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THE COMPLEMENT OF SUBGROUP GRAPH OF A GROUP

F. KAKERI1, A. ERFANIAN2

Abstract. Let G be a finite group and H a subgroup of G. In 2012, David
F. Anderson et al. introduced the subgroup graph of H in G as a simple
graph with vertex set consisting all elements of G and two distinct vertices
x and y are adjacent if and only if xy ∈ H. They denoted this graph
by ΓH(G). In this paper, we consider the complement of ΓH(G), denoted

by ΓH(G) and will give some graph properties of this graph, for instance
diameter, girth, independent and dominating sets, regularity. Moreover,
the structure of this graph, planerity and 1-planerity are also investigated
in the paper.

1. Introduction

There are many papers on assigning a graph to a group, ring or other
algebraic structures and investigation of algebraic properties of group or ring
using the associated graph, for example non-commuting graph [1], power graph
[8], prime graph [7], zero divisor graph [2] and so on. One of the graphs
associated to a group is the subgroup graph denoted by ΓH(G) which was
introduced by D. F. Anderson, et. al. in [3]. They defined the graph ΓH(G)
as a directed simple graph with vertex set G such that x is the initial vertex
and y is the terminal vertex of an edge if and only if x 6= y and xy ∈ H. Some
properties of this graph are investigated by the above authors, for instance
the structure of the connected components of ΓH(G) when |H| is either two or
three and also when H is a normal subgroup and G/H is a finite abelian group.
In this paper, we investigated the complement of ΓH(G) which is denoted by

ΓH(G). It is easy to see that if H is a normal subgroup of G, then ΓH(G) is
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undirected simple graph. Moreover, if H = G, then we have an empty graph.
For this reason, we assumed that H is always a proper normal subgroup and
so ΓH(G) is undirected, too. Throughout the paper, all graphs are simple and
the notations and terminologies about graphs and groups are standard (for
instance see [5, 4]).

2. Some properties of ΓH(G)

As we mentioned earlier in the previous section, the subgroup graph ΓH(G)
is defined as the following:

Definition 1. Let G be a group and H be a subgroup of G. The subgroup
graph ΓH(G) is a directed simple graph with vertex set G; and two distinct
elements x and y are adjacent if and only if xy ∈ H.

It is clear that if x is adjacent to y, then it not necessary that y is adjacent
to y. But, if H is normed, then xy ∈ H will imply that yx ∈ H. Because,
yx = x−1(xy)x ∈ H. Thus, we assume that H is normal, then the complement
of ΓH(G) is an undirected simple graph whose vertices are all elements of G,
and two distinct vertices x and y are adjacent if xy 6∈ H.

One can see that if {x, y} is an edge in ΓH(G), then both x and y can

not be in H. So, we have no edge in ΓH(G) with end vertices are in H.

Moreover, if h ∈ H is a vertex in ΓH(G), then h will be adjacent to every
element in G \ H. Also, there is no vertex in H such that it is adjacent to
h. Thus deg(h) = |G| − |H|. Furthermore, if x ∈ G \ H, then x can not be
adjacent to x−1. we know that x−1 ∈ G \H and so deg(x) = |H|+ |A| where
A = {y ∈ G \H; y adjacent to x}.
In the following theorem, we determine the diameter of ΓG(H).

Theorem 1. diam(ΓG(H)) 6 2.

Proof. Since H is a proper normal subgroup of G, there are the following three
cases:
Case 1. If x and y are two vertices in H, then there exists an element z ∈ G\H
and so x− z − y.
Case 2. If x and y are two vertices in G \H, then we have x− e− y.
Case 3. If x ∈ H and y ∈ G\H, then x−y. Hence. the above cases imply that

diam(ΓH(G)) 6 2. It is interesting to see that whenever diam(ΓH(G)) = 1.
The following theorem states this fact. �

Theorem 2. ΓH(G) is complete if and only if G is an elementary abelian
2-group and H is trivial subgroup.

Proof. Assume that ΓH(G) is complete since, there is no edge between any
two elements in H, we should have H = {e}. Now, if G has a nontrivial
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element x in which |x| 6= 2; then x 6= x−1 and x can not be adjacent to
x−1 which is a contradiction. Thus exp(G) = 2 and G is abelian. Hence G
is elementary abelian 2-group. Conversely, if H = {e} and G is elementary
abelian 2-group. Then we claim that for every two distinct vertices x 6= y, x
should be joined to y by an edge. If x or y is identity element, then trivially x
adjacent to y. If x, y ∈ G \H and x is not adjacent to y then we have xy = e

or equivalently y = x−1 = x which is a contradiction. Therefore ΓH(G) is
complete as required.
Let [G : H] = n and {x1H,x2H, . . . , xnH} be the set of all distinct left cosets
of H in G and {e = x1, x2, . . . , xn} be the set of representative left transverals
of H in G. Then we may state the following simple lemmas which play an
important role to find the clique number and girth of ΓH(G). �

Lemma 3. Let [G : H] = n and {x1H,x2H, . . . , xnH} be the set of all rep-
resentative distinct left casets of H. If x2i 6∈ H, for some 1 6 i 6 n, then all
elements in xiH form a clique of size |H|.

