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Abstract. In review of micromechanical laws for granular materials, there is a re-
lationship that describes the stress state, fabric, and contact forces among particles, 
which is called "Stress-Force-Fabric" (SFF) relationship. SFF relationship can 
properly describe the media including the anisotropic particles such as polygonal 
particles, but the particles should be arranged randomly which constitutes isotopic 
granular media. The question is if this relationship is still true for anisotropic media, 
in which the elongated particles are arranged directionally. In this paper, reliability 
of SFF relationship is examined for both isotropic and anisotropic samples. To this 
aim, Discrete Element Method (DEM) is used to simulate the behavior of isotropic 
and anisotropic samples. The geometry of the particles are considered to be polyg-
onal as well as elongated. The behavior of such samples are studied in terms of 
stress ratio, which is calculated from macroscopic and microscopic points of view. 
The results show that the so called SFF can well predict the behavior of isotropic 
sample but the predictions for anisotropic samples are not acceptable.  

Keywords: Inherent Anisotropy, Stress-Force-Fabric relationship, Discrete Ele-
ment Method (DEM). 

1 Introduction 

Anisotropy is a common phenomenon in a granular material since it consists of 
individual discrete bodies. One type of anisotropy especially in naturally deposited 
sands is inherent anisotropy. It pertains to the initial spatial arrangement of particles, 
voids, and associated contacts. This is generally initiated during the deposition of 
soil particles under gravity so that the long axis of particles tends to align in a 
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specific direction. Another type of anisotropy called as induced anisotropy, occurs 
during loading process. 

Understanding of mechanical behavior of granular media is highly dependent to 
the understanding of micromechanical response of the system. The main key is to 
study the fabric, i.e., the spatial arrangement of soil particles, contact points, and 
associated voids. Many attempts have been made in order to quantitatively describe 
the fabric in a granular material. For instance, different forms of the so-called ‘fabric 
tensor’, which describes either the distribution of contacts among particles or the 
orientation of particles, were introduced [e.g., 1-4]. Hill [5] defined the average 
stress tensor in terms of applied forces over a homogeneous granular system. Weber 
[6]introduced a macroscopic stress tensor based on geometrical arrangement of con-
tacting particles. Based on weber’s work, Rothenburg [7] showed that the average 
stress tensor for an assembly of circular or sphere particles has the properties of the 
stress tensor as used in the continuum mechanics, but is derived from consideration 
of discrete contact forces, contact geometry and principles of static equilibrium. He 
developed useful relationships for the assemblies with planar particles (circular 
disks). By assuming that the distributions of average contact force components and 
contact normals have the same directions of anisotropy, a simple form of stress– 
force–fabric relationship (SFF) was introduced [8] and its applicability was exam-
ined for the assemblies with circular [9], elliptical [10] as well as rigid and breakable 
polygonal particles [11,12]. All studies mentioned above with non-circular particles 
imply that the SFF relationship is applicable if the fabric of assemblies (particle 
orientation) has an isotropic condition rather than being directionally anisotropic. 

In order to verify quantitatively the SFF equation, a set of detailed information 
is needed about the distribution of contact properties among a large number of par-
ticles. Since experimental tests could hardly give the required information, numer-
ical simulations of granular media by Discrete Element Method (DEM) was inevi-
tably used for verification.  

In this paper, the accuracy of SFF relationship is investigated for anisotropic as-
semblies of granular materials in which, elongated polygonal particles are inclined 
along a specific bedding angle. To this aim, DEM was used in order to simulate 
several anisotropic assembles. In the end, the variation of stress ratio along the load-
ing stages are compared from micro and macro viewpoints. 

