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Abstract. The shape function model is used to calculate the coupling constant
in perturbation theory and also the non-perturbative free parameter concerned with
the QCD theory. This analysis is based on employing the event shape observables
〈BT 〉,〈BW 〉,〈1− T 〉 and 〈ρ〉. By fitting the Monte Carlo data as well as the AMY
data with the shape function distribution, we find combining the results of all vari-
ables. We have obtained the mean value of the strong coupling constant αs(MZ0) =
0.115960.00778 and the nonperturbative parameters λ1 = 1.07790.02276GeV . Our
results are consistent with the values obtained from other experiments at different ener-
gies and QCD predictions. We explain all these features in this article.
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1. INTRODUCTION

The interactions between the constituents of matter are successfully described
by the weak, electromagnetic, strong and gravitational forces. The weak and the
strong interactions occur at small atomic to subatomic distances, the electromagnetic
interaction is observed at subatomic to macroscopic distances while effects of Grav-
itation only play a role at macroscopic distances. The strong interaction, the main
focus of this article, is responsible for the existence of all composite elementary par-
ticles (hadrons) by providing the binding force between the constituents and also for
most of the short lived hadron decays. Furthermore, the binding of protons and neu-
trons in nuclei may be explained in analogy to chemical binding of molecules based
on the strong interaction of the proton and neutron constituents. A dynamic theory
of strong interactions at the constituent level, Quantum Chromo Dynamics (QCD),
is constructed as a renormalized field theory in close analogy to Quantum Electro
Dynamics (QED), the quantum field theory of the electromagnetic interaction. QCD
is referred to as a non-abelian gauge theory while QED is an example of an abelian
gauge theory. For massless quarks the strong coupling constant αS is the only free
parameter of the theory [1].

There are different methods for computing the strong coupling constant. This
parameter belongs to perturbative theory. Furthermore there is a free parameter in
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2 Coupling constant in shape function model 139

non-perturbative part. The dispersive model [2] and the shape function model are two
ways among the common methods for calculation of these parameters. The above
models are based on non-perturbative theory. These parameters are calculated by
using the dispersive model [2]. We extend this analysis by using the shape function
model. Then we compare our obtained values from the shape function model with
the values in the dispersive model and QCD predictions.

The outline of the paper is as the following. In section 2, we consider the
event shape variables used in this analysis. Section 3 describes the power corrections
as well as the perturbative QCD predictions, and also introduces the shape function
model which describes the hadronization process. We present our results in section 4,
using the simulated as well as the AMY data. Section 5 is devoted to our conclusion.

2. EVENT SHAPE OBSERVABLES

Event shape variables measure geometrical properties of hadronic final states at
high energy particle collisions. They have been studied at e+e− collider experiments.
Apart from distributions of these observables, we can also study the mean values as
well as higher orders for the moments of event shape variables. The most common
observables (y) are: thrust, the heavy jet mass, the total and wide jet broadening. We
use the following event shape observables:

a) Thrust (T): This observable is defined by the expression [3]:

T =max(

∑
i|−→pi ·−→n |∑
i|−→pi |

) (1)

where pi is the momentum of reconstructed particle i in an event. The thrust axis−→n T

is the direction −→n for which the maximum occurs. We will use the form 1−T here
since its distribution is in this form more similar to those of the other observables.

b) Jet Broadening (B): The definitions of the jet broadening observables em-
ploy a plane through the origin perpendicular to the thrust axis−→nT to divide the event
into two hemispheres S1 and S2. The Total and the Wide Jet Broadening BT and
BW are defined as [4]:

Bk = (

∑
i∈Sk
|−→pi ×−→nT |

2
∑

i|−→pi |
) (2)

for each of the two hemispheres (Sk,k = 1,2), defined above. The wide jet broaden-
ing is given by:

BW =max(B1,B2) (3)
The total jet broadening is defined by:

BT =B1 +B2 (4)
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140 R. Saleh-Moghaddam, M. E. Zomorrodian 3

c) Heavy Jet Mass (MH): The plane orthogonal to the thrust axis divides the
space into two hemispheres S1 and S2. An invariant mass is calculated from the
particles in each of the two hemisphere defined by the thrust axis. The hemisphere
masses are defined by:

M2
i = (

∑
j∈Sipj)

2,(i= 1,2) (5)

where pj denotes the four momentum of particle j. The heavy hemisphere mass MH

is then defined by:

M2
H =max(M2

1 ,M
2
2 ) (6)

The above variable is scaled by the visible energy which is after correction for
detector resolution, acceptance, and for initial state radiation, equals to:

ρ=
M2
H

Q2
(7)

where Q is the centre of mass energy.
For these observables complete, O(α2

s) +NLO QCD predictions as well as
power correction calculations for their differential distributions are available.

3. THE SHAPE FUNCTION MODEL

The value of αs can be assessed by the energy dependence of mean values of
event shape distributions. The mean values of the observables considered in this anal-
ysis are calculated up to O(α2

s) [2]. Korchemsky and Tafat [5] describe properties
of the event shape variables 1−T and M2

H not included in NLO perturbation theory
by a so called shape function, which does not depend on the variable nor the centre
of mass energy. This is more general than the dispersive model, considering both as
a shift of the perturbative prediction and as a compression of the distribution peak.
The prediction is deduced from studying the two jet region in the distribution of the
event shape variable y. The prediction for the differential distribution is:

1

σ

dσ

dy
=

∫ Qy

0
dε fy (ε)

dσNLO
dy

(y− ε

Q
) (8)

with a non-perturbative function fy(ε), dependent on one scale parameter ε. This
function is derived from the shape function f(εL,εR) [5], which depends on two
scale parameters εL,εR for the two hemispheres of the event. By the compression of
the distribution the validity of the prediction is extended compared to the dispersive
model to y v ΛQCD

Q .
It has been observed many years ago that for some event shape variables like

thrust and heavy jet mass perturbative QCD predictions deviate from the data by
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4 Coupling constant in shape function model 141

corrections suppressed by powers of the large energy scale 1
Qp with the exponent p

depending on the variable and p = 1 for T and ρ variables [6]. For the mean value
〈y〉 the leading power correction is parameterized by a non-perturbative scale λp
of dimension p, while hadronization corrections to the differential distribution are
described by a function fhad(Q,y) depending on both the shape variable and the
centre-of-mass energy

1

σtot

dσ

dy
=
dσPT
dy

+fhad(Q,y) (9)

y denoting a general event shape variable (y=1−T,ρ,C, ...) and the subscript PT re-

ferring to perturbative contribution, 〈y〉PT =
∫
y
dσPT
dy

dy. Obviously, the hadroniza-

tion corrections to the differential distributions have a richer structure than those to
the mean values.

〈y〉= 〈ypert〉+ 〈ypow〉= 1

σtot

∫
y
dy

dσ
dσ (10)

This ansatz provides an additive term to the perturbativeO(α2
s) QCD prediction

[7].
For an observable event, the perturbative prediction is:

〈ypert〉=AF (
αs(µ)

2π
)+(BF +AF β0 log(

µ2

Q2
)(
αs(µ)

2π
)2 (11)

whereAF =AF ,BF =BF −(3
2)CFAF ,β0 =

(33−2N)
12π and µ being the renormaliza-

tion scale. The coefficient AF and BF were determined from the O(α2
s) perturbative

calculations. Also Q is centre of mass energy in this equation. QCD color factors
are: CA = 3 and CF = N2−1

2N = 4
3 for N = 3 (color number) [8].

For instance, non-perturbative scales λp parameterzing power corrections to
〈ypow〉 is defined by the moment

∫
yfhad(Q,y)dy [6].

〈y〉= 〈y〉PT +
λp
QP

(12)

The terms with the derivatives of 1
σ

dσPT
dy

generate the series of power correc-

tions accompanied by the set of non-perturbative µ-dependent dimensionful param-
eters 〈yn〉 that can be expressed in terms of the scales λp introduced as [7].

