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1 Introduction

The entanglement entropy of a sub-system in a quantum field theory, is a non-local quantity

which measures how this sub-system is correlated with its complement. A holographic

description of entanglement entropy first proposed in [1] and [2]. They argue that the

leading divergence of the entanglement entropy of a region A in a CFTd+1 is proportional

to the area of a d-dimensional minimal surface in AdSd+2 whose boundary is given by ∂A.

Generally one can find a series solution in terms of ℓ/ǫ for entanglement entropy, where ℓ is

the typical length of ∂A and ǫ is the UV cut-off. In odd dimension d, there is a logarithmic

divergence ln ℓ/ǫ, known as the universal term, which its coefficient is proportional to the

central charges of dual CFT.

Usually in computing the entanglement entropy in a quantum field theory one uses

the replica trick by introducing a conical singularity. In the context of AdS-CFT one may

use a similar trick by deforming the bulk metric so that the minimal surface contains a

conical singularity. One of the recent works to derive the holographic prescription of [1] is

the proposal of [3]. They show that in Einstein gravity the minimal surfaces can be found

from the bulk equations of motion when we demand no singularity.

To extend this prescription for higher derivative gravities several attempts have been

done. For example in [4] it has been shown that the method used in [3] only works when

the extrinsic curvature is small in Gauss-Bonnet gravity and results coincide with the

known Jacobson-Myers entropy [5], which has established already as a correct entanglement

entropy formula [6].
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The other approach presented in [7], proposes a regularization procedure which has

been developed to compute the integral curvature invariants on manifolds with squashed

cones. By using this method one finds a holographic formula for entanglement entropy

when the bulk gravity includes quadratic curvature terms. In special case of Gauss-Bonnet

gravity this approach again gives the correct Jacobson-Myers entropy result. For further

developments of this method to other theories of gravity see for example [9–18].

In this paper we have used the approach of [7] to find a formula for entanglement

entropy of the six derivative gravity theories. Using our results and the known formula

for the four derivative gravity theories we will be able to study the holographic entangle-

ment entropy of cylindrical and spherical surfaces which are living on the dual conformal

field theories. We also compute the leading and the universal terms corresponding to the

extremal surfaces with/without extrinsic curvature. We will find two different types of so-

lutions for these extremal surfaces, which exist in different regions of the parameter space

of each theory. These regions can be found by demanding of positivity of the leading order

terms in the entropy and reality condition of solutions. We will argue about how we can

choose which solution gives the correct result i.e. the minimal entanglement entropy.

Since we have used and developed the method of regularization procedure of Fursaev

et al. in [7] so let us review very briefly the main results of it:

1. Consider a geometry M and construct an orbifold Mn made by cutting M along a

co-dimension one hyper-surface in M, then glue n identical copies (replica method). The

new geometry Mn has a conical singularity located at r = 0 with the following metric

(according to the replica method we need to set a period of 2πn for angular coordinate τ)

ds2 = r2dτ2 + dr2 + γij(r, τ ;x)dx
idxj , (1.1)

where xi’s are the coordinates of the co-dimension two surface Σ and γij is its intrinsic met-

ric. This surface is chosen according to the entangling surface which we are interested to

study in the dual conformal field theory. It can have different topologies in different dimen-

sions. In this paper we have considered the cylinder and n-Sphere geometries embedded

inside the AdS space-time.

2. The geometry (1.1) includes the curvature singularity as well as the conical one. So

in [7] a regularized metric (M̃n) has been replaced by the above geometry as

ds2 = r2dτ2 +
r2 + b2n2

r2 + b2
dr2 + (a+ rnc1−n cos τ)2ds2Σ . (1.2)

3. Inserting the regularized geometry into the integral curvature invariants gives rise to

a result with an asymptotic series expansion in terms of parameter b when b → 0. Sending

n → 1 the result of each integral may contain a term which is proportional to b0(1 − n)

(i.e. independent of the regularization parameter). This limiting procedure in [7] suggests

that one may perform the following replacement

∫

M̃n

dτdrdd−2x
√
gR → n

∫

M
dτdrdd−2x

√
GR+4π(1−n)

∫

Σ
dd−2x

√
γ+O((1−n)2) . (1.3)

– 2 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
7

The left hand side describes the value of a curvature invariant term (here the Einstein-

Hilbert term or in general any action constructed out of curvature invariants) on a regular-

ized geometry M̃n, i.e. I[(M̃n)]. The regularized geometry is given in equation (1.2) with

periodicity τ ∼ τ+2πn. The right hand side contains two main terms. The first term I[M]

is equal to the same action as we begin with but computed on the non-regularized manifold

M with metric given by (1.1) and again τ ∼ τ + 2πn. The second term is a contribution

coming from the near region of the tip of the cone in the singular manifold M. This last

term in above equation is noting but the area of the co-dimension two surface times the

deficit angle of the cone. Now the holographic entanglement entropy can be computed

by SHEE = n∂n(I[(M̃n)] − I[M])n→1. This explains us why we need to expand I[(M̃n)]

up to O(n− 1). Explicitly starting from (1.3), the holographic entanglement entropy will

be proportional to the area of the co-dimension two surface which ends on the entangling

region as conjectured by Ryu and Takayanagi. The same computation has been done in [7]

for quadratic curvature terms
∫

M̃n

dτdrdd−2x
√
gR2 → n

∫

M
dτdrdd−2x

√
GR2 (1.4)

+8π(1− n)

∫

Σ
dd−2x

√
γR+ · · · ,

∫

M̃n

dτdrdd−2x
√
gR2

µν → n

∫

M
dτdrdd−2x

√
GR2

µν

+4π(1− n)

∫

Σ
dd−2x

√
γ

(

Rµνn
µ
i n

ν
i −

1

2
K2

i

)

+· · · ,
∫

M̃n

dτdrdd−2x
√
gR2

µναβ → n

∫

M
dτdrdd−2x

√
GR2

µναβ

+8π(1−n)

∫

Σ
dd−2x

√
γ(Rµναβn

µ
i n

ν
jn

α
i n

β
j −Ki

µνK
µν
i )+· · · ,

where nµ
i ’s are the unit mutually orthogonal normal vectors to Σ (i = 1, 2 for a co-dimension

two surface) and Ki
µν are components of extrinsic curvature tensor defined as

Ki
µν = hαµh

β
ν∇βn

i
α , hαµ = δαµ − ni

µn
α
i . (1.5)

