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Abstract: This study proposes the adaption of the harmonic control array (HCA) technique to control a single-phase stand-
alone inverter system. The HCA method is recently proposed as an efficient scheme to control the systems with periodic
references or disturbances. The HCA appropriately adjusts the harmonic components of the control signal to obtain a zero
steady-state error. Since the signals and parameters involved in this method are complex valued, a discrete time
implementation is presented for applying the method through a digital platform. The design procedure of the controller
parameters are also presented by details. To confirm the theoretical achievements, experimental results for the
prototype system are presented in this study. The results demonstrate the effectiveness of the proposed control scheme.
1 Introduction

Stand-alone inverters are widely used in industrial applications to
supply sensitive loads or provide electric energy for local loads.
Hence, the main aim of a stand-alone inverter system is to provide
a regulated ac voltage, with low total harmonic distortion (THD),
in spite of load disturbances and variations, to maintain a
high-quality electric power flow to critical/local loads [1–5].

The stand-alone inverter system thus requires tracking or rejection
of periodic signals. Several control methods to deal with periodic
signals have been presented in literature [6–27]. From these, the
stationary reference frame proportional resonant (PR) regulator [6–
12], the synchronous reference frame (SRF) controller [13–20] and
the digital repetitive controller [21–27] have shown successful
performance. Although, the PR controller has the advantages of
simplicity, low computational burden and zero steady-state error,
but the response to step changes suffers from the exponential
decay. Moreover, high sensitivity to the frequency variations of
periodic signals and probability of instability to the phase shift of
measured signals are attributed as other major disadvantages of the
PR controller [6–12]. The SRF control technique transforms the
system variables to a rotating frame at the synchronous speed,
where the ac quantities become dc. Therefore, the signal in the
SRF can be regulated by a simple proportional integral (PI)
controller with zero steady-state error. Among the limitations of
the SRF techniques are the need for several reference frame
transformations, which increases the memory requirements and
calculation errors, the limited application to balanced systems,
complexity of algorithm and etc. [13–20]. Repetitive control which
is based on the internal model principle is a very useful method
that can track or reject periodic signals. The Bode plot of the
repetitive controller has infinite amplitudes at multiples of the
fundamental frequency that can lead to instability. Although many
solutions to solve this problem are presented yet, but this method
suffers from other drawbacks, such as a slow transient response,
sensitivity to model accuracy and last but not least the high
memory requirements [21–27].

The harmonic control array (HCA) technique is recently proposed
for controlling systems involving reference and/or disturbance
signals with periodic nature [28]. The HCA method automatically
constructs the compensating periodic control signal and guarantees
a perfect periodic reference tracking and disturbance rejection.
However according to the control design structure, for many
systems, the stabilisation and tracking could be achieved in a few
periods, therefore this suggests that HCA method could be also
successful for slowly varying non-periodic disturbances as well.
HCAs use the running Fourier series integral to achieve the
harmonic components of the reference and control signals.
Although other control techniques may also be used in
implementing HCAs, an array of PI controllers is employed in the
present paper. The HCA method is easily applicable and effective
on periodic reference tracking or periodic harmonic distortion
compensation. For instance, it can be used for the selective
harmonic compensation which brings extra flexibility in different
power electronic applications, such as stand-alone or grid
connected inverters, active power filters (APFs), power factor
correction (PFC) circuits, etc. Selective harmonic detection and
compensation in APFs can be a practical application of the HCA
technique and lead to quality improvement and THD reduction of
the voltage or current waveforms [29–31]. In grid connected
inverters, selective harmonic control effectively mitigate the
harmonic currents of concern [32, 33]. The other application is
PFC circuits. In these circuits, the proposed technique can be
included in the internal current control loop to effectively suppress
the specific current harmonics [34]. In this paper, only brief
information is provided for HCAs. Details of description,
comparisons with alternative methods and numerical examples can
be found in [28].

