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ABSTRACT 

General formulation and solution of Navier-Stokes and energy equations are sought in the study of three-
dimensional axisymmetric unsteady stagnation-point flow and heat transfer impinging on a flat plate when the 
plate is moving with variable velocity and acceleration towards the main stream or away from it. As an 
application, among others, this accelerated plate can be assumed as a solidification front which is being 
formed with variable velocity.  An external fluid, along z - direction, with strain rate a  impinges on this flat 
plate and produces an unsteady three-dimensional axisymmetric flow in which the plate moves along z -
direction with variable velocity and acceleration in general. A reduction of Navier-Stokes and energy 
equations is obtained by use of appropriate similarity transformations, for the first time. The obtained 
ordinary differential equations are solved by using finite-difference numerical techniques. Velocity and 
pressure profiles along with temperature profiles are presented for different examples of the plate velocity 
functions and selected Prandtl numbers.  According to the results obtained, the velocity and thermal boundary 
layers feel the effect of variations of the plate velocity more than the plate acceleration. It means that the 
minimum boundary layer thickness happens at the maximum value of the plate velocity and acceleration 
effect plays a secondary role. 
 
Keywords: Stagnation-point flow and heat transfer; Unsteady flow; Viscous fluid; Accelerated plate; 
Similarity solution; Three-dimensional axisymmetric. 

NOMENCLATURE 

)(ta   time-dependent flow strain rate 
ao flow strain rate at time=0 

 a   dimensionless strain rate 

h heat transfer coefficient  
H dimensionless heat transfer coefficient  
k thermal conductivity of the fluid 
p pressure 
P  dimensionless pressure 
Pr prandtl number 
T temperature 
S, S, S   displacement, velocity and      acceleration of 

the plate, respectively, in z-direction 

S, S, S   
 dimensionless, velocity and acceleration of the 

plate respectively, in z-direction 
u, w  velocity components near the plate in r, z 

directions 
 
 

U, W potential region velocity 
components in r, z directions r, z 
cylindrical coordinates 

 
  volumetric expansion coefficient  
  similarity variable 
  dynamic viscosity  

  dimensionless temperature  
  shear stress 

  dimensionless shear stress 
  dimensionless time  
  variable  )(tSz    

  dimensionless r-axis 
  density  
  kinematic viscosity  
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Subscripts 
o stagnation point 

 
 

∞ infinite 
w wall 
 

 

1. INTRODUCTION 

Many solutions of Navier-Stokes and energy 
equations regarding the problem of stagnation-point 
flow and heat transfer in the vicinity of a flat plate 
or a cylinder are found in the literature for different 
cases.  Removing the nonlinearity in these problems 
is usually accomplished by superposition of 
fundamental exact solutions that lead to a coupled 
system of nonlinear ordinary differential equations.  
Fundamental studies in which flows are readily 
superposed and/or the axisymmetric case were 
considered include the following papers presented 
in the literature: uniform shear flow over a flat plate 
in which the flow is induced by a plate oscillating in 
its own plane beneath a quiescent fluid (Stokes 
1851); two-dimensional stagnation-point flow 
(Hiemenz 1911); flow over a flat plate with uniform 
normal suction (Griffith and Meredith 1936); three-
dimensional stagnation-point flow (Homman 1936); 
and axisymmetric stagnation flow on a circular 
cylinder (Wang 1974).  Further exact solutions to 
the Navier-Stokes equations are obtained by 
superposition of the uniform shear flow and/or 
stagnation flow on a body oscillating or rotating in 
its own plane or cylinder, with or without suction. 
The examples are: superposition of two-
dimensional and three-dimensional stagnation-point 
flows (Howarth 1954); superposition of uniform 
suction at the boundary of a rotating disk (Stuart 
1954);  also the solution for a fluid oscillating about 
a nonzero mean flow parallel to a flat plate with 
uniform suction given (Stuart 1955); superposition 
of stagnation-point flow on a flat plate oscillating in 
its own plane, and also consideration of the case 
where the plate is stationary and the stagnation 
stream is made to oscillate (Glauert 1956); uniform 
shear flow aligned without flowing two-
dimensional stagnation-point flow (Stuart 1959); 
uniform flow along a flat plate with time-dependent 
suction and included periodic oscillations of the 
external stream (Kelly 1965); heat transfer in an 
axisymmetric stagnation flow on a cylinder (Gorla 
1976); unsteady laminar axisymmetric stagnation 
flow over a circular cylinder (Gorla 1977); 
nonsimilar axisymmetric stagnation flow on a 
moving cylinder (Gorla 1978); transient response 
behavior of an axisymmetric stagnation flow on a 
circular cylinder due to time-dependent free stream 
velocity (Gorla 1978); unsteady viscous flow in the 
vicinity of an axisymmetric stagnation-point on a 
cylinder (Gorla 1979); shear flow over a rotating 
plate (Wang 1989); radial stagnation flow on a 
rotating cylinder with uniform transpiration 
(Cunning,  Davis, and Weidman 1998); suppression 
of turbulence in wall-bounded flows by high-
frequency span wise oscillations (Jung and 
Mangiavacchi 1992);  axisymmetric stagnation flow 
towards a moving plate (Wang 1973); oscillating 
stagnation-point flow (Grosch and Salwen 1982); 
unsteady axisymmetric stagnation-point flow of a 