4. To find the holographic entanglement entropy S(Σ) for a surface Σ in a quadratic

curvature bulk gravity

I[M] = −
∫

M
ddx

√
g

(

R

κ
+ 2Λ + aR2 + bR2

µν + cR2
µναβ

)

, (1.6)

we first compute the partition function. In semiclassical approximation the partition func-

tion is related to the action by − lnZ = I[M]. In replica method we need to compute the

value of I[M̃n] by prescription mentioned above and then use the following relation

SHEE(Σ) = (n∂n − 1)I[M̃n]n→1 . (1.7)

Here the conical singularity of M̃n is located on a minimal co-dimension two hypersurface

Σ̃ which ends on entangling surface Σ on the boundary. Finally one gets the following
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formula for entanglement entropy

SHEE(Σ)=4π

∫

Σ̃
dd−2x

√
γ

(

1

κ
+2aR+bRµνn

µ
i n

ν
i +2cRµναβn

µ
i n

ν
jn

α
i n

β
j −

b

2
K2

i −2cKi
µνK

µν
i

)

,

(1.8)

where the four first terms are nothing but the Wald’s entropy and the last two terms are

corrections due to existence of a non-vanishing extrinsic curvature of the minimal hyper-

surface.

The organization of the paper is as follows: in section 2 we review the holographic en-

tanglement entropy in new massive gravity and find the differential equation which gives the

minimal surface. We find two solutions for this equation with/without extrinsic curvature

and compute the related leading terms and universal terms. In section 3 we add extensions

to new massive gravity to study the behavior of the entanglement entropy in the presence

of the new curvature cubed terms. To compute the integrals of curvature invariants we use

the method reviewed above. In section 4 we revisit the general curvature square terms and

in section 5 we do an exercise with quasi-topological gravity in five dimensions. In each

section we discuss about the solutions in terms of their entanglement entropy in different

regions of the parameter space. In last section we summarize and discuss about the results.

2 New Massive Gravity (revisited)

In [9] by using the method of squashed cones, the entanglement entropy in New Massive

Gravity (NMG) [19] has been studied (see also [13]). They show that by using a bulk

metric constructed using the Fefferman-Graham expansion, there exist a minimal surface

and its corresponding entanglement entropy can be computed just by using the Wald’s

entropy. Here in this section we show that in addition to the known minimal surface, there

is another minimal surface with non-zero extrinsic curvature and we use the squashed cone

method to compute the entanglement entropy.

In three dimensions we consider a line as an entangling region, which lies on the

boundaries of AdS3 space-time located at z = 0. We Start from the AdS3 metric

ds2 = gµνdx
µdxν =

L̃2

z2
(

dt2 + dr2 + dz2
)

, (2.1)

where L̃ is the AdS3 radius. The Euclidean version of the NMG action is written as [20]

S = − 1

2ℓp

∫

d3x
√
g

[

R+
2

L2
+ 4λL2

(

RµνR
µν − 3

8
R2

)]

, (2.2)

where L = L̃
√
f∞ and f∞ satisfies 1−f∞+f2

∞λ = 0, using the fact that (2.1) is a solution

for the NMG equations of motion. To compute the entanglement entropy we use (1.8),

where for NMG it reduces to

SNMG
EE =

2π

ℓp

∫

dz
√
γ

[

1 + 4λL2

(

Rµνn
µ
i n

ν
i −

3

4
R− 1

2
K2

i

)]

. (2.3)

To find the geometry of the extremal surface we must take t = 0 and r = f(z), then extrem-

ize (2.3) to find a suitable value for f(z). The strategy we will use through our computations
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is finding the tangent vectors at first and then making orthogonal unit vectors. In three

dimension there is only one tangent vector which is given by eaz = ∂xa/∂z = (0, 1, f ′(z)).

Then we can build the induced metric of the minimal surface, γµν , and also its orthonormal

normal vectors niµ

ds2γ = γµνdx
µdxν =

L̃2
(

f ′(z)2 + 1
)

z2
dz2 ,

n1µ =

[

0,− L̃f ′(z)

z
√

f ′(z)2 + 1
,

L̃

z
√

f ′(z)2 + 1

]

, n2µ =

[

L̃

z
, 0, 0

]

. (2.4)

For each normal vector we have a corresponding extrinsic curvature. For example its zz

component is given by (the other non-zero components are proportional to this component

when using equation (1.5))

K1
zz =

L̃
(

f ′(z)3 − zf ′′(z) + f ′(z)
)

z2(f ′(z)2 + 1)
5
2

, K2
zz = 0 . (2.5)

The vanishing of K2
zz is a consequence of having a Killing vector in the time direction. This

is happening in all computations in this paper so we will drop the index i for simplicity

in the up-comping computations. By inserting the above results into (2.3), and after

extremizing we find the following non-linear differential equation

f∞λ
(

(10f ′′3 − 60f ′2f ′′3 + 40f ′′′f ′3f ′′ + 40f ′′′f ′f ′′ − 4f (4)f ′4 − 4f (4) − 8f (4)f ′2)z3 (2.6)

+ (30f ′3f ′′2 + 30f ′f ′′2 − 8f ′′′ − 8f ′′′f ′4 − 16f ′′′f ′2)z2 + (2− 4f ′6 − 6f ′4)f ′′z

− 2f ′7−6f ′5−6f ′3−2f ′)−
(

f ′6+3f ′4+3f ′2+1
)

f ′′z+f ′9+4f ′7+6f ′5+4f ′3+f ′=0 .

By a little investigation one can find two possible solutions for this differential equation

f1(z) =
√

z20 − z2 ; f2(z) =
√

z20 + 2z0qz − z2 ; q2 = 2λf∞ − 1 , (2.7)

where in both cases z0 = f(z = 0) is equal to half of the length of the entangling line

and the turning points are located at zt = z0 and zt = z0(q +
√

1 + q2) respectively (see

figure 1). Using the relation 1− f∞ + f2
∞λ = 0 we see that to have a real valued solution

we must restrict ourselves to either f∞ < 0 or f∞ ≥ 2. In special value of f∞ = 2 both

solutions coincide. The first solution has been found already in [9].

