Cooling Curve Analysis as an Alternative to Dilatometry
in Continuous Cooling Transformations
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Dilatometry and cooling curve analysis (CCA) are two methods of determining the evolution of
a phase transformation with temperature. The two methods are similar conceptual in that they
take an indirect measure of the transformation and extract phase fraction information from it;
however, the differences between the two methods typically makes one method better suited to
analyzing a given transformation. However, without a quantitative comparison between the two
methods, it is difficult to use them interchangeably. We address this by presenting a quantitative
comparison of CCA and dilatometry for a martensitic transformation in a 9Cr3W3CoVNb
steel. The resulting phase fraction data matches very well, within 5 K (5 °C) for any given phase
fraction. This paper also extends to the quantitative methodology of calorimetry to the analysis
of dilatometric data, with results comparable to ASTM A1033-10, but with expected higher
accuracy by accounting by variable thermal expansion coefficients.
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I. INTRODUCTION

DILATOMETRY is commonly used to quantify the
progress of solid-state phase transformations during
continuous heating or cooling because it gives accurate
and simple to interpret results that indicate start and
finish temperatures of the transformation, relative phase
fraction as a function of temperature and, when
combined with information about the relative densities
of the two phases, it can be used to determine the
absolute amount of second phase formed as a function
of temperature.l'

One of the downsides of dilatometry is that it requires
specialized equipment to make precise length/diameter
measurements; this can be a limitation if one does not
have access to a dilatometer or if a dilatometer is
incompatible with a concurrent experiment (e.g., a
tensile test or a synchrotron experiment). One proposed
alternative method that has a significantly simpler
experimental setup is cooling curve analysis (CCA); a
technique that involves measuring the temperature of a
sample as it cools and transforms, then using the
transformation-induced deviations from single-phase
coolin% behavior to determine the phase fraction evo-
lution.>-!

The goal of both dilatometry and CCA is to obtain
phase fraction evolution information of a material as it
undergoes monotonic heating or cooling. Because of the
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similarities in the results and sample conditions during
the experiment, dilatometry and CCA can be seen as
complimentary techniques; however, there has never
been a published, quantitative comparison of the two.
This work is intended to provide an initial comparison
for one type of transformation.

For the comparison between the two methods, an
austenite to martensite transformation is used because
this is a common transformation to be analyzed using
dilatometry. Dilatometry and CCA techniques are well
suited to this type of transformation because both
methods provide information on both the formation
temperature and the amount formed as a function of
temperature. The properties of the transformed mar-
tensite depend on the temperature at which it forms and
the properties of the alloy depend upon the properties
and amount of martensite present.

While this one comparison does not make for a
comprehensive comparison between the two methods,
the combination of the derivations of the two methods
and the results should make it possible to determine
which of the two methods presents a better set of
compromises for almost any given transformation.

Although the following methods are not the focus of
this paper, it is important to consider alternate tech-
niques that are available to measure phase fraction and
also to note how these techniques compare to dilatom-
etry and CCA. Differential thermal analysis (DTA)
methods,!” including single-sensor DTA,™ are useful for
measuring the start and finish temperatures of a
transformation but not the phase fractions. Differential
scanning calorimetry (DSC) can be used for very precise
measures of the enthalpy evolution of a transformation,
which can be used to calculate phase fraction evolution
similarly to CCA methods. A major drawback associ-
ated with DTA and DSC is that the small sample size is
not statistically representative of real size components



and the rates of heating and cooling are more restricted
than in CCA.P

There are also indirect ways of measuring phase
fraction evolution, such as measurlnfg the electrical
conductivity"” or magnetic propertles I'and correlat-
ing their change to a change in phase fraction, similarly
to how length change is used as a proxy for phase
change information in dllatometry Tt is 1mp0rtant to
note that the CCA method that is presented here is just
one of several CCA techniques that are all based on
similar principles.'?!

The innovative aspect presented in this paper resides
on the rigorous mathematical formulation which allows
for the extension of this methodology to other problems,
including multiple simultaneous transformations. This
paper has also extended the mathematical framework to
provide a rigorous analysis of dilatometric data.

II. DILATOMETRY

The dilatometry analysis presented here involves
developing a model that contains the collected data
and terms that are either dependent on temperature or
phase fraction (but not both); then using the collected
data to determine values for the temperature dependent
terms; and finally, solving for the phase fraction.

