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Abstract The aim of this study is to investigate the ability of different time series models
in forecasting monthly rainfall. In order to do this, monthly rainfall data were collected
from 9 rainfall stations in North Khorasan province (North east of Iran) from 1989 to 2012.
R software was used to predict the highest rainfall in these 9 rain gage stations for the time
period 2002-2012 using monthly highest rainfall data of 1989-2002. In this study, AR,
MA, ARMA, ARIMA, and SARIMA with 11 different structures based on trial and error
were examined. Because the trend, seasonal and jump components are deterministic
components, it is not necessary to model these components, but modeling of random
component is very important for rainfall forecasting. So, the main data series was
decomposed (for AR, MA and ARMA models) and the random part has been modeled.
After that, the random component was collected with the seasonal and trend component
and the amount of rainfall was simulated. But for ARIMA and SARIMA, models fitted on
original series. The result showed that in 33 % of data MA(2), in 22 % of data AR(1) and
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ARMA(2, 1) and in 11.11 % of data MA(1) and ARIMA(1, 1, 2) had the best performance
in monthly rainfall forecasting. On the other hand, best time series model by change of data
could vary. So, it is important to assess all the time series models for any area and any
hydrological parameter.

Keywords Rainfall forecasting - Time series - AR - MA - ARMA - ARIMA

1 Introduction

Rainfall is the most important part of the hydrology cycle (Venkata Ramana et al. 2013). It
is the result of many complex physical processes that induce particular features and make
its observation complex (Akrour et al. 2014). The investigation and analysis of precipi-
tation is so essential for prediction of metrological information (Radhakrishnan and Dinesh
2006), and accurate prediction of precipitation is vital to better management of water
resources, especially in arid environment (Feng et al. 2015).

In last decades, many techniques have been used as suitable tools for modeling and
forecasting the meteorological information such as precipitation (Soltani et al. 2007;
Shamshirband et al. 2015). In these techniques, time series modeling is an important
technique in simulation, prediction and decision making of hydrology cycle components
(Soltani et al. 2007; Delleur et al. 1976; Salas and Fernandez 1993; Hipel and McLeod
1994). A time series is observation of a variable at discrete points of time (usually equal
distances) that measured and sorted according to time (Chatfield 2001). This technique is
used to explain data using statistical and graphical methods, to select the best statistical
models to explain the data generating process, to predict the future amounts of a series and
controlling a given process (Radhakrishnan and Dinesh 2006; Brockwell and Davis 1996).

Time series theory carried out by many scientists to address hydrological problems
(Bras and Rodriguez-Iturbe 1985; Lin and Lee 1992; Brockwell and Davis 1996). In most
cases, finding these hydrological problems due to the high side factors (several natural and
anthropogenic factors) is very difficult (Adhikary et al. 2012; Kim et al. 2005). Previous
methods, such as regression, exponential smoothing, and auto-regressive integrated mov-
ing average are accessible for hydrological time series analysis (Mirzavand and Ghazavi
2015). Building time series models consists of three steps: identification, assessment and
error detection (Shirmohammadi et al. 2013). Mirzavand and Ghazavi (2015) compared
several time series models such as autoregressive, moving average, autoregressive moving
average (ARMA), autoregressive integrated moving average (ARIMA), and seasonal
autoregressive integrated moving average (SARIMA) to find the best model for ground-
water level fluctuation forecasting. They concluded that combining time series models
have positive points in terms of groundwater level fluctuation prediction.