The main difference between these two solutions is in the value of their extrinsic cur-

vatures

K1
zz

∣

∣

∣

f1(z)
= 0 , K1

zz

∣

∣

∣

f2(z)
=

L̃q(z20 + 2z0qz − z2)

z2z20(q
2 + 1)

3
2

. (2.8)

Inserting the above results into (2.3) we can compute the entanglement entropy for both

cases

S
(1)
EE = SEE

∣

∣

∣

f1(z)
=

2π

ℓp

∫ z0

ǫ
dz

L̃z0
√

(z20 − z2)z2
(2λf∞ + 1)

=
2π

ℓp

L√
f∞

(2λf∞ + 1)

(

ln

(

z0
ǫ

)

+
1

4z20
z2
∣

∣

∣

z0

ǫ
+ · · ·

)

, (2.9)

– 5 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
7

f(z)

0

f(0) = z0
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Kzz = 0

Kzz 6= 0
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n
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in
g
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n
e

Figure 1. The dashed curve corresponds to f1(z) and the solid one is f2(z) with non-zero extrinsic

curvature.

S
(2)
EE = SEE

∣

∣

∣

f2(z)
=

2π

ℓp

∫ z0

ǫ
dz

2Lz0
√
2λ

z
√

z20 + 2qzz0 − z2

=
4π

ℓp
L
√
2λ

(

ln

(

z0
ǫ

)

− q

z0
z
∣

∣

∣

z0

ǫ
+ · · ·

)

. (2.10)

Since the extrinsic curvature vanishes for f1(z), its corresponding entanglement en-

tropy (2.3) will be equal to the Wald’s entropy. As we can see for both solutions we

have universal terms

S
(1)
EE =

c1
3
ln

(

z0
ǫ

)

,
c1
3

=
2π

ℓp

L√
f∞

(2λf∞ + 1) =
2πL

ℓp

3f∞ − 2

f
3
2∞

,

S
(2)
EE =

c2
3
ln

(

z0
ǫ

)

,
c2
3

=
4π

ℓp
L
√
2λ =

2πL

ℓp

√

8
f∞ − 1

f2
∞

, (2.11)

where c1 is the central charge of the dual CFT. For f∞ ≥ 2 we have a real-valued function

for f2(z) and both central charges are monotonically decreasing functions of f∞. In this

region we have 2πL
ℓp

3
√
2 ≥ c1 ≥ c2 > 0. Therefore the solution which minimizes the entropy

is f2(z). For 2 ≥ f∞ only the first solution exists as a minimal surface. In latter case

demanding a unitary CFT dual restricts us to 2 ≥ f∞ ≥ 3
2 , see figure 2.

3 Extended NMG

To study the properties of entanglement entropy in presence of higher curvature corrections,

in this section we consider the Extended NMG (ENMG), first introduced in [20]. This is a

theory which adds cubic curvature terms into the NMG and the action is given by

S = − 1

2ℓp

∫

d3x
√
g

[

R+
2

L2
+ 4λL2

(

R2 −
3

8
R2

)

+
17

12
µL4

(

R3 − 72

17
RR2 +

64

17
R3

)

]

,

(3.1)
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c2>0c1>0

Figure 2. The domain of validity (positive value of leading term in entropy) for different extremal

surfaces in NMG. The blue domain, 2 ≥ f∞ ≥ 3

2
, corresponds to f1(z) and the red one, f∞ ≥ 2, is

for f2(z).

where for simplicity in notation we have defined R2 = RµνR
µν and R3 = RµαR

αβRβ
µ.

Similar to NMG the AdS3 metric (2.1) is a solution of equations of motion for ENMG too.

For ENMG we have 1− f∞ + f2
∞λ+ f3

∞µ = 0.

To compute the corrections to the entanglement entropy we need to find the corrections

to the equation (2.3) by using the method of squashed cones. In the presence of the O(2)

symmetry i.e. when the extrinsic curvature vanishes, we have the following relations for

regularization of curvatures [8]

Rµναβ = Rµναβ + 2π(1− n)(nµ
i n

α
i n

ν
jn

β
j − nµ

i n
β
i n

ν
jn

α
j )δΣ ,

Rµν = Rµν + 2π(1− n)nµ
i n

ν
i δΣ ,

R = R+ 4π(1− n)δΣ , (3.2)

where R curvatures are computed in the regular points Mn/Σ and δΣ is the Dirac

delta function. By combining these formulas and using the fact that
∫

Mn/Σ
ddx · · · =

n
∫

M ddx · · · , we find

∫

M̃n

ddx
√
gR3 = n

∫

M
ddx

√
GR3 + 6π(1− n)

∫

Σ
dd−2x

√
γRµ

αRναn
µ
i n

ν
i +O

(

(n− 1)2
)

,

∫

M̃n

ddx
√
gR3 = n

∫

M
ddx

√
GR3 + 12π(1− n)

∫

Σ
dd−2x

√
γR2 +O

(

(n− 1)2
)

, (3.3)

∫

M̃n

ddx
√
gRR2 = n

∫

M
ddx

√
GRR2+4π(1−n)

∫

Σ
dd−2x

√
γ (R2+RRµνn

µ
i n

ν
i )+O

(

(n−1)2
)

,

In absence of O(2) symmetry, i.e. when the extrinsic curvature is not zero we need to

consider the contribution of extrinsic curvature to the above relations. To do this we use

the same steps as [7]. We suppose that the possible independent allowed terms, according

to the dimensional analysis, are those which are constructed either purely from extrinsic

curvature or a combination of bulk curvature and extrinsic curvature. These are

K4 , K2
2 , K2K

2 , KK3 , K4 ,

RµνK
µνK , Rν

µK
ρ
νK

µ
ρ , RK2 , RK2 , RµνρσK

µρKνσ , (3.4)

where R,Rµν and Rµναβ are defined on minimal co-dimension two hyper-surface Σ̃. For

simplicity in use we call the first row as K-terms and the second row RK-terms. In the case

of quadratic curvature terms, the cylindrical and spherical geometries in d = 4 were enough

– 7 –
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to compute the coefficients of K2 and K2. As noted in [7], going to the higher dimensions

or considering other geometries such as Sd−2 ×R do not change the coefficients.