In this paper, a discrete time implementation procedure for the
HCA method is provided so that the required algorithms can be
easily and effectively implemented on digital systems. The
procedure is applied to a single-phase stand-alone inverter voltage
control system. The paper is organised as follows. First, the model
of a single-phase stand-alone inverter, with an output LC filter, is
described in Section 2. Then, the basics of the HCA method and
its discrete time implementation are summarised in Section
3. Then, the step-by-step tuning procedure of controller parameters
is provided in Section 4. Experiments of the presented system are
coming in Section 5. Finally, the conclusions are drawn in Section 6.
2 Inverter model

The power and control circuits of a single-phase voltage-source
stand-alone inverter are shown in Fig. 1. According to this figure,
the power circuit consists of a full-bridge inverter, a LC-type
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Table 1 System parameters

Parameter Symbol Value

dc-link voltage Vdc 250 V
nominal voltage VC 110 Vrms
nominal power S 1 kVA
filter inductance L 1 mH
filter capacitance C 25 μF
ESR of the inductance rL 0.25 Ω
fundamental frequency f 60 Hz
switching frequency fs 6 kHz

Fig. 2 Block diagram of the control system

Fig. 1 Voltage-source single-phase stand-alone inverter system: power and
control stages

Fig. 3 HCA block diagram

a General structure
b Disperser
c Assembler
smoothing filter and a local load. The parameters of the system under
study are listed in Table 1. The state-space equations of the system
can be readily written as
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Then, the system transfer function is [3]

VC(s) =
1

LCs2 + rLCs+ 1
Vu(s)−

rL + Ls

LCs2 + rLCs+ 1
Io(s) (2)

Since the switching frequency of the PWMmodulator is chosen to be
much higher than the cut-off frequency of the LC low pass filter, by
using the average switching model, one can approximately write

vu ≃ m̃Vdc = u (3)

where m and u are the modulation index (in the range [0 1]) and the
control input, respectively. Therefore, the corresponding block
diagram of the system is shown in Fig. 2.
3 HCAs method

Fig. 3 shows a general feedback control system, with the HCA
structure, where r is the reference input, u is the control signal and
y is the system output.
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A harmonic disperser (Fig. 3b) extracts the time domain running
harmonic components of the input signal as follows

kxlh(t) =
1

T

∫t
t−T

x(t) e−jhvt dt (4)

where h represents the harmonic number, T and ω = 2π/T are the
period and the angular frequency of the fundamental component of
the reference signal, respectively.

For a digital implementation, the Fourier transform of (4) can be
readily discretised with a predefined digital sampling rate. If the
harmonic components of interest are from 0 to H, then the
harmonic dispersion of x(t) is shown as

kxl =

kxl0
kxl1
..
.

kxlH

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (5)

Here, H is a design parameter reflecting the maximum harmonic
order considered (x(t) must not contain any major harmonic with
an order higher than H ). In practice, the right value for H can be
chosen based on the application requirements and the calculation
power of the real platform. By increasing H., more harmonics are
controlled at the cost of more computational burden. To
successfully accomplish all calculations within one sampling
period, the upper limit for H may be compromised in some cases.
However, with the increasing computational power of recent
digital signal controllers and availability of efficient algorithms,
the realisation of such operations with a high value for H are
becoming possible for even very short sampling periods.

A harmonic assembler (Fig. 3c) reconstructs a time varying signal
from its harmonic components as

x(t) = kxl0(t)+ 2Re
∑H
h=1

kxlh(t) e
jhvt

{ }
(6)

The HCA block in Fig. 3a gives 〈r〉 and 〈y〉 as inputs and decides the
control signal 〈u〉. In this work, the HCA block is realised by
proportional-integral (PI) controllers. The corresponding block
diagram of the HCA for our problem is simply shown in Fig. 4
and the harmonic dispersion of the control signal 〈u〉 is calculated as

kul = KPkel+ KI

∫t
−1

kel dt (7)

where e = vC,ref –vC is the error signal. The integral term in (7) can be
protected by an anti-windup algorithm. Moreover, the magnitude of
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Fig. 4 Harmonic PI control array

Fig. 5 Simplified block diagram of the single-phase inverter control system
the control signal can be saturated to prevent the operation of the
converter in the overmodulation region.