Proof. Suppose that a, b ∈ xiH, where x2i 6∈ H. Then there elements h1, h2 ∈
H such that a = xih1; b = xih2.
Thus; ab = xih1xih2 = xih1x

−1
i x2ih2. Since x1h1x

−1
i ∈ H, h2 ∈ H and

x2i 6∈ H, so we have ab 6∈ H. Therefore a is adjacent to b and we have a clique
of size |H|. �

Lemma 4. By the notation as in the previous lemma, if xi; adjacent to xj, for
some 1 6 i 6= j 6 n, then every element in xiH is adjacent to every element
in xjH.

Proof. Assume that a ∈ xiH and b ∈ xjH. Then a = xih1 and b = xjh2,

for some h1, h2 ∈ H. Since xixj 6∈ H, xihx
−1
i ∈ H and h2 ∈ H, so we have

ab = xih1xjh2 = xih1x
−1
i xixjh2 6∈ H. Thus a is adjacent to b. �

Theorem 5. Let [G : H] = n. As the notation in Lemma 3, if X is a subset
of {x1, x2, . . . , xn} such that X has the property that xixj 6∈ H, for every

xi, xj ∈ X, then ω(ΓH(G)) = |X||H|+ 1.

Proof. By Lemma 4 it is clear that there is an edge between any two vertices
inside left coset xH and also any two vertices on in xH and other in yH, where
x, y ∈ X. Thus a complete graph on |X||H| exists. Since identity element is
adjacent to every vertices in G \H, so we will have a clique of size |X||H|+ 1.
One can easily cheek that one more vertex can not be added to this clique and
there is no clique of size bigger than |X||H|+1. Thus ω(ΓH(G)) = |X||H|+1.

It is obvious that |X| is at most [G : H]− 1, because e 6∈ X. So, if ΓH(G) is a
complete graph, then we should have |X||H|+1 = |G| or ([G : H]−1)|H|+1 =
|G| or |H| = 1 which confirms the result given in Theorem 2 �
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Theorem 6. Girth (ΓH(G)) = 4 when [G : H] = 2. Otherwise girth (ΓH(G)) =
3.

Proof. First assume that [G : H] = 2. So G = H ∪ xH. We note that
x2 ∈ H; because if x2 6∈ H, then x2H = xH which implies that x ∈ H, it is a
contradiction. Hence x2 ∈ H. Since |H| > 1; there exists elements h1, h2 ∈ H.
Thus xh1, xh2 ∈ xH and we have a cycle

h1 xh1 h2 xh2 h2

of length 4, by Lemma 4. Thus girth (ΓH(G)) = 4.
If [G : H] > 3; then there are at least two left cosets xH and yH such that
x, y 6∈ H. It is clear that x is adjacent to y−1, because xH 6= yH. Thus identity
element, x and y−1 will construct a triangle. Hence girth (ΓH(G)) = 3 and
the proof of theorem is completed.
In the following theorem, we determine the independence number of the graph.
Note that the independence number of a graph X, denoted by α(X) is the
maximum size of independent sets of X. A subset M of V (X) is called an
independent number if there is no edge with two ends in M . �

Theorem 7. Let [G : H] = n and X = {x1, x2, . . . , xn} be a subset of vertex
set such that {x1H,x2H, . . . , xnH} is the set of representative distinct left
cosets of Hin G.
Assume that A = {xi ∈ X;xi is not adjacent to xj , for all j; 1 6 i 6= j 6 n}
and B = {xi ∈ X;x2i ∈ H}, then α(ΓH(G)) = |A ∩B|(|H| − 1) + |A|.
Proof. It is clear that if xi, xj ∈ A∩B, then x2i , x

2
j ∈ H and xi is not adjacent

to xj . By lemmas 3 and 4, there is no edge between vertices in xiH, xjH and
also no edge between vertices in xiH and vertices in xjH. Hence

⋃
xi∈A∩B xiH

is an independent set.
Now, if xk ∈ A \ (A∩B), then all elements in xkH forms a clique, by Lemma
3 and also xk is not adjacent to any vertex in A ∩ B. Hence, we can add xk
to the above independent set.
Therefore (

⋃
i∈A∩B xiH)