But in the presence of cubic terms due to the enormous number of terms in (3.4) we

need to consider more geometries than before. To compute the contribution of each term

we consider cylindrical and spherical geometries inside the AdS space-time as our entan-

gling regions (indeed we used 5 different geometries). Now let’s start from the following

regularized metric

ds2M̃n
=

L̃2

z2

(

dz2 + r2dτ2 +
r2 + b2n2

r2 + b2
dr2 + (a+ rnc1−n cos τ)2ds2Σ

)

, (3.5)

where Σ is the entangling region (cylinder or n-sphere).

To compute the entanglement entropy we need to find a similar relation as (1.4) for

each term in the Lagrangian. For example we start from the following term
∫

M̃n

ddx
√
gRR2 = n

∫

M
ddx

√
GRR2 + 4π(1− n)

∫

Σ
dd−2x

√
γ (R2 +RRµνn

µ
i n

ν
i ) (3.6)

+

∫

Σ
dd−2x

√
γ
(

A1K
4 +A2K2K

2 +A3KK3 +A4K
2
2 +A5K4

)

+

∫

Σ
dd−2x

√
γ
(

B1RK2 +B2KKµνRµν +B3KµνRναKµ
α +B4RK2 +B5K

µαKνβRµανβ

)

,

where, as we discussed before the second integral on the right hand side of the first line

is the Wald contribution. To compute the unknown coefficients, A1, · · · , B5, we must

compute each value of integrals in both sides. Each integral can be written as a series,
∫

dz
∑

n cnz
n. Then we can make a set of algebraic equations by looking at the same

powers of z on both sides. You can see the final results of coefficients in table 1. There are

some general properties in this table:

1. The values of Wald’s entropies have different power expansion other than the value

of K-terms or RK-terms. So the value of Wald’s entropy does not appear in our

algebraic equations. Note that it has a non-zero value which equally appears on the

integrals of the left hand side.

2. The power expansion of K-terms differs from RK-terms too, but the integrals of the

left hand side have both power expansions. Therefore we have two distinct sets of

algebraic equations, one for Ai’s and one for Bi’s.

3. There are some simple relations between the values of integrals on the right hand

side at each dimension d due to the fact that for n-spheres the Ricci curvature is

proportional to the metric. For example in AdSd, K∼d−3 and R ∼ d(d−1) therefore

RK2 = dKKµνR
µν orRK2=dKµαRανKµ

ν andRK2−RK2=d(d−1)KµνKαβRµανβ .

4. With the same reason as mentioned above the value of KK3 and K2
2 are equal inde-

pendent of dimension for cylinder or n-spheres, so we consider just one of them. It

is important to remember that this may not be correct for more general entangling

regions other than the cylinder or spheres.
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Finally by solving the algebraic equations we find

∫

M̃n

ddx
√
gRR2 = n

∫

M
ddx

√
GRR2

+ 4π(1− n)

∫

Σ
dd−2x

√
γ

(

R2 +RRµνn
µ
i n

ν
i −

1

4
K4 +

1

4
K2K

2 − 1

2
RK2

)

, (3.7)

Performing the same computations for R3 and R3 terms in the Lagrangian (see appendix

A for a list of integrals) we find the final formula for entanglement entropy of ENMG as

SENMG
EE =

2π

ℓp

∫

Σ

√
γdz

[

1 + 4λL2

(

Rµνn
µ
i n

ν
i −

1

2
K2 − 3

4
R
)

+
1

2
µL4

(

3K4 − 3K2K
2

+6RK2 − 16KKµνRµν +
17

2
R2 − 12RRµνn

µ
i n

ν
i − 12R2 + 16RµαRν

αnµ
i n

ν
i

)]

. (3.8)

Now we can find the minimal surface similar to the NMG case. By extremizing, we will

find two solutions, one with zero and the other with a non-zero extrinsic curvature

f1(z) =
√

z20 − z2 ; f2(z) =
√

z20 + 2z0qz − z2 ; q2 =
1− 2λf∞ − 3µf2

∞
µf2

∞ − 1
. (3.9)

By knowing these solutions we can compute the universal terms in entanglement entropy

S
(1)
EE =

c1
3
ln

z0
ǫ
,

c1
3

=
2πL(µf2

∞ + 2λf∞ + 1)

ℓp
√
f∞

,

S
(2)
EE =

c2
3
ln

z0
ǫ
,

c2
3

=
4πL

ℓp

√

2(1− µf2
∞)(λ+ µf∞) . (3.10)

If we use the relation 1 − f∞ + f2
∞λ + f3

∞µ = 0 then we will observe that to have a real

function for f2(z) and for positive coupling λ, we must have 1
3 ≥ λ > 0 and 1+

√
1−3λ
λ ≥

f∞ ≥ 1−
√
1−3λ
λ . Note that in this interval, c2 is real valued if f∞ ≥ 1 which is satisfied

automatically. We also have c21 − c22 =
36π2L2

ℓ2pf
3
∞

(λf2
∞ − 2f∞ + 3)2 so in the region allowed by

reality condition, c1 ≥ c2 and f2(z) gives the minimal entropy. For λ > 1
3 the first solution

is the correct one where by demanding a unitary dual CFT we restrict to f∞ ≥
√
1+λ−1
λ .

The different domains of validity of the solutions has been shown in figure 3.

4 General curvature square terms

In previous section we considered a special known action of gravity and its extension in

three dimensional space-time and we used a line as our entangling surface. To generalize

the study of holographic entanglement entropy to higher dimensions and for more general

entangling surfaces such as cylindrical or spherical regions, in this section we consider the

general curvature square terms in five dimensions. We start from the following action and

use a similar notation as [9]

S = − 1

2ℓ3p

∫

d5x
√
g

(

R+
12

L2
+

λL2

2
(λ1R

2
µναβ + λ2R

2
µν + λ3R

2)

)

. (4.1)
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I

II

III

Figure 3. To have c1 > 0, the region I is forbidden for f1(z). This solution is valid in both regions

(II) and (III). The reality condition of c2 restricts f2(z) to the region (III). In the overlap region

III we always have c1 > c2.