As already seen, to use the HCA method, the implementation of
the harmonic disperser (4), the HCA block (7) and the harmonic
assembler (6) are necessary in the discrete form. To realise these,
let us use a sampling period of Ts such that N = T/Ts is an integer
number. The ratio N/H, as representing the number of points in
one sinusoidal period of the highest harmonic, should be as high
as possible to get a satisfactory approximation in discrete domain.

The discrete time version of the harmonic disperser of (4) can then
be obtained as

kxlh[n] =
1

N

∑n
k=n−N+1

x[k] e−jhvkTs

= 1

N

∑n
k=n−N+1

x[k] e−j2phk/N (8)

where x[k] = x(kTs) and 〈x〉h[n] approximately represents 〈x〉h(nTs).
Note that the exponential term in (8) is a periodic function in time,
that is

e−j2phk/N = e−j2ph(k+N )/N (9)

for each integer k, therefore, it is enough to calculate these terms for
one period (for a total of N cases) only. After recording these values
for k = 0, 1, …, N− 1, instead of recalculating each time, these
values can be called from the memory. Another important
calculation time saving can be achieved, noting that the sum in (8)
is carried out for a limited period, and many common terms are
present in the addition. To this end, (8) can alternatively be written as

kxlh[n] = kxlh[n− 1]+ 1

N
x[n]− x[n− N ]
( )

e−j2phn/N (10)

This last equation, requiring only one complex multiplication,
greatly simplifies the calculation load of the harmonic disperser
and suggests a feasible way to find the dispersion of the signal x(t)
(or e(t)) in the discrete time. This equation can be rewritten as

kxlh[n]− z−1kxlh[n] =
1

N
x[n]− z−Nx[n]
( )

e−j2phn/N (11)

The transfer function of the disperser in the z-domain is obtained as

Gdisperser(z) =
kxlh[n]
x[n]

= 1

N

1− z−N

1− z−1

( )
e−j2phn/N (12)

The PI HCA block (7) can also be implemented in discrete time
using

kul[n] = KPkel[n]+ KIE[n] (13)

where E represents the integral of 〈e〉 in discrete time and can be
calculated as

E[n] = E[n− 1]+ Tskel[n] (14)
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To find the real control action u to be applied to the modulator, on the
other hand, (6) can be transferred to the discrete domain as

u[n] = kul0[n]+ 2Re
∑H
h=1

kulh[n] e
j2phn/N

{ }
(15)
4 Controller parameter design

The block diagram of the converter in presence of the HCA
controller is shown in Fig. 4. It is possible to simplify this model
by neglecting the assembler and disperser dynamics and modeling
the load dynamics by an impedance Z. Then the controller
parameters are designed based on the simplified model shown in
Fig. 5.

Conventionally, a small resistor is connected in series with the
filter capacitor to damp the high-frequency resonances from
the switching harmonics, which its effect on the dynamics of the
control system can be reasonably neglected.

It is observed that under light loads (Z tends to ∞), the phase
margin (PM) and the closed loop stability of the system are
decreased [13]. Therefore, the controller is designed and its
parameters are tuned under the worst condition; that is, the no
load. As a conservative assumption, this ensures that the system
PM will never become smaller than the desired value for a wide
range of operating conditions. The simplicity of the controller
design is another benefit of neglecting the load dynamics. Under
this condition, the plant transfer function simplifies to

GP(s) =
vC(s)

u(s)
= 1

LCs2 + rLCs+ 1
(16)

and the loop gain is

vC(s)

e(s)
= KP + (KI/s)

LCs2 + rLCs+ 1
(17)

Tuning the PI controller is essentially a tradeoff between the
attainable control bandwidth and the loop stability [13]. The
integral part of the PI controller provides a high gain at zero
frequency and its effect around the loop cross-over frequency, and
therefore the bandwidth frequency (ωb), can be neglected,
especially in the case of a large bandwidth. Hence, first it is
assumed that KI = 0 and the transfer function of the closed loop
system becomes

vC(s)

vC,ref (s)

∣∣∣∣∣
KI=0

= KP

LCs2 + rLCs+ KP + 1
(18)

