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ABSTRACT: The purpose of this paper is to investigate the EGM method and the behavior of a solid particle suspended in a two-
dimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to
simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian—Lagrangian approach where
the solid particles are treated as points moving in the computational domain as a result of the fluid motion. Entropy generation due to
heat transfer irreversibility, isotherms, streamlines and Nusselt numbers were obtained and discussed. Total entropy generations in
various cases are also reported and optimum case is presented based on minimum entropy generation.
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INTRODUCTION

The objective of this study is to develop a Lagrangian-
Lagrangian based numerical scheme to simulate the
behavior of solid particle in a rectangular cavity due to
conjugate natural convection. The problem of natural
convection in an enclosure has been a widespread topic of
research, due to its occurrence in industrial and
technological applications, such as electronic cooling [1,2],
cooling of the nuclear or chemical reactors [3,4] and the
heat and mass transfer processes in cryogenic fuel and
vertical storage tanks [5—11].

In these works, the regimes of convective heat transfer in
closed vertical volumes were analyzed in detail for the
conditions when the thermal fluxes supplied to the liquid
are uniformly distributed in the base zone and over the
bottom and lateral surfaces. The spatial and temporal
structure of convection at a sine distribution of the thermal
flux on the lateral wall of the vertical cylinder was
presented in [12]. The conjugate problem of natural
convection in a vertical tank partially filled with the liquid
was analyzed in [13] under the conditions of the supply of a
uniform heat flux to the external side of the lateral wall and
a simultaneous heat removal through the local sinks located
in the tank lateral wall. The mathematical modeling of
unsteady regimes of natural convection in a closed
cylindrical region with a heat-conducting shell of finite
thickness was carried out in [14]. Numerous studies of
various physical systems based on EGM are reported in
literature[ 15—19].
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Abolfazli and Alinejad [15] analyze the entropy
generation due to conjugate natural convection in an
enclosure. Baytas [16] presented a comprehensive analysis
on influence of Rayleigh number, Bejan number and
inclination angle on entropy generation for natural
convection in an inclined porous cavity. Transition criteria
for entropy reduction of convective heat transfer from
micropatterned surfaces were reported by Naterer [17].
Entropy generation in microchannel flow with presence of
nanosized phase change particles was investigated by
Alquaity et al. [18]. Vosoogh et al. [19] studied the effect of
nanofluid on entropy generation and pumping power in
coiled tube. Recently Lattice Boltzmann Method (LBM)
has been developed as a new tool for simulating the fluid
flow, heat transfer and other complicated physical
phenomena. Compared with the traditional computational
fluid dynamics methods, the Lattice Boltzmann is a
mesoscopic approach based on the kinetic theory. It has
many advantages, such as simple coding, easy
implementation of boundary conditions, fully parallelism
and there is no explicit requirement of fluid pressure
calculation [20]. At present the applications of LBM have
achieved great success in multi phase flow, chemical
reaction flow, flow in porous medium, thermal
hydrodynamics, suspension particle flow and magneto
hydrodynamics. Chatterjee and Amiroudine [21] proved the
multiscale mesoscopic lattice Boltzmann methods to be an
efficient and inexpensive tool to simulate complex
thermofluidic phenomena. Guo and Zhao [22] conducted
the simulation for incompressible flow in porous media by
using LBM. D’Orazio et al. [23] and Shu et al. [24]
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Nomenclature
u,v  Velocities, m/s
Be  Bejan number X,y  Coordinates, m
g Gravitational acceleration, m/s? Greek Symbols
n  Normal direction on a plane o Thermal diffusivity, m?s-!
Sy, Entropy generation due to heat transfer p  Dynamic viscosity, kg(ms)-!
S¢  Entropy generation due to fluid friction 0  Dimensionless temperature
N,  Dimensionless total entropy generation Subscripts
Nu;  Local Nusselt number ¢ cold
Nu, Mean Nusselt number f  fluid
Pr  Prandtl number h  hot
Ra  Rayleigh number s solid
T  Temperature, K
performed the numerical calculations for the natural A .
convection in a cavity. \
The scopes of this study are as follows: Ce €2 Cs
i) Implementing Lattice Boltzmann Method to simulate
flow and thermal fields ¢ ﬁi 0 ﬁ‘-i )
ii) Evaluate the simulations using Rayleigh Number ranging
'f'r'om 10° to 10° anq compare the pbtaiped results ' c5 Cs co
iii) Evaluate the simulations using different thermal solid /
resistances =0 s s
iv) Applying the Second Newton Law to trace the position Fig. 1. 2-D 9-velocity lattice (D2Q9) model
of the solid particle in cavity flow
(0,0) k=0
1)Lattice Boltzmann method ¢, =1 (£1,0)c, (0, £1)c k=1234
The lattice kinetic theory and especially the Ilattice (£1,£1)c k=56,78