This new methodology for analyzing dilatometry data
is proposed that is consistent with typical line-drawing
techniques but is more mathematically rigorous. It also
provides a unified framework that can also be used for
the CCA that is presented in the next section.

A. Material Model

Considering a two phase system, the total volume of
the sample is V' =V, + V. With the assumption of a
constant cross section 4 for a given sample, V' = LA,
where L is the length of the sample. Using the definition
of density, it can be stated:

La="2 "

[1]

The nomenclature used throughout this paper is
described in Table I. To obtain an expression for
phase fraction evolution, the mass of the phases are
separated into total mass of the system and phase frac-
tion by weight in Eq. [1]:

L= m(f,is + fyig) 2]

where m is the total mass of the sample, f, and fp are,
respectlvely, the mass frdCthHS of the o and /3 phases,
Jy = (p,A)"" and g = (pﬁA) Equation [2] is differ-
entiated with respect to temperature to obtain:

dL (aﬂy af%)m(faxuaf,;)) 3

a1~ *oT = OT or " ar’*t

Rearranging terms and keeping in mind that in a two
phase system f, = 1 — fp and dfg = —df,, gives:

Table I. List of Terms and Symbols Used in the Dilatometry
and Cooling Curve Analysis

Symbol Name Units
Common terms

o name of the high temperature phase

p name of the low temperature phase

12 specific density of phase i g/pm’

t time s

T measured temperature of the sample K

m total mass of the sample g

total mass of phase i g
fi mass fraction of phase i g/g

index number
Dilatometry specific terms

A4 cross-sectional area of the sample m
h average heat-transfer coefficient W/m~ K
over the sample
K heat transfer coefficient of the sample =~ W/m~ K
L measured length of the sample um
L; total length of phase i um
Ai specific length of phase i um/g
L, term defined in Eq. [5] um/K
Lp term defined in Eq. [6] um/K
Cas, term defined in Eq. [7] um
CCA specific terms
H extrinsic enthalpy of the system J
H* intrinsic specific enthalpy of the J/g
sample or phase
AH latent heat of transformation J/g
c;') specific heat capacity of phase i J/g K
Ai specific length of phase i umj/g
Y term defined in Eq. [17] S
7p term defined in Eq. [18] S
Can term defined in Eq. [19] Ks
dL 0, 9
diT 8T(1_fﬁ)+m7fﬁ_ ( — 4 )ayﬁw [4]

This equation contains terms that are collected data
(L, T), constant (m), dependent on temperature (4,, Ag)
or dependent on phase fraction (fp).

B. Determining Phase Fraction Independent Terms

In each of the three terms on the right hand side of
Eq. [4], there are groups of variables that are only functions
of temperature; these are grouped together and replaced
with new variables to simplify the nomenclature:

Oy
L,=m 5T [5]
aAﬂ
Ly=mt 6
Cas = m(dy — Ap) [7]
Substituting these quantities into Eq. [4] results in:
dL fp
di,r*‘cx(l 7fﬁ)+£ﬁfﬁ7CA)ﬁa [8]
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where the £ terms are functions of temperature. The
variations of Cp; with temperature are proportional to
the difference £, — L. For typical materials, £, — Lp is
much smaller than either £, or Lp, and Ca; will be
considered as independent of temperature. Significantly,
by defining these grouped quantities that can be
determined from the experimental data, there are no
material parameters that have to be known a priori; the
length-temperature data are the only inputs that are
required to perform this analysis.

In determining the values of these terms, it is important
to keep in mind what the phase fractions represent. For
some transformations, such as solidification, the defini-
tion is very straight forward: f; is the liquid fraction and f
is the solid fraction and the system will start at fg = 0 and
finish at fg = 1. For other transformations, such as
martensite formation from austenite, it is mathematically
more convenient to let f, represent the fraction of pre-
transformation constituent and f; represent the fraction
of post-transformation product. For example, in a
martensite transformation that yields a maximum of
40 pct martensite that is half way through the transfor-
mation, there would be 20 pct martensite and fg = 0.5.

