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Axisymmetric Stagnation Flow
and Heat Transfer of a
Compressible Fluid Impinging
on a Cylinder Moving Axially
The steady-state viscous flow and also heat transfer in the vicinity of an axisymmetric
stagnation point on a cylinder moving axially with a constant velocity are investigated.
Here, fluid with temperature-dependent density is considered. The impinging freestream
is steady and with a constant strain rate (strength) �k. An exact solution of the
Navier–Stokes equations and energy equation is derived in this problem. A reduction of
these equations is obtained by use of appropriate transformations. The general self-
similar solution is obtained when the wall temperature of the cylinder or its wall heat flux
is constant. All the solutions above are presented for Reynolds numbers, Re ¼ �ka2=2t,
ranging from 0.1 to 1000, low Mach number, selected values of compressibility factor,
and different values of Prandtl numbers where a is cylinder radius and t is kinematic vis-
cosity of the fluid. Shear stress is presented as well. Axial movement of the cylinder does
not have any effect on heat transfer but its increase increases the axial component of fluid
velocity field and the shear stress. [DOI: 10.1115/1.4031130]
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1 Introduction

Axial movement of a cylinder in the case of stagnation-point
flow and heat transfer has many applications in manufacturing
processes. For example, the cooling processes or cleaning proc-
esses of punching instruments and drilling tools are the sample of
industrial applications. The following picture may best describe
how a radial flow can be arranged in order to coat the surface of a
cylinder with any kind of protection material. This coating can be
considered as protection against erosion or for the purpose of insu-
lation. The flow on the cylinder is coming from all directions.

Existing solutions of the problem of axisymmetric stagnation-
point flow and heat transfer on either a cylinder or a flat plate are
for viscous, incompressible fluid. These studies started by Hie-
menz [1] who obtained an exact solution of the Navier–Stokes
equations governing the two-dimensional stagnation-point flow on
a flat plate and went on by Homann [2] which was an analogous
axisymmetric study, and by Howarth [3] and Davey [4] where
results for stagnation flow against a flat plate for axisymmetric
cases were presented. Wang [5,6] was first to find an exact solu-
tion for the problem of axisymmetric stagnation flow on an infi-
nite stationary circular cylinder and continued by Gorla [7–11]
which are a series of steady and unsteady flows and heat transfer
over a circular cylinder in the vicinity of the stagnation point for
the cases of constant axial movement and the special case of axial
harmonic motion of a nonrotating cylinder. Cunning et al. [12]
have considered the stagnation flow problem on a rotating circular
cylinder with constant angular velocity, and Grosch et al. [13] and
Takhar et al. [14] who studied special cases of unsteady viscous
flow on an infinite circular cylinder. The more recent works of the
same types are the ones by Saleh and Rahimi [15] and Rahimi and
Saleh [16,17] which are exact solution studies of a stagnation-
point flow and heat transfer on a circular cylinder with time-
dependent axial and rotational movements, and studies by

Shokrgozar and Rahimi [18–22] are exact solutions of stagnation-
point flow and heat transfer but on a flat plate. Fluid flow and
Miaxed convection transport from a Plate in a rolling and extru-
sion process have been studied by Karwe and Jaluria [23]; in this
research, the heat transfer arising due to the movement of a con-
tinuous heated plate in processes such as hot rolling and hot extru-
sion has been studied. Kang et al. [24] have experimentally
investigated the convective cooling of a heated continuously mov-
ing material. They considered the effects of thermal buoyancy,
material speed, and properties of the material and the fluid on the
thermal field. Forced convection heat transfer from a continuously
moving heated cylindrical rod in materials processing has been
considered by Choudhury and Jaluria [25]. They presented numer-
ical solutions to the vorticity, temperature, and stream function
equations in cylindrical coordinate system and another numerical
simulation of continuously moving flat sheet has been presented
by Karwe and Jaluria [26]. Recently, the results of axisymmetric
stagnation flow of incompressible fluid on a heated vertical plate
with surface slip and annular axisymmetric stagnation flow on a
moving cylinder have been reported by Hong and Wang [27,28].
Useful information in the area of stagnation point flow in the
CVD reactor has been experimentally extracted by Memon and
Jaluria [29]. This experimental research will be used to understand
the buoyancy induced and momentum driven flow structure
encountered in an impinging jet CVD reactor.