Boltzmann method have been developed as significantly
successful alternative numerical approaches for the solution
of a wide class of problems [25-27]. The LBM is derived
from lattice gas methods and can be regarded as a first
order explicit discretization of the Boltzmann equation in
phase space. This method (LBM) is a powerful numerical
technique, based on kinetic theory, for simulating fluid flow
[29] and heat transfer [30, 31], and has many advantages in
comparison with conventional CFD methods mentioned
previously. In contrast with the classical macroscopic
Navier—Stokes (NS) approach, the lattice Boltzmann
method uses a mesoscopic simulation model to simulate
fluid flow [30].

It uses modeling of the movement of fluid particles to
capture macroscopic fluid quantities, such as velocity and
pressure. In this approach, the fluid domain is made discrete
in uniform Cartesian cells, each one of which holds a fixed
number of Distribution Functions (DF) that represent the
number of fluid particles moving in these discrete
directions. Hence depending on the dimension and number
of velocity directions, there are different models that can be
used. The present study examined two-dimensional (2-D)
flow by a 2-D square lattice with nine velocities (D2Q9
model).

The velocity vectors ¢ ...cg, of the D2Q9 model are
shown in Figure 1 For each velocity vector, a particle DF is
stored. The velocities of the D2Q9 model are:
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where ¢ = Ax/At and k is the Lattice velocity direction.

The LB model used in the present work is the same as
that employed in [30].

The DFs are calculated by solving the Lattice
Boltzmann Equation (LBE), which is a special
discretization of the kinetic Boltzmann equation. After
introducing Bhatnagar—Gross—Krook(BGK) approximation
, the Boltzmann equation can be formulated as below [26]:

fielx + cibit, t + At) = fi(x, ) + %
[fkeq (x,t) = frlx, f)] + Atc F,

(M

where At, ¢ , T, fi © is the equilibrium DF, and F;, denote
the lattice time step, the discrete lattice velocity in direction
k, the lattice relaxation time, the equilibrium DF, and the
external force in the direction of the lattice velocity,
respectively. In order to incorporate buoyancy force in the
model, the force term in equation 1 needs to be calculated
in a vertical direction(y) as follows:

F = 3Wkgyﬁ (2)
y_T-T.
Ty — T, &)
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For natural convection, the Boussinesq approximation is
applied, and radiation heat transfer is negligible. To ensure
that the code works in the near incompressible regime, the

characteristic velocity of the flow, Vy4eyra1 =/ B8yATH
for a natural convection regime must be small compared

with the fluid speed of sound.

Equilibrium DFs are calculated as:

1u?

ceru 1(c-uw)?
145 (cx - w)
2¢?

fkeq = Wgp 2 +5

7 *3 @)

cs

where the weights of w, are w, =4/9 for k = 0,
w,=1/9fork=1,2,3,4and w, =1/36 fork=5,6,7,
8; and ¢, = ¢, /V3 is the lattice speed of sound. The
macroscopic fluid variable densities and velocities are
computed as the first two moments of the distribution
functions for each cell:

8 1 8
PZka» UZ_kaCk
k=0 pk:o

This model is explained in more detail in [32]. For the
temperature field the g distribution is as below:

®)

At
gr(x + At t + At) = g (x,t) + -

g (6)

[giq (X, t) - gk(X, t)]

The corresponding equilibrium DFs for fluid and solid,
respectively, are defined as follows [30]:

eq _ Ck " u]
g = wT [1 + 2 @)
g = wT ®)
The temperature field is computed as:
T=> g ©)

Evaluation of Nusselt number and thermal resistance:
Heat transfer between hot and cold walls was computed
by local and mean Nusselt number which is given as

N —106
U =——
! em on wall (10)
1 X
Num =;jo Nul dx (11)
and thermal resistance of solid region is defined as below
L:
R;=—;i=1,2for Solid I, Solid II (12)

ki
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Equations for entropy generation
Local entropy generation at each node, for thermal (S;)
and flow fields(Sy; ) are given by [29-32]:

90,\> 100,\*
Shi = [(ﬁ) +<W)] 13
Y \* (0% %Y\
Sri=9 4<axay> +(6Y2 - 6X2) (14)
_ UTy a2
0= 3 (7a7)

The combined total entropy generation (Sya) in the
cavity is given by the summation of total entropy
generation due to heat transfer (Spia) and fluid friction
(Sttotal)s Which in turn are obtained via integrating the
spatial entropy generation rates (S, and S¢) over the domain
Q.