Considering −3 dB attenuation for (18) at the bandwidth frequency
ωb yields to

KP����������������������������������
KP + 1− LCv2

b

( )2 + rLCvb

( )2√ =
��
1

2

√
(19)
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Fig. 6 Overall structure of the HCA control system
from which, the proportional gain KP is calculated as

KP = 1− LCv2
b +

�����������������������������
2 LCv2

b − 1
( )2 + rLCvb

( )2√
(20)

The control bandwidth of the system in this application is a tradeoff
between the transient response and the switching noise rejection
capability, which in this paper is selected to be 900 Hz. With this
selection, a high dynamic performance and at the same time a
proper immunity of the control loop to switching noises is
ensured. Substituting ωb = 2π × 900 rad/s into (20) gives KP = 0.48.

After calculating KP, based on the selected bandwidth and the
filter parameters, the proper value of KI must be determined
according to stability requirements. For this end, the simultaneous
effect of KI and KP will be considered.

Assuming that the cross-over frequency of the loop gain (17) is
close to the closed-loop bandwidth, ωb, it is possible to examine
the stability degree, in terms of the PM, from the loop gain (17).
Accordingly, the phase of transfer function (17) at ωb is set equal
to PM-π. The result is shown in (21). To ensure the stable
operation of the system, especially in presence of unmodelled
dynamics, such as the delays associated to the assembler, disperser
Fig. 7 Experimental setup
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and PWM modulator, a PM in the range of 70°–100° is
recommended. Evaluating (21) for PM = 85° and KP = 0.48
(already determined), yields KI = 100.6.

tan PM− p( ) = vb LKI − rLKP

( )
Cv2

b − KI

( )
K2
I + KP KP + 1− LCv2

b

( )− rLCKI

( )
v2
b

(21)

The resulted KP and KI are the PI control parameters for the
fundamental frequency component. In other words, these
parameters are designed for the case h = 1. The control parameters
for higher harmonics (h = 3, 5, …) are obtained by dividing KP

and KI by h. The overall structure of the HCA control system is
shown in Fig. 6.
5 Performance evaluation

In this section, the simulation and experimental results of the
prototype system, with the same parameters of Table 1, are
presented. The nominal frequency is 60 Hz and the switching
frequency is selected such that fs/f becomes an integer (N = 100).
IET Power Electron., 2016, Vol. 9, Iss. 7, pp. 1445–1453
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Fig. 8 Digital implementation of the proposed control method
The simulations are conducted in MATLAB/Simulink environment.
The experimental setup is shown in Fig. 7, which consists of dc-link
capacitors fed from a diode rectifier circuit, a full-bridge IGBT
inverter, a LC-type output filter and measurement devices. The
control algorithm is implemented on a TMS320F28335 digital
signal controller from TI. The digital implementation of the
proposed control algorithm is shown in Fig. 8. In this figure, the
disperser, assembler and the HCA blocks are separately
implemented in a digital form.

The simulated and experimental steady-state waveforms and the
output voltage harmonic spectrum of the converter system when
the nominal resistive load is connected to the output are shown in
Figs. 9a and 10a, respectively. The results of simulations and
experiments are in good accordance, where the output voltage
waveform is highly sinusoidal with THD = 0.56 and 1.5% for
simulation and experiment, respectively. In this test, only the
fundamental harmonic component is considered for compensation;
that is, H = 1.
Fig. 9 Simulated steady-state performance under

a Nominal resistive load
b RC load: CH1: output voltage (100 V/div), CH2: load current (10 A/div)

IET Power Electron., 2016, Vol. 9, Iss. 7, pp. 1445–1453
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In the second study, the simulation and experimental results for a
capacitive (lightly damped) load are reported in Figs. 9b and 10b,
respectively. While the load power factor is <0.7, the output
voltage THD remains below 0.6% in simulation and below 1.6%
in experimental test. In the final steady-state performance
verification, a highly distorted and non-linear load, according to
the IEC 62040-3 standard (Annex E) requirements [35], is
connected to the output of the single-phase inverter. This load is a
diode rectifier bridge feeding a parallel RC load (20 Ω || 6.8 mF)
through a small resistor (4 Ω). The results, when only the
fundamental component compensation is included in the control
loop (H = 1), are shown in Figs. 11a and 12a. The THD of the
output voltage in simulation is 3.39% and in experimental test is
4.2% and the third and fifth harmonics of the output voltage have
considerable magnitudes.