2 Brief Review 

Inter-particle load transfer between particles can be described by a contact force 
vector f


 applied to contact point. In addition, it is required to introduce a contact 

normal n
 , denoting the unit vector orthogonal to the contact tangent plane and a 

contact vector l


 describing the line pointing from the mass center of the contacting 
particle to the contact point [7]. Fig. 1 shows these vectors for two contacting par-
ticles. 
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Fig. 1 Schematics contact, force, contact normal, and tangential contact vectors for two contacting 
particles 

Conditions of static equilibrium in a granular assembly lead to the expression of 
the Cauchy stress tensor related to microscopic averages, which describes the ge-
ometry and force distributions in a granular assembly as follows [7]: 
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    (1) 

The term 
vm is the density of contacts (the number of contacts per unit area). 

)(E  is the normalized contact orientation distribution defining relative frequency 

of contacts with orientation  . The contact orientation is defined by the contact 
normal components as )sin,(cos n


. )(if  and )(jl  represent the polar dis-

tributions of average components of force vector and contact vector, respectively.  
The average contact force acting on contacts with orientation   can be decom-

posed into an average normal force component )(nf  and an average tangential 

force component )(tf . Therefore: 

 itini tfnff )()()(      (2) 

 )cos,sin( t


 represents the direction orthogonal to n


, according to Fig. 

1. Hence, by substituting Eq. 3 to Eq. 2, it can be simplified: 
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In order to study the degree of anisotropy, it is common to draw a polar distribu-
tion of fabric quantities .i.e., frequency of contacts )(E , average normal contact 

force )( nf , and average tangential contact force )( tf , such as shown in Fig. 2. 

Based on the measured distribution, it can be expressed in terms of coefficient of 
anisotropy 

ia  and major principal direction of anisotropy 
i . The parameter 

i  in-

dicates the angle between the long axis of the histogram with respect to the hori-

zontal direction. The parameter ia  is defined as )/()( 2121 AAAAai  , in 
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which 1A and 2A  are the minimum and maximum widths of the histogram, respec-

tively. The procedure how to obtain the anisotropy parameters based on the histo-
gram data is explained by Seyedi Hosseininia [13]. 

 

Fig.2 Definition of histogram parameters for polar functions 

Polar distributions of fabric quantities can be approximated by second-order 
Fourier series expressions as follows [7]: 
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ca  describes the anisotropy in contact orientations and c  is the major principal 

direction of anisotropy. 0f  represents the average normal force over all contacts. 

Terms tn aa ,  and wa  are non-dimensional coefficient of contact force anisotropy. 

Similar to c , terms n  and t  represent preferred directions of contact force dis-

tributions for normal and tangential components, respectively. The term wa  is not 

independent and can be defined in terms of ca  and ta  from moment equilibrium 

condition of all contacts. Generally, the value of wa  is small and close to zero.  

According to the Mohr stress circle, invariants of the average stress tensor have 
the following forms: 
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The ratio of the above two stresses is generally known as the mobilized friction 
angle for cohesionless granular materials. By putting the Fourier series expressions 
in Eq. 4 into the integral of Eq. 3, the stress tensor components can be obtained. 
Finally, after having some mathematical manipulations and ignoring the product of 
anisotropy coefficients for the third and higher orders, the stress ratio can be calcu-
lated as follows: 
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The equation above is the origin of the so-called stress-force–fabric relationship 
which links the macroscopic mobilized stress to the microscopic anisotropy. It is 
emphasized that in Eq. 6, it was assumed that the contact vector and contact normal 
are coaxial. If directions of anisotropy for contact normals and contact forces are 
coaxial, i.e., tnc   , like what happens for circular particles, then the simpli-

fied expression is simplified to: 
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3 Simulations 

A series of biaxial compression tests were simulated by using DEM. The key point 
was that the particles are not circle or ellipse in shape, but they have geometry of 
convex irregular polygon. Schematics of particles geometry and dimensions are de-
picted in Fig. 3. Three degrees of sizes have been used with the scale ratio of 0.75, 
1.0, and 1.25 with respect to those presented in Fig. 3. The gradation is characterized 
by the uniformity coefficient )/( 1060 DD  of 1.35 and the curvature coefficient 