Hydrological time series modeling based on stochastic models has been confirmed by
many researcher, because these models are proper choice for the area where nothing but
the hydrological time series data is available (Adhikary et al. 2012). Stochastic models
such as the Markov, Box-Jenkins (BJ), SARIMA, ARMA, periodic autoregressive (PAR),
transfer function noise (TFN) and periodic transfer function noise (PTFN) are in use for
these goals (Box et al. 1994; Hipel and Mcleod 1994; Brockwell and Davis 2010;
Mirzavand et al. 2014; Mirzavand and Ghazavi 2015). Many applications of these models
have been accepted to be very useful technique for rainfall data forecasting over time in
several studies (Pebesma et al. 2005; Silva 2006; Radhakrishnan and Dinesh 2006; Soltani
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et al. 2007; Willems 2009; Mair and Fares 2011; Dutta et al. 2012; Adhikary et al. 2012).
The selection of a suitable technique for modeling a phenomenon depends on various
factors such as data accuracy, time, cost, ease of use of the model’s results, interpretation
of results and etc. (Mondal and Wasimi 2007; Adhikary et al. 2012). That is why, deter-
mination of the best model among the vary models for prediction is very important. Many
researchers used the time series models in simulation and prediction of precipitation but
comparison of stochastic time series models such as AR, MA, ARMA, ARIMA, and
SARIMA for rainfall predicting was not reported. So, the aim of this study is to assessment
of the ability these models for rainfall predicting in semi-arid climate condition.

2 Materials and methods
2.1 Study area

North Khorasan province located in northeast of Iran with geographical longitude: 55°17'—
61°15'E, and geographical latitude: 30°24'-38°17'N (Fig. 1). The North Khorasan has an
area of 28,434 km?®. The study area has a semi-arid climate condition. The mean annual
temperature is about 15 °C and the annual rainfall mainly ranges between 120 and
300 mm, which is mostly concentrated in the winter months. In order to prepare data for
modeling, monthly rainfall data were collected from 9 rainfall stations in North Khorasan
province (Northeast of Iran) from 1989 to 2012 (Table 1), corrected the statistical defect
and then normality test data on the residuals of each fitted model using the Kolmogorov—
Smirnov were done (the algorithm of modeling is shown in Fig. 2. The stations used in this
study along with some of their characteristics are presented in Table 1.
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Fig. 1 Spatial location of selected rainfall stations
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Table 1 Rainfall stations
characteristics

2.2 Time series models

Station Height (m) Range of values
(mm/year)
Asadli 1800 203-553
IncheOlia 770 142-426
Baba aman 1020 159488
Barbarghalae 960 134-398
Khoshesfarayen 1200 127-334
Resalat 1200 149453
Ruin Araghi 1650 132-441
Sankhastdarband 1160 56415
Noshirvan 1490 157-566

Generally, the models for time series data can have different forms and represent different
non-deterministic processes (Sokolnikov 2013; Mirzavand and Ghazavi 2015). Most
modeling of time series takes place based on a linear technique. AR, MA and ARMA
models have linear base (Klose et al. 2004; Mirzavand and Ghazavi 2015). In this research,

Fig. 2 Algorithm used for
rainfall forecasting in this
research
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AR, MA, ARMA, ARIMA, and SARIMA models on 11 different structures based on trial
and error were examined and used to assess the ability of these models in monthly rainfall
prediction.

2.2.1 AR model

In a series where persistency is present, that is the event outcome of (¢ 4+ 1)th period is
dependent on the present rth period magnitude and those preceding values, then for such a

series, the observed sequences Xj, X», ..., X; is used to fit an AR model.
Autoregressive model can be expressed as Eq. (1):
Zr = ¢1Zr—1 + ¢2Zt_z + - (,pr[_p + ag, (1)
where ¢1, ¢», ..., ¢,. are model parameters and coefficient and @, is the random com-

ponent of the data that follows a normal distribution with mean 0 (Mirzavand and Ghazavi
2015).

2.2.2 MA model

Moving average models are simple covariance stationary and ergodic models that can use
for a wide variety of autocorrelation patterns (Mirzavand and Ghazavi 2015).
Moving Average model can be expressed as Eq. (2):

7= 0a;_1 + Ora,» + .. .Qqat,q + a;, (2)

where 04, 0,, ..., 0,1 are model parameters and coefficient and «, is the random component
of the data that follows a normal distribution with mean 0 (Hannan 1971; Mirzavand and
Ghazavi 2015).