In the next experiment, the third and fifth harmonics compensation
are also added to the control algorithm (H = 5) and the output results
for the same loading condition are shown in Figs. 11b and 12b.
1449



Fig. 10 Experimental steady-state performance under

a Nominal resistive load
b RC load: CH1: output voltage (100 V/div), CH2: load current (10 A/div)

Fig. 11 Simulated steady-state performance and output voltage harmonic spectrum under highly non-linear load, including

a Only the fundamental component compensation
b Fundamental and the third and fifth harmonics compensation: CH1: output voltage (100 V/div), CH2: load current (10 A/div)

IET Power Electron., 2016, Vol. 9, Iss. 7, pp. 1445–1453
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Fig. 12 Experimental steady-state performance and output voltage harmonic spectrum under highly non-linear load, including

a Only the fundamental component compensation
b Fundamental and the third and fifth harmonics compensation: CH1: output voltage (100 V/div), CH2: load current (10 A/div)

Fig. 13 Simulated transient performance in response to

a No-load to nominal resistive load step change
b +50% followed by −50% step change of reference voltage amplitude: CH1: output voltage (100 V/div), CH2: load current (10 A/div)
Obviously, the added harmonic compensators can efficiently
mitigate the third and fifth harmonics from the output voltage.
Then, the output voltage THD is improved in simulation and
experiment to 2.01 and 2.6%, respectively, which is far below the
standard limit of 8% [35]. However, it is possible to attenuate
more harmonics of concern, according to the application
requirements, by adding extra HCAs to the controller, at the price
of more computation burden. Finally, the transient performance of
the system was investigated, with only the fundamental
compensation, and the results are depicted in Figs. 13 and 14.
Evidently the simulations and experiments match well. In
Figs. 13a and 14a, the transient performance in response to a load
step change from no-load to nominal resistive load is shown. The
output voltage experiences a small dip at the moment of load
IET Power Electron., 2016, Vol. 9, Iss. 7, pp. 1445–1453
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connection, which occurs around the voltage peak, and recovers in
<2 ms. Figs. 13b and 14b show the transient performance of the
system in response to a step jump followed by a step fall of the
reference voltage magnitude under the nominal resistive load. A
slow oscillation, with a very small overshoot/undershoot, can be
recognised in the voltage waveform envelope, which safely dies in
less than two cycles.

As already mentioned, the simulation and experimental results are
in good agreement. However, the simulation and test results may
differ in some details due to different non-idealities in the practical
implementation. However, if this level of accuracy is not
acceptable for some very especial simulation studies, more
practical details such as the DC voltage ripples, sensor circuit
non-idealities, switching rise/fall times, dead-time distortions,
1451



Fig. 14 Experimental transient performance in response to

a No-load to nominal resistive load step change
b +50% followed by −50% step change of reference voltage amplitude: CH1: output voltage (100 V/div), CH2: load current (10 A/div)
non-linear characteristic of the filter inductor, circuit parasitic
elements, etc. should be included in the simulation model.
6 Conclusion

This paper proposes the use of HCA method for the single-phase
stand-alone inverters. The proposed control method ensures zero
steady-state error at the fundamental frequency and other
harmonics of interest. The main advantages of the HCA technique
for the inverter applications are: possibility to compensate the
harmonics and periodic disturbances in a selective way, which
brings extra flexibility in different power electronic applications,
such as stand-alone or grid connected inverters, APFs, PFC
circuits, etc., simple concept and structure, simple digital
implementation, precise tracking of AC signals and flexibility to
employ any desired controllers in the HCA blocks, according to
the application requirements. However, relatively slow dynamic
response and the increasing computation burden by increasing the
number of HCA blocks are the limitations of the proposed
technique. The discrete time implementation of the HCA method
along with a systematic procedure to design the control parameters
are reported in this paper. The performance of the proposed
scheme is confirmed with different experiments. The results
indicate the effectiveness and excellent steady-state and transient
performance of this method to control the single-phase stand-alone
inverter.
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