)/( 6010
2
30 DDD of 1.2. Dx indicates the long axis length (diameter of an equivalent 

circumscribed circle) of soil particles for which x% of the particles are finer. To-
tally, five series of samples were generated. All the samples had the form of circle 
with diameter of 160 mm. About 2000 particles exist in each sample. Having the 
same frequency distribution of particles, these samples were distinguished by initial 
inclination of particles before shearing. In one assembly, the particles were inclined 
randomly, which constitutes an isotropic-like fabric. However, the other four as-
semblies contain the particles whose elongation is inclined along a predefined di-
rection, i.e.,  = 0, 30, 60, and 90o.  stands for the bedding angle which is defined 
by the angle between the long axis of the particle and the horizontal direction (1-1 
axis). As a consequence, the latter four samples are inherently anisotropic.  
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Fig. 3 Schematics of particles used in the assemblies 

After the generation of samples, each assembly was compressed under the con-
fining pressure of 400 kPa ( 2211   ). The compression process is continued un-

til there is almost no volume change in the assembly. Fig. 4a represents a quarter of 
the compacted assemblies for all inherently-anisotropic samples under the confining 
pressure of 400kPa. Afterwards, the compacted assembly was sheared biaxially, by 
keeping the lateral stress ( 11 ) equal to 400kPa and simultaneously, the boundary 

of the sample was forced to move along 2-2 axis by a constant vertical displacement 
rate (Fig. 4b). A detailed description of simulations is explained elsewhere [14]. 

 

 
(a)     (b) 

Fig.4 Presentation of inherent anisotropic assemblies: (a) isotopically compacted; (b) sheared 

4 Results 

Based on the loading path, it is possible to directly calculate the variation of the 
stress ratio 

nt   from Eq. 6. Moreover, such stress ratio can be calculated from a 

micromechanical point of view using Eqs. (6) and (7). From both viewpoints, the 
results are sketched in Fig. 5 in terms of stress ratio versus the axial strain for iso-
tropic as well as anisotropic samples ( = 0, 30, 60, and 90o). 
According to Fig. 5, it can be seen that none of the SFF forms can predict appropri-
ately the stress ratio variation in all the anisotropic samples. The prediction of Eqs. 
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6 and 7 almost coincide for the samples  = 0, 30o, but they get far from each other 
for  = 60, 90o. It is reminded that the difference between Eq. 6 and Eq. 7 exists in 
the consideration of non-coaxiality among anisotropy quantities. However, it is im-
portant to note that in both of the forms of the SFF expressions, it is assumed that 
the contact vector is coaxial with the contact normal. Such a comparison between 
the results clearly expresses the importance of consideration of non-coaxially be-
tween contact vector and the contact normal. In contrary to anisotropic samples, 
both forms of the SFF (Eqs. 6 and 7) can well predict the stress ratio with the axial 
strain for the sample including randomly-distributed particles. It means that alt-
hough the particles are elongated (anisotropic), the overall distribution of contact 
and contact normals are coincident (coaxial) and thus, both forms of the SFF ex-
pressions ae valid for such samples. 
 

 

Fig.5 Comparison of stress ratio variation with axial strain for all fore anisotropic and isotropic 
samples 



8   

5 Conclusion 

In this paper, the stress-force-fabric (SFF) relationship was examined for aniso-
tropic assemblies including elongated polygonal particles. The accuracy of two 
forms of SFF including isotropic and anisotropic versions were investigated. The 
results show that as expected, these two expressions can well predict the relation-
ship between micro and macro behavior of assemblies with elongated particles 
when the particles and randomly distributed. In such condition, the directions of 
anisotropy parameters coincide and thus, the sample behaves isotopically. However, 
in the case of inherent anisotropy, i.e., initial anisotropy in the fabric SFF expres-
sions can no more predict acceptable results. 
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