Magnetohydrodynamic stagnation point flow of second grade
fluid over a permeable stretching cylinder has been studied by
Hayat et al. [30]. They used suitable transformations to convert
nonlinear partial differential equations into the nonlinear ordinary
differential equations. In this research, variation of different
parameters on the velocity, temperature, and concentration pro-
files have been shown graphically. They also computed numerical
values of skin friction coefficient, Nusselt number and Sherwood
number. An adaptive mesh strategy for high compressible flows
based on nodal re-allocation has been presented by Bono and
Awruch [31]. The development of a simple and computationally
effective methodology to adapt finite-element meshes to simulate
compressible flows with strong shock waves was the main objec-
tive of their work. The nodal re-allocation adaptivity, used in this
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research, starts from an initial mesh and the grids are concentrated
in the desired region without any grid tangling.

Some existing compressible flow studies but in the stagnation
region of bodies and by using boundary layer equations include
the study by Subhashini and Nath [32] as well as Kumari and
Nath [33,34], which are in the stagnation region of a body, and
work of Katz [35] as well as Afzal and Ahmad [36], Libby [37],
and Gersten et al. [38], which are all general studies in the stagna-
tion region of a body. Existing compressible flow studies are all
general studies in the stagnation region of a body and by using
boundary layer equations. Stagnation point flow and heat transfer
of a viscous, compressible fluid on a flat plate have been investi-
gated by Mozayyeni and Rahimi [39,40].

The only study that deals with stagnation-point flow and heat
transfer of a viscous fluid, with temperature-dependent density on
a cylinder is by Mohammadiun and Rahimi [41]. They obtained
an exact solution of the Navier–Stokes equations for the case of a
stationary cylinder.

The problem of stagnation-point flow and heat transfer for the
case of temperature-dependent density when the cylinder is mov-
ing axially has not been considered so far. In this research work,
solution of the problem of axisymmetric stagnation-point flow and
heat transfer is presented for the case of compressible, viscous
fluid on a cylinder when it is moving axially with a constant
velocity. An exact solution of the Navier–Stokes equations and
the energy equation is obtained. The self-similar solution is
reached by introducing the appropriate similarity variables. Sam-
ple distributions of shear stress and temperature fields at Reynolds
numbers ranging from 0.1 to 1000 are presented for different val-
ues of Prandtl numbers and fluid compressibility factor. The com-
pressibility factor and Mach number have been considered in the
ranges of 0–0.09 and 0.01–0.1, respectively, and Prandtl number
from 0.1 to 1. Because of these restrictions, the radial velocities
approaching the cylinder should be assumed in the range of
3.4 m=s to 34 m=s.

2 Problem Formulation

Flow and its schematic mechanism is considered in cylindrical
coordinates ðr;u; zÞ with corresponding velocity components
ðu; v;wÞ; see Figs. 1 and 2. We consider the steady-state laminar
flow of a viscous, compressible fluid along with heat transfer in
the neighborhood of an axisymmetric stagnation point of an infi-
nite circular cylinder moving with a constant axial velocity. An
external axisymmetric radial stagnation flow of strain rate �k
impinges on the cylinder of radius a, centered at r ¼ 0. To intro-
duce the strain rate �k , it must be referred to solution of the inviscid
flow at the so far distance from the cylinder that it is obtained by
using the continuity equation as follows. Considering Fig. 3:

Start from continuity equation

r !1 :
@ qUð Þ
@ r

þ q U

r
þ
@ q wð Þ
@ z

¼ 0 ;

q ¼ q1ð Þ )
@ U

@ r
þ U

r
þ @ w

@ z
¼ 0) 1

r

@

@ r
rUð Þ þ @ w

@ z
¼ 0

(1)

Transferring the term ð@ w=@ zÞ to the other side of the equation
and considering ð1=rÞð@=@ rÞðr UÞ is the only function of r and
ð@ w=@ zÞ is the only function of z, this equality will be achieved if
it equals the constant value. According to the above explanations,
the following results are obtained:

� 1

r

@

@ r
r Uð Þ ¼ @ w

@ z
¼ C1 ¼ 2�k (2)

In the above equation, �k is a constant value that is called strain
rate of the stagnation point flow.