2.2.3 ARMA model

The ARMA model is a synthesis of an AR and a MA model. ARMA model form a type of
linear models which are widely applicable and parsimonious in parameterization. ARMA
(p, g) model can be expressed as Eq. (3):

P q
Zi=0+ Z (/),‘thl + Z pjer—j +e (3)
=1 =

where 0 is the stationary part of the ARMA model, ¢; points out the ith autoregressive
coefficient, ¢; is the jth moving average coefficient, it shows the error part at time period ¢,
and Z, refers the value of rainfall observed or predicted at time period t (Erdem and Shi.
2011; Behnia and Rezaeian 2015; Mirzavand and Ghazavi 2015).

2.2.4 ARIMA and SARIMA models

Autoregressive integrated moving average (ARIMA) models are one of the well-known
linear models for time series modeling and predicting (Mirzavand and Ghazavi 2015).
ARIMA models have been originated from the synthesis of AR and MA models. ARIMA
is used to model time series data behavior and to make predictions (Shirmohammadi et al.
2013). ARIMA modeling uses correlational methods and could be used to model arrays
that may not be observable in plotted data (Box et al. 1994; Mirzavand and Ghazavi 2015).
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In ARIMA, the future amount of a parameter is assumed to be a linear function of past
observations and random errors (Behnia and Rezaeian 2015). A SARIMA model can be
explained as ARIMA (p, d, q) (P, D, Q)s, where (p, d, q) is the non-seasonal component of
the model and (P, D, Q)s is the seasonal component of the model in which is the order of
non-seasonal autoregression, d is the number of regular differencing, g is the order of non-
seasonal Moving Average, P is the order of seasonal autoregression, D is the number of
seasonal differencing, Q is the order of seasonal Moving Average, and s is the length of
season (Faruk 2010; Mirzavand and Ghazavi 2015).

2.3 Model selection

In most of the carried out researches, in order to determine the best model, partial auto-
correlation function (PACF) and autocorrelation function (ACF) have been used (Mirza-
vand and Ghazavi 2015). But, to improve the model selection accuracy, Akaike
information criteria (AIC) and coefficient of determination (R®) have been used in this
research in addition to PACF and ACF (Mirzavand and Ghazavi 2015).

AIC and R? can be expressed as Eqgs. (4) and (5) (Hu 2007):

AIC(k) = nIn(MSE) + 2k (4)
YR [t 5
i (gi—q) XL (gi—q)

where n is the number of data points (which used for calibration), and k is the number of

free parameters used in modeling process. MSE stands for mean square error. g;, qf, are
observed value and the estimated values and ¢ and g are the estimated mean values and
computational model outputs, respectively (Mirzavand and Ghazavi 2015).
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Typically, the desired model gives higher R* or the lowest value of AIC (Mirzavand and
Ghazavi 2015). The autocorrelation statistics and the corresponding 95 % confidence
interval from lag-0 to lag-20 were obtained for the rainfall time series (Fig. 4a, b). For the
rainfall data time series, the PACF was shown significant correlation up to lag-2 within the
confidence interval and ACF decline exponentially. Behavior of rainfall data in the study
area in Fig. 3 shows the data of interest are the three components (trend, seasonal and
random) that we used the random component in forecasting in AR, MA and ARMA. But
for modeling based on ARIMA and SARIMA, original series were used.

3 Results

The results obtained from time series models in Asadli, IncheOlia, Baba aman, Bar-
barghalae, Khoshesfarayen, Resalat, Ruin Araghi, Sankhastdarband and Noshirvan are
shown in Tables 2 and 3. Also, the models performance in rainfall simulation versus the
observed rainfall is shown in Figs. 5, 6,7, 8,9, 10, 11, 12 and 13 in Asadli, IncheOlia, Baba
aman, Barbarghalae, Khoshesfarayen, Resalat, Ruin Araghi, Sankhastdarband and Noshir-
van stations, respectively. These figures show that the models could forecast three com-
ponents of rainfall data shown in Fig. 3, but the performance of these models is variable.