viscous fluid on a cylinder (Takhar and Chamkha 
1999); axisymmetric stagnation-point flow and heat 
transfer of a viscous fluid on a moving cylinder 
with time-dependent axial velocity and uniform 
transpiration (Saleh and Rahimi 2004); 
axisymmetric stagnation-point flow and heat 
transfer of a viscous fluid on a rotating cylinder 
with time-dependent angular velocity and uniform 
transpiration (Rahimi and Saleh 2007); similarity 
solution of un-axisymmetric heat transfer in 
stagnation-point flow on a cylinder with 
simultaneous axial and rotational movements 
(Rahimi and Saleh 2008); Non-axisymmetric three-
dimensional stagnation-point flow and heat transfer 
on a flat plate (Shokrgozar and Rahimi  2009); and 
three-dimensional stagnation flow and heat transfer 
on a flat plate with transpiration (Shokrgozar and 
Rahimi 2009). Moreover, exact solutions for the 
problems of unsteady stagnation-point flow over a 
vertically moving plate for both axisymmetric and 
two-dimensional cases in Ref. (Zhong and Fang 
2011); non-axisymmetric stagnation-point flow by 
adding radial and azimuth velocities (Weidman 
2012); and steady three-dimensional stagnation 
flow and heat transfer of a viscous, compressible 
fluid on a flat plate in Ref. (Mozayyeni and Rahimi 
2013) were recently published. 

Among all the studies above only in References 
(Grosch and Salwen 1982; Zhong and Fang 2011) 
the flat plate has a vertical movement.  In Ref. 
(Grosch and Salwen 1982), the plate oscillates in 
the vertical direction. In this paper, some particular 
solutions have been obtained by use of Fourier's 
expansions. Besides, in Ref. (Zhong and Fang 
2011) in order for a similarity solution to be 
attained both the free stream velocity and the plate 
velocity varies with specific, time-dependent 
functions. A two-dimensional study of a plate with 
vertical movement has also been submitted as a 
technical brief as Ref. (Shokrgozar and Rahimi 
2012). Consequently, similarity solution of three-
dimensional stagnation-point flow and heat transfer 
problem on a flat plate with arbitrary vertical 
movement is non-existing in the literature. 

In this study the general unsteady three-dimensional 
axisymmetric viscous stagnation-point flow and 
heat transfer in the vicinity of a flat plate are 
investigated where this flat plate is moving towards 
or away from the impinging flow with variable 
velocity and acceleration.  The Navier-Stokes 
equations along with energy equation are solved.  
The importance of this research work is 
encountered in problems where the solid participant 
is moving towards the impinging flow, for example 
in solidification in which the solid front is growing. 
The external fluid impinges on this flat plate along 
z -direction, with strain-rate a , while the plate is 

moving with variable velocity and acceleration 
along z -direction. Appropriate similarity 
transformations are used to reduce the Navier-
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Stokes and energy equations to a coupled system of 
ordinary differential equations. The results are 
presented for different examples of the plate 
velocity functions and selected Prandtl numbers. 

2. PROBLEM FORMULATION 

Flow is considered in cylindrical coordinates 
),( zr with corresponding velocity components 
),( wu , see Fig. 1. We consider the unsteady 

laminar incompressible flow and heat transfer of a 
viscous fluid in the neighborhood of stagnation-
point on a moving flat plate located in the plane 

0z  at 0t . The plate can move with any 
arbitrarily time-dependent velocity and acceleration 
functions. An external fluid flow approaches the 
plate along the opposite direction of z-axis, with 
strain -rate a , and impinges on this accelerated 
plate. Afterwards, the flow divides and moves away 
from the stagnation point along the wall radially in 
all directions. In this axisymmetric case, r-direction 
is to be considered as cylindrical radius coordinate. 
As an application, this accelerated plate can be 
assumed as a solidification front which is moving 
with variable velocity along the z -axis in which the 
solid thickness is growing steadily in r direction.   
For a Newtonian fluid with constant density and 
viscosity, unsteady Navier-Stokes and energy 
equations in cylindrical coordinates governing the 
flow and heat transfer are given as: 

 
Fig. 1. Schematic Problem Graph. 
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Notice conductivity and heat capacity coefficients 
are constant (k and c respectively) also dTcdu   is 

assumed where p ,  ,  , and   are the fluid  
pressure, density, kinematic viscosity, and thermal 
diffusivity. 