Using this definition of the phase fractions, the values
for the £ terms can be determined by considering Eq. [8]
either before or after the transformation takes place.
Before the transformation, when the system is com-
prised entirely of « and no transformation is occurring
(fsg = 0 and 9fy/0T = 0), Eq. [8] becomes:

dL

=L, 9
A similar argument can be used to relate the measured
length (L) to Ly after the transformation has occurred
and these terms can be easily computed from the
measured data.

Determining a value for Cy, is done by first assuming
a reasonable value, then proceeding with this analysis to
obtain a phase fraction evolution curve that begins at
Jfp =0 and ends at some value of fz other than 1. Since
the transformation proceeds to f3 = 1 by definition, the
calculated values of f; after the transformation can be
used to make an improved evaluation of C,;. This
process is iterated until f3 = 1 after the transformation is
complete.

C. Determining Phase Fractions

Equation [8] can be rearranged to pose it as a differential
equation for phase fraction evolution as follows:

0 1 dL
e U ORY- R T

Equation [10] can be numerically integrated, starting
from an initial condition of fg =0, using an explicit
Euler integration scheme as shown below:

Tn+1 — 7 Ln+1 _ I
+1 _ s 4 n o nm ~ =
f% =Jp+t Crs |:’Coz<1 fZ) T C/ffz T+l — T”]

[11]
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III. COOLING CURVE ANALYSIS

The thermal analysis technique presented here was
originally presented in References 5, 6. This technique is
similar to that presented for dilatometry in which a
model is proposed that describes the enthalpy of the
sample using terms that are functions of either temper-
ature or phase fraction, solving for the temperature
dependent terms, then determining the phase fraction.
The primary difference between the dilatometry and
CCA is that the dilatometry model is based on the
length of the sample, which is measured directly,
whereas the thermal model is based on the enthalpy of
the sample, which must be inferred by using a heat
transfer model.

A. Thermal Model

The thermal model assumes two phases are present
and the total enthalpy of the sample can be described by
a sum of the enthalpies of the individual phases
(H = H, + Hp). Similarly to the dilatometry analysis,
the enthalpy terms are split to separately account for
changes in the enthalpy of the phase that are due to a
change in the amount of the phase and changes that are
due to variations in the specific enthalpy of the phase.

H = m,H, + mzH} [12]

where H is the extrinsic enthalpy of the sample and
the H} terms are enthalpies per unit mass of the
phases. By further splitting the masses of the individ-
ual phases into total system mass and phase fraction,
and differentiating Eq. [12] with respect to tempera-
ture, the following equation is obtained:

dH _ (of,
ar - m<—H§ +/a

O of; OH;,
oT oT

“) +m<a—H}§ +fﬁﬁ>'
[13]

This equation can be simplified by rearranging terms
and using the properties of a two phase system similar
to what was done in the dilatometry section. It is also
convenient to replace the enthalpy differentials with
thermodynamic quantities, namely specific heat capac-
ity (cp) and heat of transformation (AH").

H , 19)
ﬁ:mcg(l —f5) —I—mcgfﬁ—mAH*a—];/i [14]
To relate dH/dT to the observed temperatures in the
experiment, a heat transfer relationship is wused.
Depending on the dominant cooling mechanism, a
relationship describing conduction, convection, or
radiation is used. While this requirement for consistent
cooling conditions does not allow for as much freedom
of cooling rates as dilatometry, it is quite adaptable
since the cooling rate of the sample can vary by orders
of magnitude depending on sample size and geometry
and ambient air conditions. For this particular set of
experiments, the following convection dominant equa-
tion is used:



— = hA(T - T). [15]

This is related to Eq. [141 by multiplying the left hand side
of Eq. [15] by (dT/d¢)”" to obtain a dH/dT term, then
replacing dH/d T by the right hand side of Eq. [14] to get:

fﬁ*

’ me (1 —f5) +mcpf,g - mAH’k hA(T — Tw)

d
dr
[16]

B. Determining Phase Fraction Independent Terms

In its present form, Eq. [16] contains six unknowns:
m, AH*, Cpo cg, h, and A. It is intractable to solve for
each of them individually. Since all these variables are
functions of temperature and not phase fraction, it is
possible to combine them into just three variables using
the following definitions:

B mcg 17

/oc - EA

mcP
S — 18
7 A (18]

mAH*
Cry = —— 19
=2 19)
Using these variables, Eq. [16] becomes:
dTr dfy

Va g, (1 —=/15) + 7 dtfﬁ CAHd =(T-Tx), [20]
where 7, and y; are functions of temperature due to the
temperature dependence of the specific heat capacity and
Capis aconstant. These new parameters can be evaluated
by considering Eq. [20] when no transformation is occur-
ring. Similarly to the dilatometry analysis, this step is
significant because it allows the three new terms to be
determined from the experimental data so none of the
terms in Egs. [17], [18] or [19] need to be known a priori.