Let’s first consider S3 as an entangling surface, then the non-regularized bulk metric will be

ds2 =
L̃2

z2

(

dτ2 + dz2 + dρ2 + ρ2(dθ2 + sin2 θdφ2)
)

, (4.2)

where L̃ = L/
√
f∞ and here we have 1− f∞ + 1

3λf
2
∞(λ1 + 2λ2 + 10λ3) = 0 as a constraint

on the parameters space. Doing the same steps as what we did for previous cases, one

finds a the differential equation which gives the extremal surface for S3 entangling surface.

Again there are two solutions without/with extrinsic curvature

f1(z) =
√

z20 − z2 ; f2(z) =
√

z20 + 2z0qz − z2 ; q2 =
4− (16λ1 + 22λ2 + 80λ3)λf∞
−4 + 5(4λ1 + 5λ2 + 16λ3)λf∞

.

(4.3)

Then the leading terms in the entanglement entropy will be

S
(1)
EE = 4a1

(

z20
ǫ2

− ln
z0

ǫ
+ · · ·

)

, a1 =
π2L3 (1− 2λf∞ (λ1 + 2λ2 + 10λ3))

ℓ3pf∞
3

2

, (4.4)

S
(2)
EE = 4a2

(

1

q2 + 1

z20
ǫ2

+
2q

q2 + 1

z0

ǫ
− ln

z0

ǫ
+ · · ·

)

, a2 =
π2L3λ

3

2 (4λ1 + 3λ2)
3

2

2ℓ3p
√

−4 + 5 (4λ1 + 5λ2 + 16λ3)λf∞
.

For cylindrical geometry with length H we consider

ds2 =
L̃2

z2

(

dτ2 + dz2 + dρ2 + ρ2dθ2 + du2
)

. (4.5)

The possible solutions are two series solutions as

f1(z) = z0 −
z2

4z0
+ · · · , f2(z) = z0 + qz − (1 + q2)

z2

4z0
+ · · · , (4.6)
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with the same value for q as in equation (4.3). Using the above solutions the leading terms

of entanglement entropy are

S
(1)
EE =

H

2z0

(

4a1
z20
ǫ2

− c1 ln
z0
ǫ
+ · · ·

)

, c1 =
π2L3

ℓ3pf
3
2∞

(1 + 2λf∞(λ1 − 2λ2 − 10λ3)) ,

S
(2)
EE = − H

2z0

π2L3λ
1
2

ℓ3pf∞

(

c′0
z20
ǫ2

+ c′1
z0
ǫ
+ c′2 ln

z0
ǫ
+ · · ·

)

,

c′0 = −2
√

4λ1 + 3λ2

√

−4 + 5(4λ1 + 5λ2 + 16λ3)λf∞ ,

c′1 = −2
√

4λ1 + 3λ2

√

4− (16λ1 + 22λ2 + 80λ3)λf∞ ,

c′2 =
8
(

(19λ2
1 + (31λ2 + 80λ3)λ1 +

141
16 λ2(λ2 +

160
47 λ3))λf∞ − 3

2λ2 − 4λ1

)

√
3λ2 + 4λ1

√

−4 + 5(4λ1 + 5λ2 + 16λ3)λf∞
. (4.7)

• The first solutions f1(z): as we see from the results in (4.4) and (4.7) the leading

terms of both entropies have the same coefficient a1 independent of the topology of

the entangling surfaces. Moreover the coefficients of the logarithmic terms (a1 and

c1) exactly coincide with the known results of central charges of the dual CFTs. In

this case and in the three parameter family of the solutions which specify by λ1,2,3, we

need to have a positive value for a1, which restrict us to 1 ≥ 2λf∞(λ1+2λ2+10λ3).

• The second solutions f2(z): in order to have a real solution in this case we must

demand a real value for q which means that q2 > 0 in equation (4.3). Moreover, to

have a positive value for leading term of entropy, for spherical region we need to have

a real and positive value of a2. In cylindrical case c′0 must be real and negative.

4.1 Gauss-Bonnet gravity

To compare the domain of validity of our two different solutions, it will be easier to choose

a specific point in the three parameter family of the solutions. The Gauss-Bonnet gravity

is one of the interesting cases (note that it is topological in four dimensions).

So let’s restrict ourselves to λ1 = 1, λ2 = −4 and λ3 = 1. The constraint explained in

the previous section then simplifies to λ = f∞−1
f2
∞

. For non-zero extrinsic curvature solution

and for spherical entangling region, q =
√

f∞−2
f∞

. Two central charges in (4.4) simplify to

a1 =
π2L3

ℓ3pf
5
2∞

(6− 5f∞) , a2 =
4
√
2π2L3(f∞ − 1)

3
2

ℓ3pf∞
3 . (4.8)

The only consistent solution for f2(z) happens when q is real-valued. This restricts us to

f∞ ≥ 2. In this region the leading term of S
(2)
EE is positive but for S

(1)
EE it is negative. The

only acceptable solution for f1(z) is in the region where 6
5 ≥ f∞ ≥ 0.

In cylindrical geometry from (4.7) and relation 1− f∞ + λf2
∞ = 0 we have

a1 =
π2L3

ℓ3pf
5
2∞

(6− 5f∞) , c1 =
π2L3

ℓ3p

2− f∞

f
5
2∞

, q2 =
f∞ − 2

f∞
, (4.9)

c′0 =
−8

√
2π2L3

√
f∞ − 1

ℓ3pf
2
∞

, c′1 = qc′0 , c′2 =
−
√
8π2L3

√
f∞ − 1(f∞ − 2)

ℓ3pf
3
∞

.
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c1>0 c2>0

Figure 4. The domains of validity for different extremal surfaces in Gauss-Bonnet gravity are two

distinct regions. The blue domain for f1(z) is restricted to 6

5
≥ f∞ > 0. The red region for f2(z)

is bounded from below, f∞ ≥ 2.

The second solution exists again only for f∞ ≥ 2 where S
(2)
EE has a positive leading order

coefficient but in this region S
(1)
EE is negative. For 6

5 ≥ f∞ > 0 only the first solution is

allowed. Note that in this region the central charge c1 has a positive value.1

As we observe from the computations in special case of Gauss-Bonnet gravity, the

domain of validity of two solutions is independent of entangling surfaces and specifically

it has two distinct regions. Therefore if one demands to have a unitary CFT dual theory,

which can be achieved by restricting to the blue region in figure (4) then we can ignore the

second solution.

5 Quasi-topological gravity

In three dimensions we studied the extended NMG as a theory with cubic curvature terms.