Also, Reynolds number is obtained after changing the momen-
tum equations in the dimensionless form. For example, referring
the dimensionless equations of radial and axial momenta, it is
observed that the term of ðka2=2 tÞ is appeared in both equations.

The steady Navier–Stokes and energy equations in cylindrical
polar coordinates governing the axisymmetric compressible flow
and heat transfer, neglecting the body force and also neglecting
the variation of viscosity, conductivity, and specific heat with
temperature are as follows:

Mass

@ q uð Þ
@ r

þ q u

r
þ
@ q wð Þ
@ z

¼ 0 (3)

Fig. 1 A schematic mechanism of the radially impinging flow
production

Fig. 2 Schematic diagram of an axially moving cylinder

Fig. 3 Schematic diagram of inviscid flow on cylinder
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u
@ quð Þ
@ r
þw

@ quð Þ
@ z
¼�@P

@ r
þt

1

r

@

@ r
r
@ quð Þ
@ r

� �
�

quð Þ
r2
þ
@2 quð Þ
@ z2

( )

(4)
z-momentum
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and energy

q u
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@ T

@ z
¼ l

Pr

1

r

@

@ r
r
@ T

@ r

� �
(6)

In these equations P, q, t, and T are the fluid pressure, density,
kinematic viscosity, and temperature. The boundary conditions
for velocity field are

r ¼ a : u ¼ 0; w ¼ V (7)

r !1 : u ¼ ��kðr � a2=rÞ; w ¼ 2�kz (8)

In which, Eq. (7) is the no-slip condition on the cylinder wall
and V is the axial velocity of the cylinder. Relations (8) show that
the viscous flow solution approaches, in a manner analogous to
the Hiemenz flow, the potential flow solution as r !1,
Ref. [12].

For the temperature field we have

r ¼ a :
T ¼ Tw ¼ cons tan t; for defined wall temperature ðDirichlet b:cÞ
@ T

@ r
¼ � qw

k
; for defined wall heat flux Neu mann b:cð Þ

8<
:

r !1 : T ! T1

(9)

In the above relations, k is the thermal conductivity of the fluid
and Tw and qw are temperature and heat flux at the cylinder wall,
respectively, and T1 is the freestream temperature.

A reduction of the Navier–Stokes equations is obtained by the
following coordinate separation of the velocity field

u¼�
�ka2

r

q1
q gð Þ

f gð Þ; w¼ q1
q gð Þ

2�kcf 0 gð ÞzþH gð Þ
h i

; p¼ q1 �k
2
a2P

(10)

where

g ¼ 2

a2

ðr

a

q r

q1
dr g ¼ r2 � a2

a2
for q ¼ cons tan t & b ¼ 0

� �
(11)

Here, g is dimensionless radial variable, Ref. [41], and prime
denotes differentiation with respect to g, and q1 is freestream den-
sity. For the case of incompressible flow ðqðgÞ ¼ constant), this
variable is similar to the one in Wang (Ref. [5]) except that it
changes from zero to infinity instead of one to infinity. This similar-
ity variable has been extracted by refer to the dimensionless variable
which is used in the vicinity of axisymmetric stagnation point of
incompressible fluid. Because of the variation in fluid density and by
use of similar patterns in compressible fluid, dimension less density
ðq=q1Þ has been used to the definition of the similarity variable.
Velocity components of viscous fluid have been achieved by refer to
the inviscid solution at the so far distance from cylinder and multi-
plying the velocity component of inviscid fluid by the functions of g.
These functions have been extracted by trial and error.

