvious since in 
former case there is more contact of free stream fluid with 
the cylinder and in the latter case relatively less contact 
of free stream fluid with cylinder takes place. Note that in 
Figs. 9 and 10 for γ 〈0 and any particular value of transpi-
ration rate function, as the absolute value of γ increases 
beyond certain value, the fluid in the vicinity of the cylin-
der is not cooled as fast as the cylinder wall and, therefore, 
the flow temperature here is greater than the wall tempera-
ture. It is interesting to note that at any transpiration rate 
function there is a certain value of negative γ for which the 
slope of the temperature on the surface becomes zero and, 

therefore, there is no heat transfer. This is to be expected 
since the natural diffusion of temperature difference in the 
fluid and the reduction of the temperature of the cylinder 
surface are happening in the same manner, then no heat is 
transferred between the fluid and the cylinder. From both 
these figures and for S(ϕ) = S = constant and θ = θ(η, τ), 
the results of Saleh and Rahimi [15] are obtained (Fig. 11).

Sample profiles of the Nusselt number (local heat trans-
fer coefficient) for wall temperature and wall heat flux, 
both varying exponentially with time at Re = 1.0, Pr = 1.0 
and S(ϕ) = Cos(ϕ), are shown in Fig. 10, for selected val-
ues of γ. Here, the Nusselt number increases with increases 
in γ (Fig. 12).

Figures 13, 14 and 15 present the semi-similar solu-
tion for different forms of time-dependent axial velocity 
in which the function H(η, ϕ, τ) is shown in terms of η 

Fig. 14  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ 2 in terms of a η, b ϕ at Re = 10, S(ϕ) = Ln(ϕ) and for 
selected values of time steps

Fig. 15  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ

1

2 in terms of a η, b ϕ at Re = 1.0, S(ϕ) = Ln(ϕ) and for 
selected values of time steps
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and ϕ for different non-dimensional time values and Reyn-
olds numbers for transpiration rate function S(ϕ) = Ln(ϕ).  
The solution of ramp function with time steps at Re = 10 
and S(ϕ) = Ln(ϕ) is shown in Fig. 13, the solution of non-
linear function, the axial velocity of the cylinder at τ 〈0 is 
equal to zero and at τ ≥ 0 its value becomes V(τ ) = τ 2 
suddenly, with time steps at Re = 10 and S(ϕ) = Ln(ϕ) is 
shown in Fig. 14, the solution of nonlinear function, the 
axial velocity of the cylinder at τ 〈0 is equal to zero and 
at τ ≥ 0 its value becomes V(τ ) = τ

1
2 suddenly, with time 

steps at Re = 10 and S(ϕ) = Ln(ϕ) is shown in Fig. 15. 
In all these forms which as time passes and along with 
increasing velocity, the thickness of the boundary layer inc
reases.

Sample profiles of the H(η,ϕ, τ) function against η 
and ϕ for selected time-dependent axial velocity and 

for selected values of Reynolds numbers are presented 
in Fig. 16. As Reynolds number increases, the depth of 
diffusion of the fluid velocity field in radial and angular 
direction increases. Effects of transpiration rate function 
on H(η,ϕ, τ) function against η and ϕ for selected time-
dependent axial velocity and for selected value of Reyn-
olds number Re = 1.0 are shown in Fig. 17. For S(ϕ) = 0

, axisymmetric stagnation-point flow, the results of Saleh 
[15] are extracted. In this figure negative, S(ϕ) is blow-
ing rate and positive S(ϕ) is the suction rate. It is evi-
dent from this figure that, as transpiration rate function 
increases, the H(η,ϕ, τ) function increases and if S(ϕ) 
decreases, the H(η,ϕ, τ) function decreases. It is interest-
ing to note that, as S(ϕ) increases, the depth of diffusion 
of the fluid velocity field in radial and angular direction 
increases.

Fig. 16  Sample profiles of H(η, ϕ, τ) for step-function axial veloc-
ity in terms of a η, b ϕ at τ = 0.1, S(ϕ) = Ln(ϕ) and for selected val-
ues of Reynolds numbers

Fig. 17  Sample profiles of H(η, ϕ, τ) for axial velocity functions 
V(τ ) = τ 2 in terms of a η, b ϕ at Re = 1.0, S(ϕ) = Ln(ϕ) and for 
selected values of transpiration rate function
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Sample profiles of surface shear stress against ϕ for 
Re = 1.0, Pr = 1.0 and S(ϕ) = Ln(ϕ) are shown in Fig. 18, 
for different axial velocity functions and for selected val-
ues of Reynolds numbers. The increase of Reynolds num-
ber increases the wall shear stress in ϕ direction and, on the 
other hand, causes that the value of fluid velocity in this 
direction approaches its value in inviscid flow, rapidly. In 
fact the increase of Reynolds number decreases the thick-
ness of the boundary layer.