4 Discussion

Prediction of the highest of rainfall in 9 rain gage stations (2002-2012) based on monthly
highest rainfall data (1989-2002) was carried out using R software. Seasonal, trend, jump
and random components are four components of time series data (Mirzavand and Ghazavi
2015) (Fig. A.3) because the trend, seasonal and jump components are deterministic
components, which are not necessary to be modeled in, but modeling of random compo-
nents is very important for water resource management using AR, MA and ARMA models
(Mirzavand et al. 2014). Hence, the main time series data were decomposed and the
random part has been modeled using AR, MA and ARMA models. But for ARIMA and
SARIMA, models fitted on original series.
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Fig. 5 Models prediction versus observed values in Asadli station

In this study, AR, MA, ARMA, ARIMA and SARIMA models with 11 different
structures based on trial and error were examined. With respect to the results, the rainfall
data had a seasonal and trend component before the extracting of deterministic components
of the time series data (Fig. 3). According to the study carried out by Nirmala and Sun-
daram (2010), it is possible to determine the best model using ACF and PACF (Fig. 4a, b),
but for choice the best model for forecasting, the Akaike criterion and the correlation
coefficient were also used for the best model selection. The ACF and PACF of selected
time series exposed the seasonal pattern of the monthly rainfall. The results show that in
Asadli station ARMA(2, 1) and ARMA(2, 2) and in another stations, ARMA(2, 2) and
ARIMA(1, 1, 2) were eliminated. Because the model parameters violated from the absolute
value of 1 (Mirzavand et al. 2014) (Tables 2, 3). As results shown, R? for these models are
less than the other models.

So, the best models which were chosen for highest rainfall prediction in Resalat,
IncheOlia and Baba aman was MA(2) and in Khoshesfarayen was MA(1). In Barbarghalae
and Sankhastdarband, the best models which was chosen for rainfall prediction were
AR(1). Other words, the amount of rainfall at time t is related to random component by the
prior amount of rainfall at time t-1 (Mirzavand and Ghazavi 2015). In Asadli station, the
best model was ARIMA(1, 1, 2), which it was in line with results that obtained by Kumar
Nanda et al. (2013). For Noshirvan and Ruin Araghi, the best model was ARMA(2, 1),
which it was in line with results that obtained by Wu et al. (2010). As the results showed
for selection of the best model in time series modeling, evaluation of the models according
to the AIC and R? in addition to using the ACF and PACEF graph is necessary. By referring
to studies that carried out for rainfall forecasting (Said et al. 2013; Khadar Babu et al.
2011; Kwon et al. 2007; Soltani et al. 2007; Seed et al. 2000), groundwater level fore-
casting (Mansour et al. 2011; Schaars and Von Asmuth 2012; Poormohammadi et al. 2013;
Mirzavand et al. 2014; Mirzavand and Ghazavi 2015) and for river flow prediction
(Saeidian and Ebadi 2004; Javidi Sabbaghian and Sharifi 2009), the best model using
stochastic models could vary by changing the data. So, it is important to assess all the time
series models for any area and any hydrological parameters for choosing the best model for
our purpose. Finally, it can be expressed that the stochastic models can be used for the
rainfall prediction (Durdu 2010) up to the next 120 months with an acceptable accuracy
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Fig. 6 Models prediction versus observed values in IncheOlia station
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Fig. 7 Models prediction versus observed values in Baba aman station

(presented in Figs. 5, 6, 7, 8,9, 10, 11, 12, 13). And it is possible that we claim time series
models based on the stochastic models is very fast and easy to identify the changes in time
series components of rainfall.

