THE COMPLEMENT OF SUBGROUP GRAPH OF A GROUP

F. KAKERI¹, A. ERFANIAN²

ABSTRACT. Let G be a finite group and H a subgroup of G. In 2012, David F. Anderson et al. introduced the subgroup graph of H in G as a simple graph with vertex set consisting all elements of G and two distinct vertices x and y are adjacent if and only if $xy \in H$. They denoted this graph by $\Gamma_H(G)$. In this paper, we consider the complement of $\Gamma_H(G)$, denoted by $\overline{\Gamma_H(G)}$ and will give some graph properties of this graph, for instance diameter, girth, independent and dominating sets, regularity. Moreover, the structure of this graph, planerity and 1-planerity are also investigated in the paper.

1. INTRODUCTION

There are many papers on assigning a graph to a group, ring or other algebraic structures and investigation of algebraic properties of group or ring using the associated graph, for example non-commuting graph [1], power graph [8], prime graph [7], zero divisor graph [2] and so on. One of the graphs associated to a group is the subgroup graph denoted by $\Gamma_H(G)$ which was introduced by D. F. Anderson, et. al. in [3]. They defined the graph $\Gamma_H(G)$ as a directed simple graph with vertex set G such that x is the initial vertex and y is the terminal vertex of an edge if and only if $x \neq y$ and $xy \in H$. Some properties of this graph are investigated by the above authors, for instance the structure of the connected components of $\Gamma_H(G)$ when |H| is either two or three and also when H is a normal subgroup and G/H is a finite abelian group. In this paper, we investigated the complement of $\Gamma_H(G)$ which is denoted by $\overline{\Gamma_H(G)}$. It is easy to see that if H is a normal subgroup of G, then $\Gamma_H(G)$ is

55

 $^{^1{\}rm Ferdowsi}$ University of Mashhad, International Campus, Mashhad, Iran. fereshte.kakeri@yahoo.com

²Department of Pure Mathematics and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, Mashhad, Iran erfanian@math.um.ac.ir.

F. Kakeri, A. Erfanian

undirected simple graph. Moreover, if H = G, then we have an empty graph. For this reason, we assumed that H is always a proper normal subgroup and so $\overline{\Gamma_H(G)}$ is undirected, too. Throughout the paper, all graphs are simple and the notations and terminologies about graphs and groups are standard (for instance see [5, 4]).

2. Some properties of $\overline{\Gamma_H(G)}$

As we mentioned earlier in the previous section, the subgroup graph $\Gamma_H(G)$ is defined as the following:

Definition 1. Let G be a group and H be a subgroup of G. The subgroup graph $\Gamma_H(G)$ is a directed simple graph with vertex set G; and two distinct elements x and y are adjacent if and only if $xy \in H$.

It is clear that if x is adjacent to y, then it not necessary that y is adjacent to y. But, if H is normed, then $xy \in H$ will imply that $yx \in H$. Because, $yx = x^{-1}(xy)x \in H$. Thus, we assume that H is normal, then the complement of $\Gamma_H(G)$ is an undirected simple graph whose vertices are all elements of G, and two distinct vertices x and y are adjacent if $xy \notin H$.

One can see that if $\{x, y\}$ is an edge in $\Gamma_H(G)$, then both x and y can not be in H. So, we have no edge in $\overline{\Gamma_H(G)}$ with end vertices are in H. Moreover, if $h \in H$ is a vertex in $\overline{\Gamma_H(G)}$, then h will be adjacent to every element in $G \setminus H$. Also, there is no vertex in H such that it is adjacent to h. Thus deg(h) = |G| - |H|. Furthermore, if $x \in G \setminus H$, then x can not be adjacent to x^{-1} . we know that $x^{-1} \in G \setminus H$ and so deg(x) = |H| + |A| where $A = \{y \in G \setminus H; y \text{ adjacent to } x\}$.

In the following theorem, we determine the diameter of $\Gamma_G(H)$.

Theorem 1. $diam(\overline{\Gamma_G(H)}) \leq 2$.

Proof. Since H is a proper normal subgroup of G, there are the following three cases:

Case 1. If x and y are two vertices in H, then there exists an element $z \in G \setminus H$ and so x - z - y.