N, = f Spdf + f S A = Shora + Sy cota (15)
Q Q
Sh total
Be = —— 16
o 16)

where Be number present the share of thermal entropy
generation.

PHYSICAL MODEL

The physical geometry considered in this study is shown
in Figure 2. We consider the conjugate natural convection
of a viscous incompressible fluid in a vertical enclosure in
the presence of a solid with constant hot temperature T}, at
the left lateral and the right lateral surface of the enclosure
remains constant cold temperature (T,.). External
boundaries of the upper and lower sides of enclosure are
thermally insulated. It was assumed that the thermophysical
properties of the material of solid and gas are temperature-
independent, and the flow regime is laminar.

! Adiabatic
H Th I Fluid 3 Tc
3
_____ m——— X
& H §2

L
Fig. 2. Solution region of the problem

NUMERICAL PROCEDURE

The numerical simulation was done by an in-house code
written in FORTRAN, wusing LBM. Numerical
investigations were carried out for the following values of
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the dimensionless parameters: 10°<Ra<10°, Pr=0.71. In the
numerical solution algorithm the first step is to incorporate
the distribution function (DF) for both velocity and thermal
field. The next steps are collision and streaming of the
particles via the distribution function. Walls are placed on
the sides of the computational domain. At the solid—fluid
interface, in the upper, f;, f4, fg, bottom, fg, f5, fs, left fs, fy, fg
and right boundary fs, f;, f;, are unknown and should be
specified for streaming. Amid-grid, bounce back, no-slip
boundary condition is applied to the obstacle and wall
nodes to determine unknown distribution functions.

In order to use the thermal boundary condition over the
solid region, regarding the difference between equilibrium
DF and thermal diffusivity of the solid and fluid, the

continuity of the heat flux is required to satisfy. The
comparison of streamlines, isotherms and mean Nusselt
number at the interface between the solid wall and gaseous
cavity with previous work at different Rayleigh numbers
illustrates a fine agreement that has been obtained (Figure 3
and Table 1). As can be seen, isotherms are aligned with the
temperature constant walls and slightly deviated by the flow
in the cavity. This observation indicate that the heat is
transferred by heat conduction in solid and the controlling
heat transfer mechanism changes from conduction to
convection in fluid region. Also, It should be noted that
there is an excellent agreement between the present results
and the benchmark solution by Varol et al. [33] (maximum
difference is less than 5%).

5
Ra=10

P ——

(a)
S|
& A
- | nb I|
0.5
oN ‘_j'l 2] =
(b)
Fig. 3. Comparison the streamlines and isotherms (a) Present study (b) Varol et al. Ref. [33]
Table 1
Mean Nusselt number values for various Rayleigh numbers.
Ra = 10’ Ra = 10° Ra = 10° Ra=10°
$1=8 $1=8 $1=6 $1=8
0.1L 02L 0.1L 0.2L 0.1L 02L 0.1L 0.2L
Present study 0.816 0.601 1.228 0.642 1.701 0.939 2.184 0.989
Varol et al. Ref. [33] 0.823 0.608 1.279 0.673 1.741 0.951 2.228 1.034

RESULTS AND DISCUTION

A numerical study has been carried out to investigate the
conjugate natural convection and entropy generation in a
closed region. The effect of solid thermal resistance at Ra
=10"* on the flow and thermal field are shown in Figure 4
via streamlines (on the left) and isotherm lines (on the
right).

The streamlines for Ra=10" in Figure 4 reveals that one
main circulations are formed.

The main circulation cell occupies region between left
and right vertical wall. Isotherms are vertically distributed
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on the vertical isothermal left wall while the solid bend
them to the right wall. The isotherms are perpendicular to
the upper and down walls due to insulated boundary
condition. In addition, the isotherm labels decrease in the
right solid region by increasing the Ri/R, ratio. This
phenomenon is because of the increasing of thermal
resistance in the right solid zone. Figure 5 shows
Dimensionless entropy generation number and Bejan
number as function of Rayleigh number at fixed thermal
resistance. For lower Ra, entropy generation is mainly due
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to heat transfer. Thus, Bejan number decreases and entropy  in length and thermal conductivity by keeping the
generation increase by increasing Ra number. Figure 5 is  resistance fixed terminate to the similar flow and thermal
given to compare results of the fixed resistance with  field. This event leads to the similar entropy generation and
different length (L) and thermal conductivity (k). As  Bejan number.