Equation [20] can be used to determine the values of
these new terms. For example, before the transforma-
tion begins f3 = 0 and df3/d¢ = 0 and Eq. [20] becomes:

=) -1 &)

This equation provides a unique relationship between
the collected temperature data and the fitted y, variable.
A similar procedure can be done after the transforma-
tion occurs to obtain a relationship for fitting y;. To

Table II.

determine a value for Cpy, a similar procedure is used to
the dilatometry analysis is used.

C. Determining Phase Fractions

To determine phase fractions, Eq. [20] is rearranged
to isolate df/d¢ as follows:

Ve [ U= - (T )] 22

dr Can
This equation is then discretized and numerically inte-
grated using an explicit Euler integration scheme with
an initial condition of fz = 0:
ln+l i Tn+1 Vi
y“ tn+1 " ( f'/];)

Tt =fy+

AH

Tn+l_Tn .
+7p tn+1f[nfz_(7"+ _TOC>]' 23]

IV. EXPERIMENTAL SETUP

A simultaneous dilatometry and CCA experiment was
performed on a 9Cr3W3CoVND steel with controlled
additions of 120 ppm boron and 130 ppm nitrogen
produced by vacuum induction melting (VIM) in order
to compare the results between the two methods. Table IT
shows the exact chemical composition of the steel in
weight percent.

After the melting process the ingot (110 by 110 mm?)
was rolled to 20-mm-thick plates. The heat treatment
consisted of normalizing at 1423 K (1150 °C) for 1 hour
followed by tempering at 1043 (770 °C) for 4 hours. To
reveal the microstructure of the base material (before
dilatometry) the surface of the samples was subsequently
ground using silicon carbide paper down to grit 4000 and
polished in two steps using a cloth coated with 3and 1 ym
diamond suspensions. The polished samples were etched
using a modified LBII etchant that is made up of 100 mL
distilled water, 0.75 g ammonium hydrogenfluoride,
0.90 g potassium disulfide.!'¥ This is a color etchant that
reveals martensitic lath structure, prior austenite grain
boundaries and precipitates. Optical micrographs of the
base materials are shown in Figure 1. The base material in
Figure 1(a)shows a tempered martensitic structure with a
homogeneous polygon prior austenite grain structure
with an average grain size of 300 um.

A. Dilatometry Setup

For the dilatometry investigations a Bahr DIL-805/D
dilatometer was utilized. Cylindrical specimens of the
9Cr3W3CoVNb base material with a diameter of 4 mm

Chemical Composition of 9Cr3W3CoVNbBN Test Melt in Weight Percent (Balance Fe)

Element C Si Mn Cr W

v Nb Co Al B N

Amount 0.090 0.30 0.51 9.26 2.92

0.20 0.050 2.88 0.004

0.0114 0.0100
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(a)

(b)

Fig. 1—Optical micrographs of the 9Cr3W3CoVNb steel microstructure before («) and after (b) dilatometry.
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Fig. 2—Experimental setup of the dilatometer sample chamber.
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Fig. 3—Temperature and length change relative to the room temper-
ature length.

and a length of 10 mm were used. Figure 2 shows the
experimental setup of the dilatometer and the sample
chamber.

The dilatometry temperature cycle is characterized by
a heating rate of 10 K/s, a peak temperature of 1373 K
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(1100 °C), a holding time of 3 seconds, and free cooling.
The dilatometer is used to precisely record the change in
length of the sample as it is heated and cooled with time.
In addition, variations of temperature with time are
recorded simultaneously. The resulting length change
and temperature measurements are shown in Figure 3.