5 Conclusions

The result showed that in 33 % of data MA(2), in 22 % of data AR(1) and ARMA(2, 1)
and in 11.11 % of data MA(1) and ARIMAC(I, 1, 2) were had the best performance in
monthly rainfall forecasting. On the other hand, best time series model by change the data
could be varied. So, it is important to assess all the time series models for any area and any
hydrological parameters to choose the best model for each case. According to the results, in
modeling based on time series data, it is important to assess the performance of time series
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Fig. 8 Models prediction versus observed values in Barbarghalae station
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models based on Akaike and correlation coefficient, because the Akaike criterion use
residual variance which is needed to assess the correlation between the data. Based to the
results, stochastic models are one of the most appropriate techniques for prediction of
rainfall.

References

Adhikary SK, Mahidur Rahman MD, Das Gupta A (2012) A stochastic modelling technique for predicting
groundwater table fluctuations with time series analysis. Int J Appl Sci Eng Res 1(2):238-249
Akrour N, Chazottes A, Mallet C, Barthes L (2014) Simulation of rainfall times series with zero values and
realistic statistical distribution in a universal multifractal framework. Geophys Res Abstr
16:2014-6235

Behnia N, Rezaeian F (2015) Coupling wavelet transform with time series models to estimate groundwater
level. Arab J Geosci 8(10):8441-8447

Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis: forecasting and control. Upper Saddle
River, NJ

Bras RL, Rodriguez-Iturbe I (1985) Random functions and hydrology. Addison-Wesley, Reading, MA

Brockwell PJ, Davis RA (1996) Introduction to time series and forecasting. Springer, New York

Brockwell PJ, Davis RA (2010) Introduction to time series and forecasting. Springer, New York

Chatfield C (2001) Time-series forecasting. Chapman & Hall/CRC, New York

Delleur JW, Tao PC, Kavass ML (1976) An evaluation of practicality and complexity of some rainfall and
runoff time series models. Water Resour Res 12:953-970

Durdu OF (2010) Application of linear stochastic models for drought forecasting in the Biiyiik Menderes
river basin, western Turkey. Stoch Env Res Risk Assess 24(8):1145-1162

Dutta D, Wendy D, Welsh JV, Shaun SHK, Nicholls D (2012) A comparative evaluation of short-term
stream flow forecasting using time series analysis and rainfall-runoff models in water source. Water
Resour Manage 26:4397-4415. doi:10.1007/s11269-012-0151-9

Erdem E, Shi J (2011) ARMA based approaches for forecasting the tuple of wind speed and direction. Appl
Energy 88(4):1405-1414

Faruk D (2010) A hybrid neural network and ARIMA model for water quality time series prediction. Eng
Appl Artif Intell 23(4):586-594. doi:10.1016/j.engappai.2009.09.015

Feng Q, Wen X, Li J (2015) Wavelet analysis-support vector machine coupled models for monthly rainfall
forecasting in arid regions. Water Resour Manage 29(4):1049-1065

Hannan EJ (1971) Multiple time series. Wiley, New York, p 536

Hipel KW, McLeod AE (1994) Time series modeling of water resources and environmental systems.
Elsevier, Amsterdam

Hu Sh (2007) Akaike information criterion, enter for research in scientific computation. North Carolina State
University, Raleigh, NC, p 19

Javidi Sabbaghian R, Sharifi MB (2009) Random modeling application in river flow simulation and esti-
mation of mean annual river discharge by time series analysis. International conference on water
resources (ICWR). Shahrood, Iran, August 15-17

Khadar Babu SK, Karthikeyan K, Ramanaiah MV, Ramanah D (2011) Prediction of rain-fall flow time
series using auto-regressive models. Adv Appl Sci Res 2(2):128-133

Kim SJ, Hyun Y, Lee KK (2005) Time series modeling for evaluation of groundwater discharge rates into an
urban subway system. Geosci J 9(1):15-22. doi:10.1007/BF02910550