The nth moment of an event shape observable y is defined by:

〈yn〉=
∫ ymax

0
yn

1

σhad

dσ

dy
dy (13)

ymax is the kinematically allowed upper limit of the observable. This leads to the
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142 R. Saleh-Moghaddam, M. E. Zomorrodian 5

non-perturbative predictions.

〈yn〉=
∫ ∞

0
dε ynf(y;µ), 〈y〉= λ1, 〈y〉2−〈y2〉= λ2, . . . (14)

The shape function can be parameterized by its first moment,

λ1 =

∫
dεR

∫
dεL(εR+εL)f(εL,εR)≡ 〈εR+εL〉. (15)

Its ”second moment”,

λ2 = 〈(εR+εL)
2〉. (16)

In the following we calculate the power correction in dispersive model [2].
Such calculations correspond to the shape function model mentioned above, but we
have made below, minor modifications for higher moments, that is we replace the
ay.P by λ1

Q in the shape function for the first order power correction, and similarly
for higher corrections.

〈y1〉= 〈y1〉NLO+ay.P (17)

〈y2〉= 〈y2〉NLO+2〈y1〉NLO(ay.P )+(ay.P )
2 (18)

〈y3〉= 〈y3〉NLO+3〈y2〉NLO(ay.P )+ 〈y1〉NLO(ay.P )2 +(ay.P )
3 (19)

〈y4〉= 〈y4〉NLO+4〈y3〉NLO(ay.P )+6〈y2〉NLO(ay.P )2

+4〈y1〉NLO(ay.P )3 +(ay.P )
4 (20)

Predictions for event shape variables in shape function model for non-perturbative
parameters can be derived, λ1 and λ2 can also be obtained from fit to the data [7].

From prediction (8) for the distribution of the variables 1−T and ρ, we can
calculate the mean values with respect to non-perturbative distributions [6].

〈(1−T )1〉= 〈(1−T )1〉PT +
λ1

Q
(21)

Analogously for the second moments, we find [6]:

〈(1−T )2〉= 〈(1−T )2〉PT +2
λ1

Q
〈(1−T )1〉PT +

λ2

Q2
(22)

Thus we will have for wide jet broadening:

〈BW 〉= 〈BW 〉PT +
λ1

Q
(23)

〈B2
W 〉= 〈B2

W 〉PT +2
λ1

Q
〈BW 〉PT +

λ2

Q2
(24)
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6 Coupling constant in shape function model 143

We are following this way for other event shape observables, too.
In this model the more strongly suppressed power corrections have an inde-

pendent coefficient. The coefficient λ1 is interpreted as the first moment of the
shape function, λ2 the second moment for the one hemisphere character of variables.
Therefore these are universal scales [7]. The shape function model gives predic-
tions for several observables and contains only universal free parameters λ1,λ2 and
αs(MZ0). In next section, we explain the shape function model and the obtained
results.

4. PHYSICS RESULTS

According to the theory [6] the shape function model includes in the model
the perturbative constant as well as the non-perturbative parameters. This model is a
combination of both the NLO prediction and the power correction terms.

In our analysis we are using the AMY data in the range of 51 to 60 GeV centre
of mass energies, as well as the Monte Carlo (PYTHIA) simulated data in software
Origin. Origin is a proprietary computer program for interactive scientific graphing
and data analysis [9]. This software is widely used for fitting both the linear and
non-linear equations. Doing this, we may find some parameters such as the coupling
constants in the perturbative and the non perturbative part of the QCD theory.

We use the event shape variables mentioned in section 2. We calculate both the
strong coupling constant αs(MZ0) and the non-perturbative parameter λ. We extend
our calculations up to the forth-order of power corrections. The main reason behind
this is to see if the coupling constant is affected by increasing the order of the power
correction and also to see if there are any major differences between the lower and
the higher orders in our model.

Figure 1 shows the results obtained from the JADE and OPAL experiments for
the first moments for different variables [7].

As the figures indicate, all diagrams have a falling off distribution by increasing
energy. The data are also fitted well within the statistical errors. In addition, we
observe that the inclusion of the power correction to the NLO prediction improves
consistency with the data. The experimental systematic uncertainties are estimated
by the minimum overlap assumption according to Ref. [7].