Sample profiles of the θ(η, ϕ, τ) function for wall tem-
perature and wall heat flux, both varying exponentially 
with time at Re = 1.0, Pr = 1.0 and S(ϕ) = Ln(ϕ), are pre-
sented in Figs. 19 and 20, for selected values of γ. From 
Fig. 18, it is seen that for γ 〉0 the absolute value of the ini-
tial slope of the temperature increases with increasing val-
ues of γ, and considering Eq. (27), in fact the coefficient of 
heat transfer increases. Also, from Fig. 20, the temperature 

on the surface of the cylinder decreases with increasing 
values of γ, and considering Eq. (30), in fact the coeffi-
cient of heat transfer increases. Further, as transpiration 
rate function increases, the effect of variation of γ fades 
away. Therefore, it can be concluded that suction provides 
a means for cooling the surface, and blowing provides a 
means for heating the surface of the cylinder. This is rather 
obvious since in former case there is more contact of free 
stream fluid with the cylinder and in the latter case rela-
tively less contact of free stream fluid with cylinder takes 
place. Note that in Figs. 19 and 20 for γ 〈0 and any par-
ticular value of transpiration rate function, as the absolute 
value of γ increases beyond certain value, the fluid in the 
vicinity of the cylinder is not cooled as fast as the cylinder 
wall and, therefore, the flow temperature here is greater 
than the wall temperature. It is interesting to note that 

Fig. 18  Sample profiles of σ ·a
2µ

 (shear stress) at S(ϕ) = Ln(ϕ) and for 
selected values of Reynolds numbers a for axial velocity functions 
V(τ ) = 1

1+τ
 b for step-function axial velocity

Fig. 19  Sample profiles of θ(η, ϕ, τ) for wall temperature, varying 
exponentially with time in Re = 1.0, Pr = 1.0 and S(ϕ) = Ln(ϕ) in 
terms of a η, b ϕ
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at any transpiration rate function there is a certain value 
of negative γ for which the slope of the temperature on 
the surface becomes zero and, therefore, there is no heat 
transfer. This is to be expected since the natural diffusion 
of temperature difference in the fluid and the reduction 
of the temperature of the cylinder surface are happening 
in the same manner, then no heat is transferred between 
the fluid and the cylinder. From both these figures and for 
S(ϕ) = S = constant and θ = θ(η, τ), the results of Saleh 
and Rahimi [15] are obtained.

Sample profiles of the Nusselt number (local heat 
transfer coefficient) for wall temperature and wall heat 
flux, both varying exponentially with time at Re = 1.0,  
Pr = 1.0 and S(ϕ) = Ln(ϕ), are shown in Fig. 21, for 
selected values of γ. Here, the Nusselt number increases 
with increases in γ.

6  Conclusions

The unsteady viscous flow and heat transfer in the vicinity 
of an unaxisymmetric stagnation-point flow of an infinite 
moving cylinder with time-dependent axial velocity and 
non-uniform normal transpiration U0(ϕ) are investigated. 
A reduction of the Navier–Stokes and energy equations 
has been obtained by use of appropriate similarity trans-
formations. The semi-similar solution of the Navier–Stokes 
equations and energy equation has been obtained numeri-
cally using an implicit finite-difference scheme when the 
axial velocity of the cylinder and its wall temperature or 
its wall heat flux vary as specified time-dependent func-
tions. In particular, the cylinder may move with different 
velocity patterns. These solutions are presented for special 

Fig. 20  Sample profiles of θ(η, ϕ, τ) for wall heat flux, varying 
exponentially with time in Re = 1.0, Pr = 1.0 and S(ϕ) = Ln(ϕ) in 
terms of a η, b ϕ

Fig. 21  Sample profiles of Nu (Nusselt number) for Re = 1.0, 
Pr = 1.0 and S(ϕ) = Ln(ϕ). a For wall temperature, varying expo-
nentially with time. b For wall heat flux, varying exponentially with 
time
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cases when the time-dependent axial velocity of the cylin-
der is a step function, a ramp, and a non-linear function. 
All the solutions above have been presented for Reynolds 
numbers ranging from 0.01 to 100 for different values of 
Prandtl number and for selected values of transpiration rate 
function. For all transpiration rate functions with increase 
in Reynolds numbers, both components of the velocity field 
increase and for all transpiration rate function with increase 
in γ the temperature field decreases. Dimensionless shear 
stresses corresponding to all the cases increase with the 
increase of Reynolds number and transpiration rate func-
tion. The local coefficient of heat transfer (Nusselt number) 
increases with the increasing transpiration rate function 
and γ. Also increase of suction rate can be used as a means 
of cooling the surface and increase of blowing rate can 
be used as a means of heating the surface. For the case of 
axisymmetric stagnation-point flow, f = f (η), H = H(η),  
f ′ = f ′(η) and S(ϕ) = 0 or ∂2f /∂φ2 = 0, ∂2f ′/∂φ2 = 0,  
∂2H/∂φ2 = 0, ∂2θ/∂φ2 = 0 and similarity variables and 
component of velocity by Wang [5], as well as energy equa-
tion by Gorla [7] and Saleh and Rahimi [15] are reached.
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