But in this case since the entangling surface was a line, the value of extrinsic curvature

was zero when we considered the first solution f1(z). Note that we can always use the

first solution as a check of our calculations because the coefficient of the universal term is a

known value of the central charge for the dual CFT. To study a theory with cubic curvature

terms and with non-trivial extrinsic curvature we consider the quasi-topological gravity in

five dimensions. We will show that while the extrinsic curvature is zero for spherical

entangling surfaces it is non-trivial for cylindrical case, therefore quasi-topological gravity

can provide us an opportunity to check the results of regularized integrals in appendix A.

The bulk action is given by [21]

S = − 1

2ℓ3p

∫

d5x
√
g

(

R+
12

L2
+

λL2

2
L2 +

7µL4

4
L3

)

,

L2 = RµναβR
µναβ − 4RµνR

µν +R2 ,

L3 = RµνρσRνασβR
α
µ
β
ρ +

3

8
RµναβR

µναβR− 9

7
RµνραR

µνρ
βR

αβ +
15

7
RµναβR

µαRνβ

+
18

7
RµαR

αβRβ
µ − 33

14
RµνR

µνR+
15

56
R3 . (5.1)

The entanglement entropy for this case also has been studied in [9] as explained in the

section 2, and in [14] using the formula found in [10] for quadratic curvature theories. Both

results agree with the universal terms expected for this theory.

1For holographic c-theorems specially in odd dimensions see [22].

– 12 –



J
H
E
P
0
2
(
2
0
1
6
)
0
3
7

Since we have cubic correction terms we need to use the regularized integrals given in

appendix A. Considering each term in Lagrangian and replacing its corresponding integrals

and after simplification we will find the following relation for holographic entanglement

entropy of quasi-topological gravity

S
QT
EE =

2π

ℓ3p

∫

d
d−2

x
√
γ

(

1 + L
2
λ
(

R+Rµνρσn
µ
i n

ρ
in

ν
jn

σ
j − 2Rµνn

µ
i n

ν
i +K

2 −K2

)

+
3L4µ

32

(

15R2−44R2+7RµνρσRµνρσ−4
(

11RRµν+3RασρµRασρ
ν−10RσµρνRσρ−18Rµ

ρRρν

)

n
µ
i n

ν
i

+ 8

(

5RµρRνσ − 6RµνραRα
σ − 7Rα

µ
β
ρRνασβ +

7

4
RRµνρσ

)

(

n
µ
i n

ρ
in

ν
jn

σ
j − n

µ
i n

σ
i n

ν
jn

ρ
j

)

+ 2K4 + 25K2
2

− 38K2K
2+11K4 + 22RK

2−104KKµνRµν+104KµαRαν
K

µ
ν −22RK2+8Kµα

K
νβRµναβ

))

, (5.2)

where this result includes the Wald’s entropy as well as corrections coming from the existence

of non-trivial extrinsic curvature. Similar to GB case in five dimension we can find the

value of holographic entanglement entropy for different entangling regions.

• For spherical region the solutions of the corresponding differential equation for min-

imal surface are

f1(z) =
√

z20 − z2 , f2(z) =
√

z20 + 2z0qz − z2 , q2 = −1 + (λ±
√

λ2 + 3µ)f∞ .

(5.3)

For each solution we find the following entanglement entropies

S
(1)
EE =

4π2L3

ℓ3pf
3/2
∞

(

1− 6λf∞ + 9µf2
∞

)(

z20
ǫ2

− ln
z0

ǫ
+ · · ·

)

, (5.4)

S
(2)
EE =

4π2L3

ℓ3pf
3/2
∞

(

q4 + 2(1− 3λf∞)q2 + 1− 6λf∞ + 9µf2
∞

(q2 + 1)1/2

)(

1

q2 + 1

z20
ǫ2

+
2q

q2 + 1

z0

ǫ
− ln

z0

ǫ
+ · · ·

)

.

As we see the coefficient of the leading term (and logarithmic term) is the central

charge corresponding to the dual conformal field theory of the quasi-topological grav-

ity. To study the leading order terms one may use the constraint µf3
∞+λf2

∞−f∞+1 =

0. To have a positive value for entropies both leading terms must be positive val-

ued. Additionally we demand that the second solution is real valued. The positive

value of the leading term in S(1) restricts us to 0 ≤ λ ≤ 10f∞−9
15f2

∞

≤ 5
27 and therefore

f∞ ≥ 9
10 if we suppose a positive coupling. This corresponds to a region below the

blue curve in figure 5. On the other hand this condition for leading term of S(2) gives

0 ≤ λ ≤ −f∞+
√

5f2
∞−4f∞

2f2
∞

≤ 5
27 for f∞ ≥ 1 (the regions (I) and (II) below the red

curve in figure 5). The reality condition for the second solution also restricts us to the

region 0 ≤ λ ≤ 2f∞−3
f2
∞

and therefore f∞ ≥ 3
2 (the right hand side of the green curve

in figure 5). It is possible to show that in region (I), the leading term of S(1) is always

greater than the leading term of S(2), so the minimal surface corresponds to f2(z).

• One can also look at the cylindrical entangling region. The series solutions can be

found by solving the differential equation for f(z)

f1(z) = z0 −
z2

4z0
+ · · · , (5.5)
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III

Figure 5. The regions allowed by positivity condition of leading terms in quasi-topological gravity

are the regions (I) and (II). The reality condition of the second solution also restricts us to the

region (I).

f2(z) = z0 + qz − (1 + q2)
z2

4z0
+ · · · , q2 = −1 + (λ±

√

λ2 + 3µ)f∞ .

The corresponding universal terms of entanglement entropies are

S
(1)
EE =

H

2z0

(

4a1
z20
ǫ2

− c1 ln
z0
ǫ
+ · · ·

)

, (5.6)

c1 =
π2L3

ℓ3pf
3/2
∞

(1− 2λf∞ − 3µf2
∞) , a1 =

π2L3

ℓ3pf
3/2
∞

(1− 6λf∞ + 9µf2
∞) ,

S
(2)
EE = −2π2L3H

z0ℓ3pf
3/2
∞

1

(q2 + 1)
3
2

(

c′0
z20
ǫ2

+ c′1
z0
ǫ
+ c′2 ln

z0
ǫ

)

,

c′0 = q4 + 2(1− 3λf∞)q2 + 1− 6λf∞ + 9µf2
∞ , c′1 = qc′0 ,

c′2 =
3

2
q6+

1

4
(13−8λf∞)q4+

1

8
(16−20λf∞+51µf2

∞)q2+
1

4
(1−2λf∞−3µf2

∞) .