After the dilatometry experiments, the microstructure
of the samples were analyzed again. Figure 1(b) repre-
sents the final microstructure of the steel samples after
the thermal cycle. The material shows a martensitic
microstructure with approximately 4 pct retained aus-
tenite (based on X-ray diffraction data discussed in
detail in References 15 through 17). The prior austenite
grain boundaries are more difficult to observe compared
to the base material shown in Figure 1(7a) primarily due
to the formation of virgin martensite.!'”)

V. ANALYSIS AND RESULTS

To determine values for the temperature dependent
terms (£ in Egs. [5] and [6] and y in Egs. [17] and [18]),
temperature ranges that relate to before and after the
transformation occurs must be defined so that the terms
relating to the o phase (austenite in this case) are fit
where only o is present and the same for terms relating
to the f phase (martensite in this case). The temperature
range considered for the region where only austenite is
present was 698 K to 1123 K (425 °C to 850 °C). For
the region where martensite is the dominant phase
present during cooling, the temperature range consid-
ered was (373 K to 473 K) 100 °C to 200 °C.

Results from the single phase regions in the cooling
curve can be seen in Figure 4. The higher temperature
curve in the CCA plot representing 7y, is fitted to the
data between 1123 K and 698 K (850 °C and 425 °C)
and was best captured by using a second-order polyno-
mial while the lower temperature curve is fitted between
473 K and 373 K (200 °C and 100 °C) and was captured
by using a straight line as suggested by References 5, 6.
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Fig. 4—Fitting of £ and y terms for dilatometry and CCA, respectively.

Table III. Values for the Parameters Used in Curve Fittings
Parameter Value Units
%, 1.1 x 10872 +23x 10T - 1.7 x 1073 1/s
Vs —1.7x107°T - 1.4 x 1073 /s
Can +4.7 x 10+ Ks
L, +1.2x 10T+ 2.1 x 107! um/K
Ly —44x107°T+9.4 x 1072 um/K
Ca; +5.1 x 10*! pm

The high temperature CCA fit was likely affected by
radiation heat loss, which is proportional to T*, instead
of T as in the case of convection. This causes deviations
from linearity in y, which was best captured with a
second-order polynomial rather than a straight line. In
the case of the dilatometry plot, both £, and Ly were
best captured using linear functions of temperature. The
values for the parameters used in the curve fittings are
presented in Table III.

The evolution of the martensite fraction with time
can be calculated using three separate methods: (a)
classic “lever” method as per ASTM A1033-10; (b)
using the approach mentioned in Section II-C (dilation
data); (c) using the approach proposed in Section IT1I-C
(temperature data). Figure 5(a) compares the evolution
of the martensite fraction with temperature obtained
from both calorimetry and dilatometry methods. It can
be seen in Figure 5 that martensite formation starts
around 673 K (400 °C) and ends close to 523 K
(250 °C). This figure also includes the martensite
fraction obtained from the experimental graph using
ASTM A1033-10 standard method for graphical esti-
mates of transformation progress.'™ Figure 5(b)
clearly shows that both calorimetry and dilatometry
are powerful tools in predicting the evolution of
martensite fraction with time. The temperature differ-
ence (ATmax) between the dilatometry and calorimetry
curves observed in Figure 5(b) is explained in detail in
the Appendix section.
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Fig. 5—A comparison of the two fraction transformed curves and
the values from the ASTM standard.

VI. DISCUSSION

In the analysis presented here, mass fractions are used
because mass is a conserved quantity. With information
about phase densities, a conversion to volume fraction is
straightforward.

Both techniques can be applied simultaneously to the
sample. All forms of dilatometry and CCA rely on some
form of baseline. In the case of martensitic transforma-
tions, the baseline at low temperatures can contain a small
error because the martensitic transformation is often not
100 pct finished at the lowest measured temperature.
Both methods are also susceptible to inaccuracies due to
temperature gradients within the sample which is dis-
cussed in detail in the Appendix (although these will be
small due to the relatively small size of the sample).

The primary difference between the two methods is
that the response variable is measured directly in the
dilatometry analysis; compared to CCA, in which the
response variable (heat flux away from the sample) is
inferred based on temperature measurements and known
heat transfer analysis methods. This has the potential to
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lead to inaccuracy if the heat transfer model does not
accurately describe the experimental setup; however, the
authors have found that it is relatively easy to create an
experiment that can be well described by either a
convective or radiative heat transfer law. This could
make dilatometry more appealing if the transformation
of interest occurs in a temperature range in which the
dominant heat transfer mechanism changes; for exam-
ple, from radiative at high temperatures to convective at
lower temperatures.