⋃
(A \ A

⋂
B) is the largest independent set. Thus

α(ΓH(G)) =
∑

xi∈A∩B |xiH| + (|A| − |A ∩ B|) = |A ∩ B|(|H| − 1) + |A| as
required.
Now, we are going to find an upper bound for the chromatic number of ΓH(G).
Remind that chromatic number of a graphX, denoted by χ(X) is the minimum
number of colors that required for labeling vertices such that there is no edge
with two ends vertices have the same color. �

Theorem 8. With the same notation as in Theorem 7, χ(ΓH(G)) 6 (n+ 1−
|A ∪B|)|H|+ |A ∪B| − |A|
Proof. One can easily see that for all vertices in

⋃
xi∈A xiH, we need |H|

colors. Vertices in
⋃

xj∈B\A xjH need at most |B| − |A ∩ B| colors. For the
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reminding vertices, at most (n− |A ∪B|)|H| are required. Thus χ(ΓH(G)) 6
|H|+ |B|−|A∩B|+(n−|A∪B|)|H| = (n+1−|A∪B|)|H|+ |A∪B|−|A|. �
Example 1. Let [G : H] = 2. Then we have X = {e, x} and so A = {x}
and B = {e}. Hence χ(ΓH(G)) 6 (2 + 1 − 2)|H| + 2 − 1 = |H| + 1. But, we

know that ΓH(G) consists a complete graph on vertices in xH and |H| isolated
vertices on vertices in H. Thus |H| + 1 colors is the minimum required col-

ors therefore χ(ΓH(G)) = |H|+ 1 and it shows that the upper bound given in
Theorem 8 is sharp.
The following theorem will state the dominating number of ΓH(G). The dom-
inating number of a graph X, denoted by χ(X); is the minimum size of dom-
inating set. A subset D of V (X) is called a dominating set if for every vertex
a ∈ V (X) \D there exists a vertex b ∈ D such that {a, b} ∈ E(x).

Theorem 9. γ(ΓH(G)) = |H|.
Proof. It is obvious that H is a dominating set, because e ∈ H and e is
adjacent to all other vertices outside of H. So γ(ΓH(G)) 6 |H|. But, one can
easily cheek that there is no dominating set of smaller size than |H|. Hence

γ(ΓH(G)) = |H|.
In the next lemma, we give some necessary conditions for the graph ΓH(G)
to be a planner graph. Note that a graph X is said to be planner if it can be
embeded in the plane, i.e., it can be drawn on the plane in such a way that
its edges intersect only at their endpoints. In other words, it can be drawn in
such a way that no edges cross each other. There is a know result that states
a finite graph is planar if and only if it does not contain a subgraph that is
division of K5 or K3,3 (see [5]) �

Lemma 10. For each of the following cases, ΓH(G) is not planar.

(i) |H| = 1, |G| > 5 and G is an elementary abelian 2-group.
(ii) |H| > 2 and |X −A ∪B| > 2.

(iii) |H| > 4 and |X −B| > 1.

Note that sets X,A and B are defined in Theorem 7.

Proof. (i) By Theorem 2, ΓH(G) is complete and has at least 5 vertices, thus
it contains K5 and can not be planar. For (ii), if |X −A∪B| > 2, then there
are non-trivial elements x1 and x2 in X − A ∪ B. Since x1, x2 6∈ A ∪ B so
x1H ∪ x2H ∪ {e} consists a complete graph K5 and so it does not planar.
(iii) Suppose that there exists an element x ∈ X − B. Then x 6∈ B implies
that xH is a complete graph. Thus xH ∪ {e} contains K5 and it can not be
planar. One can see that the converse of the above lemma is true. So we can
state the following corollary. �

Corollary 11. By Lemma 10, we can state that ΓH(G) is planar if and only
if conditions (i), (ii) and (iii) can not be happen.
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By the similar method as in Lemma 10, we may consider 1-planar property
for ΓH(G). Remind that a graph is called 1-planar if it can be drawn in the
plane in such a way that each edges has at most one crossing point, where it
crosses a single additional edge. It is known that in a 1-planar graph we have
some forbidden subgraphs, for instance complete graph K7, complete bipartite
graph K4,5 and complete multipartite graph K2,3,3 (see [6] for more details).
Thus we may state the following result here. The proof is very similar to the
proof of Theorem 7 and so we omit here.

Theorem 12. ΓH(G) is 1-planar if and only if each of the following conditions
can not occured:

(i) |H| = 1, |G| > 7 and G is an elementary abelian 2-group.
(ii) |H| = 3, [G : H] > 3 and X −A 6= ∅.

(iii) |H| = 4 and |X −A ∪B| > 2.
(iv) |H| > 5 and X −A 6= ∅.
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