Transformations (10) satisfy Eq. (3) automatically and their
insertion into Eqs. (4) and (5) yields a coupled system of differen-
tial equations in terms of f ðgÞ, HðgÞ, and an expression for the
pressure

C ½c3 f 000 þ 3 c2c0 f 00 þ c2c00 f 0 þ ðc0Þ2c f 0� þ c2f 00 þ cc0f 0

þRe ½1þ c0f f 0 þ cf f 00 � cðf 0Þ2� ¼ 0 (12)

C ðc2H00 þ c c0 H0Þ þ c H0 þ Reðf H0 � f 0 HÞ ¼ 0 (13)

p� p0 ¼
ðg

0

1

2

f

Cc

� �2

� ff 0

Cc2
� 1

Re
cf 0
� �" #

dg� 2
z

a

� �2

(14)

In these equations, cðgÞ ¼ qðgÞ=q1, Re ¼ �ka2=2t,
CðgÞ ¼ 1þ

Ð g
0

dg=cðgÞ, and prime indicates differentiation with
respect to g. From conditions (7) and (8), the boundary conditions
for Eqs. (12) and (13) are as follows:

g ¼ 0 : f ¼ 0 ; f 0 ¼ 0 ; H ¼ V cð0Þ
g!1 : f 0 ¼ 1; H ¼ 0

(15)

To model the variation of density with respect to temperature,
the following Boussinesq approximation is used assuming low
Mach number flow:

q�q1½1�bðT�T1Þ� ) q=q1¼ cðgÞ¼1�bðT�T1Þ (16)

In the above relation, q1 and b are freestream density and com-
pressibility factor, respectively. To transform the energy equation
into a nondimensional form, we introduce

h gð Þ ¼

T gð Þ � T1

Tw � T1
; for the case of defined wall temperature

T gð Þ � T1
a qw

2k

¼
T gð Þ � T1

c
; for the case of defined wall heat flux

8>>>><
>>>>:

(17)
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where c ¼ a qw=2k is used in figures and presented results.
Making use of Eqs. (10) and (17) the energy equation may be written as

1

Re:Pr
C c2 h00 þ cc0h0ð Þ þ ch0½ � þ fh0 ¼ 0 (18)

With boundary conditions as

g ¼ 0 :

h ¼ 1; for the case of defined wall temperature

�h0 1� b
a qw

2k

� �� �
¼ 1; for the case of defined wall heat flux

8><
>:

g!1 : h ¼ 0; for both cases

(19)

The local Nusselt number is given by

Nu ¼ h a

2k
¼

�h0 0ð Þ c 0ð Þ; for the case of defined wall temperature
1

h 0ð Þ ; for the case of defined heat flux

8<
: (20)

Because of cðgÞ, Eqs. (12)–(14), and (18) are dependent. Note
that for the case of incompressible fluid qðgÞ ¼ q1 Eq. (12) is
exactly reduced to the equation obtained by Wang in Ref. [5] for
radial component of the velocity and also Eq. (18) reduces to the
equation obtained by Gorla in Ref. [7], with consideration of start-
ing value for the variable g.

3 Shear Stress

Assuming the cylinder is infinite and considering that any one
of the boundary conditions is not the function of z-axis, so the
velocity profile of u cannot be a function of z; thus, u ¼ uðr;/Þ In
addition, due to an axial symmetry: @ u=@/ ¼ 0) u ðrÞ for the
shear stress on the surface of the cylinder is obtained from

r ¼ l
@ u

@ z
þ @w

@ r

� �
r¼a

or r ¼ l
@ w

@ r

� �
r¼a

but (21)

@ w

@ r
¼ @ w

@ g
@ g
@ r
¼ 2�k f 00 zþ H0

c gð Þ
� Hc0

c gð Þ2

" #
2r

a2
c gð Þ

Since g ¼ 0 at r ¼ a, then we have

r ¼ l 2�k f 00 0ð Þ zþ H0 0ð Þ
c 0ð Þ

� H 0ð Þ c0 0ð Þ
c2 0ð Þ

" #
2

a
c 0ð Þ (22)

As the governing equations show, considering compressibility
effect causes the momentum equations and the energy equation to
be coupled together which helps the designer to control the veloc-
ity gradient on the surface by varying this compressibility factor
which eventually affects the shear stress.

Results of jr a=2l jz¼0 for different values of Re with Pr held
constant and for different values of Pr with Re held constant are
presented in Sec. 5.