The primary advantage of CCA is in the simplicity of
its experimental setup and the freedom that this affords.
One example of this flexibility is in the experiments
presented here. These experiments were setup as stan-
dard dilatometry experiments without modifications for
the CCA. With the analysis that was done here,
relatively little new information was gained but by
having two sources of information (length and heat) it
would be possible to use the differences in these data to
gain more information out of these experiments. For
example, the length measurement is along one direction
vs heat that is omni-directional so some estimate of
anisotropy could be made; or heat evolved is a combi-
nation of heat released by the transformation and heat
absorbed by new interfaces being generated, so an
estimate of the amount of interfacial energy in the
sample could be made.

VII. CONCLUSIONS

A sample of 9Cr3W3CoVND steel was processed by
normalizing at 1423 K (1150 °C) for 1 hour, subse-
quently tempering at 1043 K (770 °C) for 4 hours. This
sample was exposed to a simulated weld thermal cycle
by rapidly heating it to 1373 K (1100 °C) and finally free
cooling in a Bahr DIL-805/D dilatometer, resulting in a
microstructure of nearly 100 pct martensite.

CCA has proven to be quite effective at producing
similar results to dilatometry despite its drastically
simpler experimental setup. CCA has also almost
exactly reproduced the evolution of the martensitic
transformation, as determined by dilatometry. The
result of this experiment supports CCA as a comple-
ment to dilatometry with the ability of tracking phase
transformations even in the absence of dimensional
changes. This, combined with the interesting possibil-
ities that can come from combining CCA with other
experimental techniques, makes CCA an analysis tool
with vast potential for future utilization and develop-
ment.
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APPENDIX: ESTIMATION OF TEMPERATURE
GRADIENTS IN A DILATOMETRY SAMPLE

Typically in dilatometry, the temperature is measured
with a thermocouple welded to the surface of the metal
sample. During free cooling of a metal dilatometry
sample, a slight difference exists between the tempera-
ture of the core of the sample and its surface.

From an energy balance on the surface of the sample
(heat transfer due to conduction equal to heat transfer due
to convection) and assuming heat losses are only through
the sides of the cylindrical sample, which is typically the
casein a push rod dilatometer, Eq. [16] can be rewritten as:

dT 9
N mcg(l —f/;) + mcgfﬁ — mAH" ai]q
oT [A1]
=hA(T - Ty) = —kA——| .
or|p
This equation can then be simplified to:
_dT oT
meép—- = _kAE R [A2]

In this case ¢, is the average heat content in the trans-
formation range (c}, = };2%;11), where H5 and T, relate
to the enthalpy and temperature at the start of the
transformation and Hj and 7, relate to values at the

end of the transformation. The corresponding thermal

diffusivity is &:p%. Values for the thermophysical
P

%
1

properties used in this calculation are listed in Table
IV. Temperature homogeneity is crucial to the analysis
techniques presented here. The degree to which a sam-
ple is spatially isothermal is captured by the Biot num-

ber (Bi = HTR).[IQ] For small Bi numbers (I;TR < l), the

temperature profile can be considered to be nearly
homogeneous, decreasing uniformly at all points with
time.*® A nearly uniform temperature distribution can
be captured well with a second order polynomial.
According to Reference 21, the gradient at the surface
could then be estimated as:

oT AT
— | [A3]
or | g R
Considering a long cylinder:
m=nR*Lp, A=2nRL, [A4]
then,
Table IV. List of Values Used in Temperature Gradient
Calculation
Quantity Value Units Reference
k 223 W/mK [22, 23]
p 7645 kg/m? [22]
é 601 Jkg K [24, 25]
2 4.85 % 107 m?/s
h 19.1 W/m? s
R 0.002 m




[A5]

The value of /& was estimated from the high temper-
ature, single phase data using a value of
cp = 500 /kg K.P*31 A value for ¢, was determined
by using a transformation temperature range of 225 °C
to 400 °C. Using Eq. [A5], the maximum temperature
difference is ATmax = 0.1°C in the transformation tem-
perature regime, indicating that the spatially isothermal
assumption is valid.
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