Case 2. If x and y are two vertices in $G \setminus H$, then we have x - e - y. **Case 3.** If $x \in H$ and $y \in G \setminus H$, then x - y. Hence, the above cases imply that $diam(\overline{\Gamma_H(G)}) \leq 2$. It is interesting to see that whenever $diam(\overline{\Gamma_H(G)}) = 1$. The following theorem states this fact.

Theorem 2. $\Gamma_H(G)$ is complete if and only if G is an elementary abelian 2-group and H is trivial subgroup.

Proof. Assume that $\Gamma_H(G)$ is complete since, there is no edge between any two elements in H, we should have $H = \{e\}$. Now, if G has a nontrivial

element x in which $|x| \neq 2$; then $x \neq x^{-1}$ and x can not be adjacent to x^{-1} which is a contradiction. Thus $\exp(G) = 2$ and G is abelian. Hence G is elementary abelian 2-group. Conversely, if $H = \{e\}$ and G is elementary abelian 2-group. Then we claim that for every two distinct vertices $x \neq y, x$ should be joined to y by an edge. If x or y is identity element, then trivially x adjacent to y. If $x, y \in G \setminus H$ and x is not adjacent to y then we have xy = e or equivalently $y = x^{-1} = x$ which is a contradiction. Therefore $\overline{\Gamma_H(G)}$ is complete as required.

Let [G:H] = n and $\{x_1H, x_2H, \ldots, x_nH\}$ be the set of all distinct left cosets of H in G and $\{e = x_1, x_2, \ldots, x_n\}$ be the set of representative left transverals of H in G. Then we may state the following simple lemmas which play an important role to find the clique number and girth of $\overline{\Gamma_H(G)}$.

Lemma 3. Let [G : H] = n and $\{x_1H, x_2H, \ldots, x_nH\}$ be the set of all representative distinct left casets of H. If $x_i^2 \notin H$, for some $1 \leq i \leq n$, then all elements in x_iH form a clique of size |H|.

Proof. Suppose that $a, b \in x_i H$, where $x_i^2 \notin H$. Then there elements $h_1, h_2 \in H$ such that $a = x_i h_1$; $b = x_i h_2$.

Thus; $ab = x_ih_1x_ih_2 = x_ih_1x_i^{-1}x_i^2h_2$. Since $x_1h_1x_i^{-1} \in H$, $h_2 \in H$ and $x_i^2 \notin H$, so we have $ab \notin H$. Therefore *a* is adjacent to *b* and we have a clique of size |H|.

Lemma 4. By the notation as in the previous lemma, if x_i ; adjacent to x_j , for some $1 \leq i \neq j \leq n$, then every element in x_iH is adjacent to every element in x_jH .

Proof. Assume that $a \in x_iH$ and $b \in x_jH$. Then $a = x_ih_1$ and $b = x_jh_2$, for some $h_1, h_2 \in H$. Since $x_ix_j \notin H$, $x_ihx_i^{-1} \in H$ and $h_2 \in H$, so we have $ab = x_ih_1x_jh_2 = x_ih_1x_i^{-1}x_ix_jh_2 \notin H$. Thus a is adjacent to b.

Theorem 5. Let [G:H] = n. As the notation in Lemma 3, if X is a subset of $\{x_1, x_2, \ldots, x_n\}$ such that X has the property that $x_i x_j \notin H$, for every $x_i, x_j \in X$, then $\omega(\overline{\Gamma_H(G)}) = |X||H| + 1$.

Proof. By Lemma 4 it is clear that there is an edge between any two vertices inside left coset xH and also any two vertices on in xH and other in yH, where $x, y \in X$. Thus a complete graph on |X||H| exists. Since identity element is adjacent to every vertices in $G \setminus H$, so we will have a clique of size |X||H| + 1. One can easily check that one more vertex can not be added to this clique and there is no clique of size bigger than |X||H| + 1. Thus $\omega(\overline{\Gamma_H(G)}) = |X||H| + 1$. It is obvious that |X| is at most [G:H] - 1, because $e \notin X$. So, if $\overline{\Gamma_H(G)}$ is a complete graph, then we should have |X||H| + 1 = |G| or ([G:H] - 1)|H| + 1 = |G| or |H| = 1 which confirms the result given in Theorem 2

F. Kakeri, A. Erfanian

Theorem 6. Girth $(\overline{\Gamma_H(G)}) = 4$ when [G:H] = 2. Otherwise girth $(\overline{\Gamma_H(G)}) = 3$.