expected according to these results it is visible that changes

1}
m / '?::Uj
2

- |

i Qj
(fr) :

Fig. 4. Streamline for different solid thermal resistance at Ra= 10* &, = 0.1L, &, = 0.2L
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Fig. 5. Dimensionless entropy generation number and Bejan number as function of Rayleigh number at fixed therma

resistance
Figure 6 shows the Dimensionless entropy generation Figure 6 illustrates that the entropy generation curve has
number as function of thermal resistance for different  an approximately minimum within the scope of 0.25< R4/R,
Rayleigh number. <1. At this point for a detailed analysis of the phenomenon,
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the averaged Nusselt number and vertical velocity
magnitude were observed.
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Fig. 6. Dimensionless entropy generation number as function of
thermal resistance for different Ra

Table 2 and Figure 7 exhibit that the Nusselt number and
the velocity have a minimum magnitude at Ry/R,=0.5.
These results confirm each other.

RI1 = 0.25 R2
Rl = 0.5 R2
- === RI=R2

. miimim B = 1.5 R2
——=—= Rl=3R2

[1] L 1

Fig. 7. Velocity profiles on the x-direction for different thermal
resistance at Ra=10*

Table 2
The predicted mean Nusselt number for simulating 2-D conjugate
natural convection in a square cavity at Ra= 10%.

Ri/R; 0.25 0.5 1 15 3
Overthe | 550700 11.176761| 1332124 [1.4109231.51391 7
left wall
Overthe | | ce000 [1.049577| 1.270756 |1.372554(1.496672
right wall

These consequences are consistent with the fact that by
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decreasing the Nusselt number the heat flux ratio in to the
fluid zone and also the velocity magnitude of fluid flow
decreases and terminate to generate minimum entropy.

In this section the behavior of solid particle in a
rectangular cavity due to conjugate natural convection was
investigated. The fundamental theory of fluid-particle
correlation has been studied by many researchers to find out
the relationship of particle trajectories to the fluid paths. In
this paper the approach used for the fluid particle flow is
Lagrangian-Lagrangian method. Particles characteristics in
the cavity can be specified by the initial particles position,
the initial particles velocity and the velocity of the fluid at
particle position. The fluid velocity in the system can be
obtained by calculating Reynolds number of the particles
with:

_ pd|u — v
u

Re (17)

D

Where Re,, is the Reynolds Number of Particle, p is the
fluid density, d is the diameter of particle, u is the fluid
velocity, ; is the jth particle velocity and p is the kinematic
viscosity. The mass of particle and the equation of motion
for the " particle:

dv;
=m;,—
T dt

) )
Figure 8 presents the flow starts from rest, with a slightly
floating sphere particle placed at the top of the cavity. An
initial transient movement of the particle shows before the
liquid flow settles to a steady state. Locally the particle
tracks align closely with the fluid streamlines. As the
Rayleigh number increases, result shows the particle orbits
are not smoothly distributed within the cavity. The particle
trajectories agree with the paths of the passive tracers
caused by the unsteady flow. This behavior results from
forces pulling the macroscopic sphere towards to its
preferential paths.
This result indicates that an increase in the speed can cause
the particle to move slightly out of the rotation and become
a passive tracer. As Rayleigh number increases from
Ra=10° to 10°, particle paths exhibits competing trends.
Moreover, spiraling trajectories unroll more and more
rapidly. Particle tends to cluster more and more tightly with
in a preferential orbital annulus. This annulus moves
towards the periphery of the cavity.

Conclusion

Entropy generation due to conjugate laminar natural
convection and particle trajectory in an enclosure is
numerically predicted by using Lattice Boltzmann Method
(LBM).

In comparison with conventional CFD methods, using
LBM in this problem has many advantages, such as having
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a simple calculation procedure, an easy to simulate complex
geometries and boundary conditions. To illustrate the

flexibility of the method,

various parameters were

investigated. In conclusion, some of the main points are
briefly remarked:

L

Bejan number decreases with increasing of
Rayleigh number. On the contrary, Rayleigh
number enhances the heat transfer and total
entropy generation rate.

II. Thermal resistance ratio has a minimum
magnitude at Ry/R, = 0.5.

III. The minimum magnitude of mean Nusselt
number and velocity occur at the Ry/R, = 0.5.

IV. As the Rayleigh number increases solid particle
paths exhibit competing trends.

V. Solid particle trajectories unroll more and more

rapidly, across the lateral swaths of the flow.

Ra=10’

Ra=10°

Fig. 8. Trajectory of a solid particle at different Rayleigh number
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