4 Numerical Procedures

Equations (12)–(14), and (18) along with boundary conditions
(15) and (19) are solved by using the fourth-order Runge–Kutta
method along with shooting technique [42]. Using this method,
the initial values are guessed and the integration is repeated until
convergence is obtained. In these computations, the step size in
g-direction is optimized and Dg ¼ 0:001 and gmax ¼ 15 are used

throughout computations. The truncation error was set at
1� 10�9. The obtained results ðH=VandŵÞ are compared with
reliable source [28] to examine the accuracy of numerical solution
method. Comparison of dimensionless axial movement function
(H=V) and the normalized stream function ŵ with the results from
Ref. [28] has been done. All of the results have been extracted for
the case of incompressible fluid (b ¼ 0). The results have been
calculated for (a ¼ V=�k a ¼ 3) and in the case of stationary cylin-
der (a ¼ 0). In each case there is a good conformity between the
presented results and the results from Ref. [28]. As expected when
the cylinder moves axially, the symmetric stream lines are con-
verted into skewed shape and the stagnation point of the fluid is
moved down to negative values of z=a.

5 Results and Discussion

In this section, the solution of the self-similar Eqs. (12), (13),
and (18) along with the surface shear stresses for prescribed val-
ues of surface temperature and heat flux and at selected values of
Reynolds and Prandtl numbers are presented. It should be noted
the flow filed as drown in Fig. 2 only pertains to regions beyond
the boundary layer. Equations (12), (14), and (18) are the same as
in Ref. [41] which is for a stationary cylinder. Meaning that the
axial movement of the cylinder represented by H appears neither
in the equation for the radial velocity f nor in the energy equation.
Radial component of velocity will change with the modification
of the radial momentum, but cylindrical axial velocity only causes
the increase of the axial momentum and has no effect on the radial
momentum. Therefore, cylindrical axial movement has no effect
on the radial velocity component and also heat transfer.

As mentioned previously, stagnation-point flow can be used in
cleaning of drills and different cutting tools, for example. In this
application, the effect of surface shear stress plays a great role
since removing the unwanted materials from tools surface has a
direct relationship with its increase. Presented results show how
the increase of compressibility of fluid produces a greater surface
shear stress and also how with increase of surface temperature or
heat flux the removal of the excess materials can take place easier.

5.1 Influence of Prandtl Number. Sample profiles of varia-
tion of dimensionless axial movement function (H=V) against g
for compressibility factor b ¼ 0:0033 and for selected values of
Prandtl numbers are presented in Fig. 4 as Dirichlet boundary con-
dition and Fig. 5 as Neumann boundary condition. Constant wall
temperature Tw ¼ 500K, freestream temperature T1 ¼ 300 K,
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Reynolds number Re ¼ 1 and constant wall heat flux index
c ¼ 100, Reynolds number Re ¼ 10 are used to extract these pro-
files, respectively. In each case as Prandtl number increases the depth
of diffusion of defined function (H=V) increases which means that
the axial component of the fluid velocity field for a specified axial
velocity of the cylinder increases as Pr number increases and also
this increase is larger when cylinder moves faster.

Effect of Prandtl number variation on dimensionless tempera-
ture hðgÞ for the case of constant wall temperature for compressi-
bility factor b ¼ 0:0033, Re ¼ 10, T1 ¼ 300 K, and Tw ¼ 500 K
or c ¼ 10 is shown in Fig. 6. As expected by increasing the
Prandtl number, the depth of energy diffusion decreases against
the depth of momentum diffusion and this reduction in the depth
of energy diffusion leads to reduction in the thermal boundary
layer thickness and therefore the temperature gradient on the wall
and local heat transfer coefficient increase. Same type of informa-
tion can be extracted for the case of constant wall heat flux.

5.2 Influence of Compressibility Factor. The effects of
changing compressibility factor on dimensionless axial movement
function (H=V) against g for Tw ¼ 500 K, Pr ¼ 1 and Reynolds
number Re ¼ 100 are depicted in Fig. 7. For each value of

Reynolds number as the compressibility factor increases the fluid
density decreases and this reduction in fluid density leads to
reduction in the axial momentum which means that the axial com-
ponent of the fluid velocity field for a specified axial velocity of
the cylinder decreases as the compressibility factor increases and
also this decrease is larger when the cylinder moves faster.

According to the relations Hð0Þ ¼ V cð0Þ & cð0Þ ¼ 1
�bðTw � T1Þ, it is determined that by increasing the compressi-
bility factor b, cð0Þ decreases, and since V is fixed, H (0), and
consequently Hð0Þ=V decrease too. This can be physically justi-
fied: by changing the compressibility factor, fluid density changes
that it causes the modification of the dynamic viscosity of the
fluid, and this variation in the dynamic viscosity leads to variation
in the axial momentum diffusion.