As we see, by comparing the coefficients of cylindrical region with spherical region,

we will find exactly the same conditions as what we found for the spherical entangling

surface. We have observed the same behavior when we considered the Gauss-Bonnet

gravity in five dimensions. Therefore this suggests that at least for cubic corrections

such as quasi-topological gravity (which the equations of motion are quadratic for

AdS background) the domain of validity of solutions is independent of topology (here

cylindrical and spherical surfaces). We must emphasis that the value of extrinsic

curvature is non-zero for cylindrical case when we consider the first solution and this

gives us an opportunity to check the regularized integrals in appendix A specially

the correction parts including the extrinsic curvature. As we see the value of c1 and
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a1 exactly agree with known results for central charges found for the dual CFT of

quasi-topological gravity.

6 Conclusion and summary

In this paper we have used the procedure for computing the integral curvature invariants

on manifolds with squashed cones which was introduced in [7] and we have reviewed it

briefly in introduction. This method has been used already to compute the corrections

to the Wald’s entropy. The corrected terms are constructed out of extrinsic curvature

of the minimal surface, and for the Gauss-Bonnet gravity, they coincide with results of

Jacobson-Myers entropy.

Here we apply this method to compute the holographic entanglement entropy for grav-

ities with cubic curvature terms. Using our results we can compute the leading and the

universal terms of entanglement entropy for theories such as extended NMG in three di-

mensions or quasi-topological gravity in five dimensions.

In [7] the curvature squared gravities are studied and two different geometries with

squashed cone has been used to compute the corrections to the Wald’s entropy. These

corrections correspond to the existence of extremal surfaces with non-zero extrinsic curva-

ture (1.4). By going to the higher curvature theories such as the cubic curvature gravities

which we have considered in our paper, one needs to consider corrections of the following

form

K4 , K2
2 , K2K

2 , KK3 , K4 , RµνK
µνK , Rν

µK
ρ
νK

µ
ρ , RK2 , RK2 , RµνρσK

µρKνσ ,

in addition to the usual Wald’s entropy terms. In this regard since we have ten independent

new terms (for example see equation (3.6)) then we need to consider at least five different

geometries with squashed cone. The main difference between our work and [7] is the fact

that we have considered the squashed cones inside the AdSd space-time where d = 5, 6, 7, 8.

Doing this, as we see from the table 1 in the appendix B, the first five terms will have

different expansions in term of the radial direction z than the last five terms and therefore

with just five geometries we will be able to compute the ten unknown coefficients. One

must notice that in computing each integral (see appendix A) the integrals over regularized

metric have a finite expansion series which must be reproduced by all integrals on the right

hand side. We have computed different possible curvature cubed terms that appear in

ENMG or quasi-topological gravity and results are summarized in appendix A. We have

have also computed the integrals for d = 9 (columns six and twelve in table 1) as a check for

our computations. Consequently we believe that the coefficients of integrals in appendix A

are universal and independent of the dimension of space-time, at least for cylindrical and

spherical entangling surfaces.

In studying the gravity theories including the quadratic or cubic curvature terms, we

have observed that in addition to the usual minimal surfaces in the literature for spherical

and cylindrical entangling surfaces i.e.

f1(z) =
√

z20 − z2 , f1(z) = z0 −
z2

4z0
+ · · · ,
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there are other types of minimal surfaces with non-zero extrinsic curvature (see figure 1)

f2(z) =
√

z20 + 2z0qz − z2 , f2(z) = z0 + qz − (1 + q2)
z2

4z0
+ · · · .

The value of q depends on the theory which we are studying and it restricts us to special

regions of parameter space since f2(z) must be a real function. In addition to this restric-

tion, we must take into account a positive value of the leading terms in the entanglement

entropy as well, this usually is equivalent to the existence of a unitary CFT dual when we

consider the first type of solutions i.e. f1(z). We have confirmed this result (value of central

charges) everywhere as a check of our computations, see equations (2.11), (3.10), (4.4), (5.4)

and (5.6).

It must be noticed that although we have computed the entanglement entropy for both

spherical and cylindrical entangling regions, but the domain of validity of the solutions are

exactly the same and is independent of the topology of entangling surface.

As we mentioned, the universal terms in the entanglement entropy will be proportional

to the known central charges of the dual CFTs if we consider the first type of the solutions.

On the other hand the universal terms of the second type will give rise to other values.

Therefore this question arises, which solution corresponds to the correct entropy? or if the

first type of the solutions give the correct entropy then how one can get ride of the second

type solutions?

According to the prescription given in [1] and [2], the correct entanglement entropy

corresponds to an extremal surface which gives the minimum entropy. To understand

which solution has the minimal entropy we have compared the leading order terms in the

entanglement entropies. To summarize our results, let us compare our answers according

to the order of curvature terms in the Lagrangians:

• Curvature squared Lagrangians: by looking at the results of NMG (figure 2) and

GB (figure 4) we see that the allowed regions of the solutions in the one dimensional

parameter space of these theories (imposed by the positivity of the leading terms and

reality condition) are two distinct regions. So if we restrict ourselves to the unitary dual

CFTs we can ignore the second type of the solutions. For these theories, this choice of

extremal surfaces, has been imposed by causality constraints in [13].

• Curvature cubed Lagrangians: the results of ENMG and quasi-topological gravity

have been summarized in figures (3) and (5). As we observe, unlike the curvature square

Lagrangians, there are regions in the two dimensional parameter space where both solutions

can co-exist. Interestingly, in both theories regardless of entangling surfaces, in this overlap

region always the leading term for S(1) is greater than the leading term of S(2) and therefore

the minimal entropy corresponds to f2(z). So in cubic curvature theories we can not ignore

the second solution by imposing the unitary constraints.

Consequently, although unitary constraint (unitary dual CFT) may prevent us to deal

with the second type of extremal surfaces f2(z) in curvature squared theories of gravity,

but it can not be helpful for cubic curvature Lagrangians. It would be interesting to find
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a constraint from the CFT dual side in order to restrict us to the first type of solutions

f1(z), which gives the actual value of entanglement entropy.