Klose Ch, Pircher M, Sharma S (2004) Univariate time-series forecasting. 406347/UK “(Okonometrische
Prognose” in SS04

Kumar Nanda S, Prasad Tripathy D, Kumar Nayak S, Mohapatra S (2013) Prediction of rainfall in India
using Artificial Neural Network (ANN) models. Int J Intell Syst Appl 5(12):1-22. doi:10.5815/ijisa.
2013.12.01

Kwon HH, Lall U, Khalil AF (2007) Stochastic simulation model for nonstationary time series using an
autoregressive wavelet decomposition: applications to rainfall and temperature. Water Resour Res
43(5):1-15. doi:10.1029/2006 WR005258

Lin GF, Lee FC (1992) An aggregation-disaggregation approach for hydrologic time series modelling.
J Hydrol 138(3-4):543-557. doi:10.1016/0022-1694(92)90136-J

Mair A, Fares A (2011) Time series analysis of daily rainfall and streamflow in a volcanic dike-intruded
aquifer system, O‘ahu, Hawai‘i, USA. Hydrogeol J 19:929-944. doi:10.1007/s10040-011-0740-3

@ Springer


http://dx.doi.org/10.1007/s11269-012-0151-9
http://dx.doi.org/10.1016/j.engappai.2009.09.015
http://dx.doi.org/10.1007/BF02910550
http://dx.doi.org/10.5815/ijisa.2013.12.01
http://dx.doi.org/10.5815/ijisa.2013.12.01
http://dx.doi.org/10.1029/2006WR005258
http://dx.doi.org/10.1016/0022-1694(92)90136-J
http://dx.doi.org/10.1007/s10040-011-0740-3

Nat Hazards (2016) 81:1811-1827 1827

Mansour MM, Barkwith A, Hughes AGN (2011) A simple overland flow calculation method for distributed
groundwater recharge models. Hydrol Process 25(22):3462-3471. doi:10.1002/hyp.8074

Mirzavand M, Ghazavi R (2015) A stochastic modelling technique for groundwater level forecasting in an
arid environment using time series methods. Water Resour Manage. doi:10.1007/s11269-014-0875-9

Mirzavand M, Sadatinejad SJ, Ghasemieh H, Imani R, Soleymani Motlagh M (2014) Prediction of ground
water level in arid environment using a non-deterministic model. ] Water Resour Prot 6:669-676.
doi:10.4236/jwarp.2014.67064

Mondal MS, Wasimi SA (2007) Choice of model type in stochastic river hydrology hydrology. In: Pro-
ceedings of the 1st international conference on water and flood management ICWFM), March 12-14,
Dhaka, Bangladesh

Nirmala M, Sundaram SM (2010) Modeling and predicting the monthly rainfall in Tamilnadu as a seasonal
multivariate ARIMA process. Int ] Comput Eng Technol 1(1):103-111

Pebesma EJ, Switzer P, Loague K (2005) Error analysis for the evaluation of model performance: rainfall—
runoff event time series data. Hydrol Process 19:1529-1548. doi:10.1002/hyp.5587

Poormohammadi S, Malekinezhad H, Poorshareyati R (2013) Comparison of ANN and time series
appropriately in prediction of ground water table (case study: Bakhtegan basin). Water Soil Conserv
20(4):251-262

Radhakrishnan P, Dinesh S (2006) An alternative approach to characterize time series data: case study on
Malaysian rainfall data. Chaos Solitons Fractals 27:511-518. doi:10.1016/j.cha0s.2005.04.030

Saeidian Y, Ebadi H (2004) Determine the time series of data flow (case study: Vanyar station in the river
basin Ajichai). 2nd Students conference on soil and water resources, Shiraz, Iran, May 12-13