It is worth mentioning that in each case the incompressible fluid
produces the largest amount of change in axial component of the
fluid velocity field. In each case the incompressible fluid (b ¼ 0)
has been compared with the results of Gorla [9], which shows
suitable match. It is also noted that as Reynolds number increases,
because of increasing the radial momentum of the fluid, the effect
of cylinder movement on axial velocity component of the fluid
decreases. Same type of information can be gathered for a speci-
fied cylinder surface heat flux.

Fig. 5 Variations of dimensionless axial movement function
(H=V ) in terms of g for selected values of Pr for Re 5 10,
b 5 0:0033, and c 5 100

Fig. 6 Variation of h in terms of g at, Tw 5 500 K, T‘ 5 300 K,
Re 5 10:0, b 5 0:0033, and for different values of Prandtl numbers

Fig. 7 Variations of dimensionless axial movement function
(H=V ) in terms of g for selected values of b for Re 5 100, Pr 5 1,
and Tw 5 500 K

Fig. 4 Variation of dimensionless axial movement function
(H=V ) in terms of g for Tw 5 500 K, T‘ 5 300 K, b 5 0:0033,
Re 5 1, and selected values of Prandtl number
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Influence of compressibility factor on wall shear stress has been
shown in Fig. 8. By comparing these profiles, it can be found that,
because of increasing in the velocity boundary layer thickness and
reduction in the velocity gradient on the surface, the incompressible
fluid case produces the least amount of wall shear stress.

Effect of variations of compressibility factor on dimensionless
temperature hðgÞ against g for Tw ¼ 500 K, Pr ¼ 1:0, and selected
value of Reynolds numbers are presented in Fig. 9. For b ¼ 0,
incompressible fluid, the result of Gorla [7] is extracted and it is inter-
esting to note that as b increases the depth of the diffusion of the ther-
mal boundary layer decreases. Same type of information can be
gathered from Fig. 10 but for a specified cylinder surface heat flux.

5.3 Influence of Reynolds Number. Changes of wall shear-
stress versus wall temperature or wall heat flux are shown in Figs.
11 and 12 for different axial cylinder speed and selected values of
Reynolds numbers. As can be seen from these figures, the absolute
value of shear stress increases with Reynolds number, wall tem-
perature, and wall heat flux or cylinder axial speed. In each case
because of increasing the velocity gradient on the cylinder wall
the shear stress increases.

Sample profiles of pressure function against g for the case of
Pr ¼ 0:7, Tw ¼ 500 K, b ¼ 0:0033, and for selected values of

Reynolds numbers are shown in Fig. 13. As expected, by increase of
Reynolds number the depth of diffusion of fluid pressure increases.

Sample profiles of the f ðgÞ function against g for compressibil-
ity factor, b ¼ 0:0033, Pr ¼ 0:7, constant wall temperature Tw

¼ 300 K and for selected values of Reynolds numbers are pre-
sented in Fig. 14 (same type of graph can be produced for the case
of constant wall heat flux). Since the increase of Reynolds number
causes the dynamic inertia forces to overcome the viscous forces,
as expected like the behavior of the incompressible fluid, the
depth of diffusion of the momentum increases. So as the Reynolds
number increases, the radial velocity field increases, too.

5.4 Influence of Wall Temperature or Wall Heat Flux.
Changes of wall shear stress versus Reynolds number for selected
values of wall temperature are shown in Fig. 15 (same type graph
can be presented for the case of wall heat flux) for defined axial
cylinder speed. As it can be seen from this figure the absolute
value of wall shear stress increases with the Reynolds number,
wall temperature, or wall heat flux, because of increasing in the
velocity gradient on the cylinder surface.

Finally, the variations of dimensionless axial movement function
and its comparison with Wang’s results and the normalized stream
functions have been represented in Figs. 16–18, respectively.