Acknowledgments

We would like to thank Aninda Sinha and Mohsen Alishahiha for valuable comments on

the draft. This work is supported by Ferdowsi University of Mashhad under the grant

3/31581 (1393/05/11).

A The curvature cubed integrals

In this appendix we have summarized the value of curvature cubed terms which appear in

different Lagrangians

∫

M̃n

ddx
√
gRR2 = n

∫

M

ddx
√
GRR2

+ 4π(1− n)

∫

Σ

dd−2x
√
γ

(

R2 +RRµνn
µ
i n

ν
i − 1

4
K4 +

1

4
K2K

2 − 1

2
RK2

)

, (A.1)

∫

M̃n

ddx
√
gR3 = n

∫

M

ddx
√
GR3 + 12π(1− n)

∫

Σ

dd−2x
√
γR2 , (A.2)

∫

M̃n

ddx
√
gR3 = n

∫

M

ddx
√
GR3 + 6π(1− n)

∫

Σ

dd−2x
√
γ
(

Rµ
αRναn

µ
i n

ν
i −KKµνRµν

)

, (A.3)

∫

M̃n

ddx
√
gRµνρσRνασβR

α
µ
β
ρ = n

∫

M

ddx
√
GRµνρσRνασβRα

µ
β
ρ

+ 6π(1− n)

∫

Σ

dd−2x
√
γ

(

RαµβρRµνρσ

[

nν
i n

σinαjn
j
β − nν

i n
i
βnαjn

σj
]

− 1

2
K2

2
+

1

2
K4

+
1

12
KKµνRµν +

7

12
KµαRανKµ

ν − 1

12
RK2 −

4

3
KµαKνβRµναβ

)

, (A.4)

∫

M̃n

ddx
√
gRRµνρσR

µνρσ = n

∫

M

ddx
√
gRRµνρσR

µνρσ

+ 4π(1− n)

∫

Σ

dd−2x
√
γ
(

[

RµνρσR
µνρσ + 2RRµνρσnµin

i
ρnνjn

j
σ

]

−K2K
2 +K2

2
− 2RK2

)

, (A.5)

∫

M̃n

ddx
√
gRα

σRµνρσR
µνρα = n

∫

M

ddx
√
gRα

σRµνρσR
µνρα

+ 2π(1−n)

∫

Σ

dd−2x
√
γ

(

2RµνραRα
σ
[

nµin
i
ρnνjn

j
σ−nµin

i
σnνjn

j
ρ]+RµνρσR

µνραnαin
σi−K2

2
+K4

− 1

3
KKµνRµν − 19

3
KµαRανKµ

ν +
1

3
RK2 −

8

3
KµαKνβRµναβ

)

, (A.6)

∫

M̃n

ddx
√
gRνσRµρRµνρσ = n

∫

M

ddx
√
gRνσRµρRµνρσ

+ 2π(1−n)

∫

Σ

dd−2x
√
γ

(

2RµνρσR
µρnν

i n
σi+RµρRνσ

[

nµin
i
ρnνjn

j
σ−nµin

i
σnνjn

j
ρ]−K2K

2+K2

2

− 23

12
KKµνRµν +

7

12
KµαRανKµ

ν − 1

12
RK2 +

2

3
KµαKνβRµναβ

)

. (A.7)
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B Table of integrals

∫

Σ

d
d−2

x
√
γ · · · AdSC

5 AdSS2

5 AdSS3

6 AdSS4

7 AdSS5

8 AdSS6

9 AdSC
5 AdSS2

5 AdSS3

6 AdSS4

7 AdSS5

8 AdSS6

9

K4 2 64 162 2048
3

625 6912
5

0 0 0 0 0 0

K2K
2 2 32 54 512

3
125 1152

5
0 0 0 0 0 0

KK3 = K2
2 2 16 18 128

3
25 192

5
0 0 0 0 0 0

K4 2 8 6 32
3

5 32
5

0 0 0 0 0 0

RK2 0 0 0 0 0 0 −40 −320 −540 −1792 −1400 − 13824
5

KKµνRµν 0 0 0 0 0 0 −8 −64 −90 −256 −175 − 1536
5

KµαRανKν
µ 0 0 0 0 0 0 −8 −32 −30 −64 −35 − 256

5

RK2 0 0 0 0 0 0 −40 −160 −180 −448 −280 − 2304
5

KµνKαβRµανβ 0 0 0 0 0 0 0 −8 −12 −32 −20 −32
∫

M̃

d
d
x
√
g · · · AdSC

5 AdSS2

5 AdSS3

6 AdSS4

7 AdSS5

8 AdSS6

9 AdSC
5 AdSS2

5 AdSS3

6 AdSS4

7 AdSS5

8 AdSS6

9

RR2 0 32 108 512 500 1152 −80 −640 −1080 −3584 −2800 − 27648
5

R3 0 0 0 0 0 0 0 0 0 0 0 0

R3 0 0 0 0 0 0 −48 −384 −540 −1536 −1050 − 9216
5

RµνρσRνασβR
α
µ
β
ρ 0 24 36 96 60 96 12 0 −36 −128 −90 − 768

5

RRµνρσR
µνρσ 0 64 144 512 400 768 −320 −1280 −1440 −3584 −2240 − 18432

5

RµνρσR
µνραRα

σ 0 16 24 64 40 64 −80 −384 −384 − 2560
3

−480 − 3584
5

RµνρσR
µρRνσ 0 32 72 256 200 384 −28 −224 −324 − 2816

3
−650 −1152

× πHzf
1/2
∞

La3

πzf
1/2
∞

La2

π2

a
π2L

zf
1/2
∞

π3aL2

z2f∞

π3a2L3

z3f
3/2
∞

πHf
1/2
∞

Laz
πf

1/2
∞

Lz
π2a
z2

π2a2L

z3f
1/2
∞

π3a3L2

z4f∞

π3a4L3

z5f
3/2
∞

Table 1. The value of each integral can be found by multiplying its value to a proper coefficient

shown on the row by × sign. For example:
∫

S2 d
2x

√
γK4 = 64πzf

1/2
∞ /La2. For the second part of

the table each value additionally must be multiply by π(n− 1).
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