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ABSTRACT: The purpose of this paper is to investigate the EGM  method and the behavior of a solid particle suspended in a two-
dimensional rectangular cavity due to conjugate natural convection. A thermal lattice Boltzmann BGK model is implemented to 
simulate the two dimensional natural convection and the particle phase was modeled using the Lagrangian–Lagrangian approach where 
the solid particles are treated as points moving in the computational domain as a result of the fluid motion. Entropy generation due to 
heat transfer irreversibility, isotherms, streamlines and Nusselt numbers were obtained and discussed. Total entropy generations in 
various cases are also reported and optimum case is presented based on minimum entropy generation. 
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INTRODUCTION 
…. The objective of this study is to develop a Lagrangian-
Lagrangian based numerical scheme to simulate the 
behavior of solid particle in a rectangular cavity due to 
conjugate natural convection. The problem of natural 
convection in an enclosure has been a widespread topic of 
research, due to its occurrence in industrial and 
technological applications, such as electronic cooling [1,2], 
cooling of the nuclear or chemical reactors [3,4] and the 
heat and mass transfer processes in cryogenic fuel and 
vertical storage tanks [5−11]. 
    In these works, the regimes of convective heat transfer in 
closed vertical volumes were analyzed in detail for the 
conditions when the thermal fluxes supplied to the liquid 
are uniformly distributed in the base zone and over the 
bottom and lateral surfaces. The spatial and temporal 
structure of convection at a sine distribution of the thermal 
flux on the lateral wall of the vertical cylinder was 
presented in [12]. The conjugate problem of natural 
convection in a vertical tank partially filled with the liquid 
was analyzed in [13] under the conditions of the supply of a 
uniform heat flux to the external side of the lateral wall and 
a simultaneous heat removal through the local sinks located 
in the tank lateral wall. The mathematical modeling of 
unsteady regimes of natural convection in a closed 
cylindrical region with a heat-conducting shell of finite 
thickness was carried out in [14]. Numerous studies of 
various physical systems based on EGM are reported in 
literature[15–19]. 
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Abolfazli and Alinejad [15] analyze the entropy 
generation due to conjugate natural convection in an 
enclosure. Baytas [16] presented a comprehensive analysis 
on influence of Rayleigh number, Bejan number and 
inclination angle on entropy generation for natural 
convection in an inclined porous cavity. Transition criteria 
for entropy reduction of convective heat transfer from 
micropatterned surfaces were reported by Naterer [17]. 
Entropy generation in microchannel flow with presence of 
nanosized phase change particles was investigated by 
Alquaity et al. [18]. Vosoogh et al. [19] studied the effect of 
nanofluid on entropy generation and pumping power in 
coiled tube. Recently Lattice Boltzmann Method (LBM) 
has been developed as a new tool for simulating the fluid 
flow, heat transfer and other complicated physical 
phenomena. Compared with the traditional computational 
fluid dynamics methods, the Lattice Boltzmann is a 
mesoscopic approach based on the kinetic theory.  It has 
many advantages, such as simple coding, easy 
implementation of boundary conditions, fully parallelism 
and there is no explicit requirement of fluid pressure 
calculation [20]. At present the applications of LBM have 
achieved great success in multi phase flow, chemical 
reaction flow, flow in porous medium, thermal 
hydrodynamics, suspension particle flow and magneto 
hydrodynamics. Chatterjee and Amiroudine [21] proved the 
multiscale mesoscopic lattice Boltzmann methods to be an 
efficient and inexpensive tool to simulate complex 
thermofluidic phenomena. Guo and Zhao [22] conducted 
the simulation for incompressible flow in porous media by 
using LBM. D’Orazio et al. [23] and Shu et al. [24] 
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