Fig. 9 Variations of h in terms of g at Pr 5 1:0, Tw 5 500 K,
T‘ 5 500 K, Re 5 1:0, and for different values of compressibility
factor

Fig. 10 Variations of h in terms of g at c 5 10:0 and Pr 5 0:7,
Re 5 10 for different values of compressibility factor

Fig. 11 Variation of shear stress against wall temperature at
V 5 5 m=s and V 5 10 m=s, Pr 5 0.7, b 5 0:0033, and for
selected values of Reynolds numbers

Fig. 8 Variation of shear stress versus Reynolds number at
Pr50:7, c550, V 5 5m=s for selected values of compressibility
factor
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Fig. 14 Variation of f in terms of g at Tw 5 300 K, b 5 0:0033,
and Pr 5 0:7 for different values of Reynolds numbers

Fig. 15 Variation of shear stress against Reynolds number at
V 5 5 m=s, Pr 5 0:7, b 5 0:0033, and for selected values of wall
temperature

Fig. 13 Variation of pressure function in terms of g at, Pr 5 0:7,
Tw 5 500 K, T‘ 5 300 K, b 5 0:0033, and for different values of
Reynolds numbers

Fig. 12 Variation of shear stress against c for selected values
of Reynolds number at V 5 5 m=s and V 5 10 m=s, Pr 5 0.7,
b 5 0:0033, and for selected values of Reynolds number

Fig. 16 Variations of dimensionless axial movement function
(H=V ) in terms of g for b 5 0 and for selected values of Reynolds
number

Fig. 17 The normalized stream function ŵ 5 w=0:5�ka3 5 2f ðgÞ
ðz=aÞ with, Re 5 1, a 5 0. Fluid is injected from the outer cylinder
at g 5 2 toward the inner cylinder.
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6 Conclusions

Exact solution of the Navier–Stokes equations and energy equa-
tion have been presented for the steady-state viscous, flow and
also heat transfer in the vicinity of an axisymmetric stagnation-
point of a cylinder moving axially with a constant velocity. Here,
fluid with temperature-dependent density is considered. A reduc-
tion of these equations has been obtained by use of appropriate
transformations. The general self-similar solution has been
obtained when the wall temperature of the cylinder or its wall heat
flux was constant. All the solutions above have been presented for
Reynolds numbers ranging from 0.1 to 1000, low Mach number,
selected values of compressibility factor, and different values of
Prandtl numbers. Shear stress has been presented as well. The
axial movement of the cylinder does not have any effect on the
heat transfer but the axial component of fluid velocity field
increases as the speed of this movement increases. The axial com-
ponent of the fluid velocity field for a specified axial velocity of
the cylinder decreases as Reynolds number or compressibility fac-
tor or surface temperature or surface heat flux increases and this
decrease in all cases is larger when cylinder moves faster. It is
worth mentioning that in each case incompressible fluid produces
the largest amount of change in axial component of the fluid
velocity field. On the contrary, the axial component of the fluid
velocity field increases as Prandtl number increases and this
increase is larger when cylinder moves faster. Also cylinder axial
speed increases the absolute value of the shear stress and the
amount of this shear stress is the least for the case of incompressi-
ble fluid.

Nomenclature

a ¼ cylinder radius
cðgÞ ¼ density ratio
f ðgÞ ¼ function of g

HðgÞ ¼ function of g
k ¼ thermal conductivity
�k ¼ freestream strain rate

Nu ¼ Nusselt number
p ¼ fluid pressure
P ¼ nondimensional pressure

Pr ¼ Prandtl number
qw ¼ heat flux at the wall
r; z ¼ cylindrical coordinates

Re ¼ �ka2=2t ¼ Reynolds number

T ¼ temperature
Tw ¼ wall temperature
T1 ¼ freestream temperature

u ¼ radial component of the velocity
V ¼ axial velocity of the cylinder
w ¼ axial component of the velocity

Greek Symbols

b ¼ compressibility factor
CðgÞ ¼ function related to density

g ¼ similarity variable
hðgÞ ¼ nondimensional temperature

l ¼ viscosity
t ¼ kinematic viscosity

qðgÞ ¼ fluid density
q1 ¼ freestream density

r ¼ shear stress
ŵ ¼ w=0:5�ka3 ¼ 2f ðgÞ ðz=aÞ

�a
Ð g

1
ðH=VÞdg

¼ normalized stream function
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