Proof. First assume that [G : H] = 2. So $G = H \cup xH$. We note that $x^2 \in H$; because if $x^2 \notin H$, then $x^2H = xH$ which implies that $x \in H$, it is a contradiction. Hence $x^2 \in H$. Since |H| > 1; there exists elements $h_1, h_2 \in H$. Thus $xh_1, xh_2 \in xH$ and we have a cycle

$$h_1 - h_2 - h_2 - h_2$$

of length 4, by Lemma 4. Thus girth $(\overline{\Gamma_H(G)}) = 4$.

If $[G:H] \ge 3$; then there are at least two left cosets xH and yH such that $x, y \notin H$. It is clear that x is adjacent to y^{-1} , because $xH \neq yH$. Thus identity element, x and y^{-1} will construct a triangle. Hence girth $(\overline{\Gamma_H(G)}) = 3$ and the proof of theorem is completed.

In the following theorem, we determine the independence number of the graph. Note that the independence number of a graph X, denoted by $\alpha(X)$ is the maximum size of independent sets of X. A subset M of V(X) is called an independent number if there is no edge with two ends in M.

Theorem 7. Let [G : H] = n and $X = \{x_1, x_2, \ldots, x_n\}$ be a subset of vertex set such that $\{x_1H, x_2H, \ldots, x_nH\}$ is the set of representative distinct left cosets of H in G.

Assume that $A = \{x_i \in X; x_i \text{ is not adjacent to } x_j, \text{ for all } j; 1 \leq i \neq j \leq n\}$ and $B = \{x_i \in X; x_i^2 \in H\}$, then $\alpha(\overline{\Gamma_H(G)}) = |A \cap B|(|H| - 1) + |A|$.

Proof. It is clear that if $x_i, x_j \in A \cap B$, then $x_i^2, x_j^2 \in H$ and x_i is not adjacent to x_j . By lemmas 3 and 4, there is no edge between vertices in x_iH , x_jH and also no edge between vertices in x_iH and vertices in x_jH . Hence $\bigcup_{x_i \in A \cap B} x_iH$ is an independent set.

Now, if $x_k \in A \setminus (A \cap B)$, then all elements in $x_k H$ forms a clique, by Lemma 3 and also x_k is not adjacent to any vertex in $A \cap B$. Hence, we can add x_k to the above independent set.

Therefore $(\bigcup_{i \in A \cap B} x_i H) \bigcup (A \setminus A \cap B)$ is the largest independent set. Thus $\alpha(\overline{\Gamma_H(G)}) = \sum_{x_i \in A \cap B} |x_i H| + (|A| - |A \cap B|) = |A \cap B|(|H| - 1) + |A|$ as required.

Now, we are going to find an upper bound for the chromatic number of $\Gamma_H(G)$. Remind that chromatic number of a graph X, denoted by $\chi(X)$ is the minimum number of colors that required for labeling vertices such that there is no edge with two ends vertices have the same color.

Theorem 8. With the same notation as in Theorem 7, $\chi(\Gamma_H(G)) \leq (n+1-|A\cup B|)|H| + |A\cup B| - |A|$

Proof. One can easily see that for all vertices in $\bigcup_{x_i \in A} x_i H$, we need |H| colors. Vertices in $\bigcup_{x_i \in B \setminus A} x_j H$ need at most $|B| - |A \cap B|$ colors. For the

58

reminding vertices, at most $(n - |A \cup B|)|H|$ are required. Thus $\chi(\overline{\Gamma_H(G)}) \leq |H| + |B| - |A \cap B| + (n - |A \cup B|)|H| = (n + 1 - |A \cup B|)|H| + |A \cup B| - |A|$. **Example 1.** Let [G : H] = 2. Then we have $X = \{e, x\}$ and so $A = \{x\}$ and $B = \{e\}$. Hence $\chi(\overline{\Gamma_H(G)}) \leq (2 + 1 - 2)|H| + 2 - 1 = |H| + 1$. But, we know that $\overline{\Gamma_H(G)}$ consists a complete graph on vertices in xH and |H| isolated vertices on vertices in H. Thus |H| + 1 colors is the minimum required colors therefore $\chi(\overline{\Gamma_H(G)}) = |H| + 1$ and it shows that the upper bound given in Theorem 8 is sharp.

The following theorem will state the dominating number of $\overline{\Gamma_H(G)}$. The dominating number of a graph X, denoted by $\chi(X)$; is the minimum size of dominating set. A subset D of V(X) is called a dominating set if for every vertex $a \in V(X) \setminus D$ there exists a vertex $b \in D$ such that $\{a, b\} \in E(x)$.