Said SM, Manjang S, Wihardi Tjaronge M, Arsyad TM (2013) Arima application as an alternative method
of rainfall forecasts in watershed of hydro power plant. Int J] Comput Eng Res 3(9):68-73

Salas JD, Fernandez B (1993) Models for data generation in hydrology: univariates techniques. In: Macro
JB, Harboe R, Salas JD (eds) Stochastic hydrology and its use in water resources systems simulation
and optimization. NATO Advanced Study Institute, Kluwer Academic Publishers, Boston, pp 47-73

Schaars F, Von Asmuth DC (2012) Software for hydrogeologic time series analysis, interfacing data with
physical insight. Environ Model Softw 38:178-190. doi:10.1016/j.envsoft.2012.06.003

Seed AW, Draper C, Srikanthan R, Menabde M (2000) A multiplicative broken-line model for time series of
mean areal rainfall. Water Resour Res 36(8):2395-2399

Shamshirband Sh, Gocic M, Petkovi D, Saboohi H, Herawan T, Mat Kiah L, Akib Sh (2015) Soft-computing
methodologies for precipitation estimation: a case study. IEEE J Select Top Appl Earth Obs Remote
Sens 8(3):1353-1358. doi:10.1109/JSTARS.2014.2364075

Shirmohammadi B, Vafakhah M, Moosavi V, Moghaddamnia A (2013) Application of several data-driven
techniques for predicting groundwater level. Water Resour Manag 27:419-432. doi:10.1007/s11269-
012-0194-y

Silva MAP (2006) A time series model to predict the runoff ratio of catchments of the Kaluganga basin.
J Natl Sci Found Sri Lanka 34(2):103-105. doi:10.4038/jnsfsr.v34i2.2089

Sokolnikov AN (2013) THZ identification for defense and security purposes identifying materials, sub-
stances and items. World Scientific Publishing CO.Pte. Ltd, Singapore

Soltani S, Modarres R, Eslamian SS (2007) The use of time series modeling for the determination of rainfall
climates of Iran. Int J Climatol 27:819-829. doi:10.1002/joc.1427

Venkata Ramana R, Krishna B, Kumar SR, Pandey NG (2013) Monthly rainfall prediction using wavelet
neural network analysis. Water Resour Manage 27(10):3697-3711. doi:10.1007/s11269-013-0374-4

Willems P (2009) A time series tool to support the multi-criteria performance evaluation of rainfall-runoff
models. Environ Model Softw 24:311-321. doi:10.1016/j.envsoft.2008.09.005

Wu TN, Lee JY, Huang ChH (2010) Application of time series analysis on temporal variation of fluoride in
groundwater around southern Taiwan science park. In: 7th international conference on Fuzzy Systems
and Knowledge Discovery (FSKD), Yantai, China, August 10-12, 2010

@ Springer


http://dx.doi.org/10.1002/hyp.8074
http://dx.doi.org/10.1007/s11269-014-0875-9
http://dx.doi.org/10.4236/jwarp.2014.67064
http://dx.doi.org/10.1002/hyp.5587
http://dx.doi.org/10.1016/j.chaos.2005.04.030
http://dx.doi.org/10.1016/j.envsoft.2012.06.003
http://dx.doi.org/10.1109/JSTARS.2014.2364075
http://dx.doi.org/10.1007/s11269-012-0194-y
http://dx.doi.org/10.1007/s11269-012-0194-y
http://dx.doi.org/10.4038/jnsfsr.v34i2.2089
http://dx.doi.org/10.1002/joc.1427
http://dx.doi.org/10.1007/s11269-013-0374-4
http://dx.doi.org/10.1016/j.envsoft.2008.09.005

	Comparative study among different time series models applied to monthly rainfall forecasting in semi-arid climate condition
	Abstract
	Introduction
	Materials and methods
	Study area
	Time series models
	AR model
	MA model
	ARMA model
	ARIMA and SARIMA models

	Model selection

	Results
	Discussion
	Conclusions
	References