Figure 2 shows the mean value of 〈BW 〉 versus the centre of mass energy (Q)
for both Monte Carlo and the AMY data. On these diagrams are also the results
obtained from the shape function model. We observe that the shape function (solid
line) follows the same trend as the results obtained from the MC data. In addition
the obtained values from the AMY data are consistent with both the Monte Carlo
distribution and the shape function model. On the other hand, if we compare these
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144 R. Saleh-Moghaddam, M. E. Zomorrodian 7

Fig. 1 – Fits of the shape function model for JADE and OPAL experiments in first moments for
different variables [7].

results with NLO prediction (dash line), we conclude that the shape function model
is in more agreement with the MC and the AMY data, than the NLO prediction. In
this analysis, we are using the AMY data in the range of energy between 52-60 GeV
obtained by a detector at the KEK storage ring, TRISTAN accelerator, Japan [10]. We
are also using the simulated events (Monte Carlo: PYTHIA) which is based on the
use of random numbers and probability statistics to investigate problems concerned
with the hadronic interactions.

The main reason for such differences between this Model and the NLO predic-
tion is due to the fact that the model includes in its theory, the NLO prediction, the
non-perturbative part of the theory, as well as the power corrections. This makes the
distributions for the model more consistent with the real data.

In addition, by increasing the order of the power correction, we observe that
there is more consistency between the experiment and the theory. We conclude that
the higher order corrections conform well to our real data.

By fitting the shape function model (equations: 12 and 22) with the data, we
obtain the values of the strong coupling constant. Table 1 shows our results for 〈BW 〉.
The errors indicated in the table are obtained from the fit to the distributions.

We observe that within statistical errors, the parameterαs(MZ0) is very similar,
for different n values. Our results are also consistent with QCD prediction [11, 14].

Table 2 shows our results for free parameters (equation (22)) in accordance to
the non-perturbative part of our analysis.

To clarify further the situation, we do a similar analysis and calculation for the
〈BT 〉, 〈1−T 〉 and 〈ρ〉. Figure 3 shows the distributions forBT . A similar conclusion
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8 Coupling constant in shape function model 145

Fig. 2 – Fits of the shape function model to PYTHIA and AMY data for 〈BW 〉n.

Table 1

αs(MZ0) values of variable 〈BW 〉 for different orders.

〈BW 〉n αs(MZ0)

n=1 0.12323±0.00848
n=2 0.11171±0.00724
n=3 0.10011±0.00742
n=4 0.10004±0.00812

Table 2

λ values for (〈BW 〉)n moments for MC data.

Event shape variables λ1(GeV ) λ2(GeV )2

(〈BW 〉)1 0.48558±0.01699 −
(〈BW 〉)2 0.45923±0.01607 0.31796±0.09427
(〈BW 〉)3 0.29664±0.01038 0.15262±0.01383
(〈BW 〉)4 0.1993±0.01207 −0.28788±0.0736
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146 R. Saleh-Moghaddam, M. E. Zomorrodian 9

to the BW variable is obtained for this variable as well as for other variable (where
we exclude their distributions in this paper).

Fig. 3 – Fits of the shape function model and NLO model to MC data and AMY data for the total jet
broadening.

Table 3

The values of αs(MZ0) up to forth orders for event shape moments.

Event shape variables αs(MZ0) αs(MZ0) αs(MZ0) αs(MZ0)

n 1 2 3 4
〈(1−T )n〉 0.11097±0.009 0.1134±0.0095 0.1323±0.009 0.1346±0.0085
〈(BW )n〉 0.1232±0.0085 0.1117±0.0072 0.1001±0.0074 0.10004±0.0081
〈(ρ)n〉 0.1053±0.0072 0.1062±0.006 0.10824±0.009 0.1115±0.009
〈(BT )n〉 0.1213±0.006 0.1222±0.006 0.1259±0.006 0.1284±0.009
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10 Coupling constant in shape function model 147

Table 3 summarizes our overall results for the strong coupling constant up to
the forth order for different event shape variables. (The parameter n on the table
indicates the order of the event shape variable). Despite the fact that the distribu-
tions become more consistent by increasing n, we observe that this behavior does not
have a significant effect on αs(MZ0). We conclude that, increasing the order of the
power corrections does not affect our results considerably. The errors on the table
are statistical as well as experimental. These overall values confirm well to the QCD
predictions and also to the dispersive model [2].