Theorem 9. $\gamma(\overline{\Gamma_H(G)}) = |H|.$

Proof. It is obvious that H is a dominating set, because $e \in H$ and e is adjacent to all other vertices outside of H. So $\gamma(\overline{\Gamma_H(G)}) \leq |H|$. But, one can easily check that there is no dominating set of smaller size than |H|. Hence $\gamma(\overline{\Gamma_H(G)}) = |H|$.

In the next lemma, we give some necessary conditions for the graph $\Gamma_H(G)$ to be a planner graph. Note that a graph X is said to be planner if it can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. There is a know result that states a finite graph is planar if and only if it does not contain a subgraph that is division of K_5 or $K_{3,3}$ (see [5])

Lemma 10. For each of the following cases, $\overline{\Gamma_H(G)}$ is not planar.

- (i) $|H| = 1, |G| \ge 5$ and G is an elementary abelian 2-group.
- (ii) $|H| \ge 2$ and $|X A \cup B| \ge 2$.
- (iii) $|H| \ge 4$ and $|X B| \ge 1$.

Note that sets X, A and B are defined in Theorem 7.

Proof. (i) By Theorem 2, $\Gamma_H(G)$ is complete and has at least 5 vertices, thus it contains K_5 and can not be planar. For (ii), if $|X - A \cup B| \ge 2$, then there are non-trivial elements x_1 and x_2 in $X - A \cup B$. Since $x_1, x_2 \notin A \cup B$ so $x_1H \cup x_2H \cup \{e\}$ consists a complete graph K_5 and so it does not planar.

(*iii*) Suppose that there exists an element $x \in X - B$. Then $x \notin B$ implies that xH is a complete graph. Thus $xH \cup \{e\}$ contains K_5 and it can not be planar. One can see that the converse of the above lemma is true. So we can state the following corollary.

Corollary 11. By Lemma 10, we can state that $\overline{\Gamma_H(G)}$ is planar if and only if conditions (i), (ii) and (iii) can not be happen.

F. Kakeri, A. Erfanian

By the similar method as in Lemma 10, we may consider 1-planar property for $\overline{\Gamma_H(G)}$. Remind that a graph is called 1-planar if it can be drawn in the plane in such a way that each edges has at most one crossing point, where it crosses a single additional edge. It is known that in a 1-planar graph we have some forbidden subgraphs, for instance complete graph $K_{7,}$ complete bipartite graph $K_{4,5}$ and complete multipartite graph $K_{2,3,3}$ (see [6] for more details). Thus we may state the following result here. The proof is very similar to the proof of Theorem 7 and so we omit here.

Theorem 12. $\overline{\Gamma_H(G)}$ is 1-planar if and only if each of the following conditions can not occured:

- (i) $|H| = 1, |G| \ge 7$ and G is an elementary abelian 2-group.
- (ii) $|H| = 3, [G:H] \ge 3$ and $X A \ne \emptyset$.
- (*iii*) |H| = 4 and $|X A \cup B| \ge 2$.
- (iv) $|H| \ge 5$ and $X A \neq \emptyset$.

References

- A. Abdollahi, S. Akbari and H. R. Maimani: Non-commuting graph of a group, J. Algebra 298 (2006), 468-492.
- [2] D.F. Anderson and A. Badawi: On the zero-divisor graph of a ring, Comm. Algebra 36 (2008) 3073-3092.
- [3] David F. Anderson, Jodi Fasteen and John D. LaGrange: The subgroup graph of a group, Arab J. Math. 1 (2012), 17-27.
- [4] D. J. S. Robinson: A Course in the Theory of Groups, Springer-Verlag: New YorkHeidelberg-Berlin (1982).
- [5] Godsil, C. D. and Royle, G: Algebraic graph theory Graduate texts in mathematics, 207 Springer-Verlag, New York (2001).
- [6] J. Czap and D. Hudk: 1-planarity of complete multipartite graphs, Discrete Applied Mathematics 160 4-5, (2012) 505512.
- [7] J.S. Williams: Prime graph components of finite groups, J. Algebra 69 (2) (1981), 487513.
- [8] P. J. Cameron and S. Ghosh: The power graph of a fnite group, Discrete Math. 311 (2011), 1220-1222.

60