Figure 4 shows αs(MZ0) in terms of n for different variables. We observe that
〈(1−T )n〉,〈ρn〉 and 〈(BT )n〉 follow a similar trend by increasing n. Such a behavior
indicates that αs(MZ0) slightly increases with n. On the other hand αs(MZ0) for
〈(BW )n shows a slight decrease with n. This discrepancy between the two is due to
the fact that the moment for the single parameter 〈BW 〉 is not universal [7]. However
such a slight decrease in αs(MZ0) for 〈BW 〉 is not significant to change our conclu-
sion. The dash lines on the figures show the value of QCD prediction which is equal
to αs(MZ0) = 0.1181±0.002 [11].

Fig. 4 – Values of αs(MZ0) for event shape observables up to forth order.

The above results are also consistent with those obtained from JADE and OPAL
experiments for n=1, where the published data exists (table 4) [7].

At this stage, we are perusing on the non- perturbative part of theory. Table 5
and also figure 5 show our results for the non-perturbative parameters λ1, defined in
(22).
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148 R. Saleh-Moghaddam, M. E. Zomorrodian 11

Table 4

The measurements of αs(MZ0) using shape function model with n=1 for JADE and OPAL [7].

Event shape variables αs(MZ0)

〈1−T 〉 0.1304±0.0018
〈ρ〉 0.1193±0.0027

Table 5

The values of λ1 from moments of event shape variables at MC data in different energies.

Event shape variables n 〈(1−T )n〉 〈(BW )n〉 〈ρn〉 〈(BT )n〉
λ1(GeV ) 1 1.4264±0.0357 0.4856±0.017 0.3689±0.0166 1.4931±0.0224
λ1(GeV ) 2 1.9681±0.0236 0.4592±0.0161 0.3947±0.0178 1.2439±0.0216
λ1(GeV ) 3 2.2675±0.0272 0.2966±0.0104 0.5175±0.0239 1.5601±0.0219
λ1(GeV ) 4 2.360±0.0284 0.1993±0.0121 1.0640±0.0479 1.1332±0.0217

Fig. 5 – The measurements of λ1 for four event shape observables.
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12 Coupling constant in shape function model 149

Table 6 summarizes our results for the mean values of (αs) and (λ1), for dif-
ferent event shape variables.

Table 6

The mean values of αs and λ1 for event shape variables.

Event shape variables 〈(1−T )n〉 〈(BW )n〉 〈ρn〉 〈(BT )n〉
αs(MZ0) 0.1228±0.009 0.1088±0.007 0.1078±0.0079 0.1245±0.0069
λ1(GeV ) 2.0077±0.0287 0.36019±0.014 0.5863±0.0265 1.3576±0.0219

5. CONCLUSIONS

In this article, we have calculated both the strong coupling constant (αs) in
perturbative theory and the free parameter (λ) in non-perturbative theory, by using
the shape function model. To achieve this, the event shape variables 〈BW 〉, 〈BT 〉,
〈1−T 〉 and 〈ρ〉 are employed. Next we have used the power corrections for analysis
of the event shape variables up to NLO. By fitting the shape function models with
the data (AMY and Monte Carlo), we extracted αs and λ in perturbative and in non-
perturbative part of the theory. We observe that the results obtained from fitting the
shape function model is more accurate than the results from NLO QCD model. The
reason for this is due to the fact that the former includes the non-perturbative part of
the theory, as well as the NLO prediction, while the latter is just the NLO prediction.
We expect that NNLO predictions give us even more accurate results. Combining
the results of all variables, we have obtained the mean value of the strong coupling
constant αs(MZ0) = 0.11596±0.00778, and the mean value of the non-perturbative
parameter λ1 = 1.0779±0.02276GeV . They are consistent with the world average
value of αs(MZ0) = 0.1181±0.002 [11].
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