3. SIMILARITY SOLUTION 

3.1   Fluid Flow Solution 

The classical potential flow solution of the 
governing equations (1)-(3) is as follows 
((Weidman 2012) without azimuth velocity): 

rtaU )(  )5(  

By inserting (5) in continuity equation and after 
integrating: 

)(2 taW   )6(  

Where )(tSz   and )(tS is the amount of plate 

displacement in z - direction and is assumed to be 
positive when the plate moves toward the impinging 
flow. Hence, )(tS and, then, ζ are functions of 

time. According to the definition of flow strain-rate 
 wta )( , )(ta can be, also, expressed as a 

time-dependent function in problems comprising 
moving plate with time-dependently variable 
velocity and acceleration.    

A reduction of the Navier-Stokes equations is 
sought by the following coordinate separation in 
which the solution of the viscous problem inside the 
boundary layer is obtained by composing the 
inviscid and viscous parts of the velocity 
components (Shokrgozar and Rahimi 2009): 

)()( frtau   )7( 

)()(2  ftaaw   )8( 

)(, tSzanda         )9( 

Where terms involving )(f in (7), (8) comprise 
the cylindrical similarity form for unsteady 
stagnation-point flow and prime denotes 
differentiation with respect to  . Moreover, a is 

the reference potential flow strain- rate at the 
time=0. Note, boundary layer is defined here as the 
edge of the points where their velocity is 99% of 
their corresponding potential velocity.  
Transformations (7)-(9) satisfy (1) automatically 
and their insertion into (2) - (3) yields an ordinary 
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differential equation in terms of )(f  and an 
expression for the pressure: 

a
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In which, "dot" in dimensionless parameters 
denotes differentiation with respect to   and 

quantities SSPPa
~

,
~

,,
~

,
~

),(~ 
   and   are non-

dimensional forms of quantities strain- rate, 
pressure, stagnation pressure, time, plate velocity, 
plate acceleration and r, respectively. Also,  is 

the vertical distance from the plate in which the 
incoming potential flow starts feeling the movement 

of the plate. The quantity W
~

 is dimensionless 

velocity of potential impinging flow at  . Relation 

(11) which represents pressure is obtained by 
integrating Eq. (3) in z-direction and by use of the 
potential flow solution (5) - (6) as boundary 
conditions.  Here, Eq. (10) is in the most general 
form for any arbitrary flat plate vertical movement 
and the boundary conditions for this equation are: 

0,0:  ff  )13( 

1:  f        )14( 

Note that, in steady-state conditions in which the 
plate velocity and acceleration are zero, 

  
 ataSS  )(0&0 and Eq. (10) simplifies to 

the case of Homann flow obtained in Ref. 
(Homman 1936) which is the three-dimensional 
case of Hiemenz flow, Ref. (Hiemenz 1911). 

 Shear- stress at the wall surface is given by, 

0
z

zu  )15(    

On applying dimensionless parameters defined in 
section 3, dimensionless form of shear- stress on the 
flat plate is presented by, 

   af  ~,where~  )16( 

3.2   Heat Transfer Solution: 

To transform the energy equation into a non-
dimensional form for the case of defined wall 
temperature, we introduce: 








TT

TT

w

)(  )17( 

 Making use of transformations (7) - (9), this 
equation may be written as: 

0'.Pr~2)(
~

" 




   faS  )18( 

With boundary conditions as: 

:0                   1  )19( 

:               0      )20( 

Where   is dimensionless temperature, the 
subscript w  and   refer to the conditions at the 
wall and in the free stream, respectively, Pr , 

is Prandtl number and prime indicates 
differentiation with respect to  .   

The local heat transfer coefficient on the flat plate is 
calculated from, 

  TTqh ww  )21( 

Using the relation (19) and dimensionless 
parameters, the dimensionless form of the heat 
transfer coefficient for this study can be gained as, 

 0
,H Where H h k a 

       )22( 

4. PRESENTATION OF RESULTS 

In order to validate the results obtained, f   
distributions are compared with those of reference 
(Mozayyeni and Rahimi 2013) for the case of 

stationary plate )0.0
~

( S . As it can be seen from 
Fig. 2, there is no difference for this quantity 
comparing with Ref. (Shokrgozar and Rahimi 
2012). 

As examples, the following three distinct velocity 
functions are considered: 

)exp()(
~

 S  )23(  

2)(
~

 S  )24(  

)(cos)(
~

 S  
)25(  

The exponential velocity function above, for 
example, can be used to model the physical one or 
three-dimensional solidification problem.  Equation 
(10) for a known plate velocity function is an 
ordinary differential equation and can be solved 
numerically along with Eq. (16) by using a shooting 
method trial and error and based on the Runge-
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Kutta algorithm. This procedure is applied for 
maximum error of less than 0.00001. 
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Ref. [31]

 
Fig. 2. Comparison of f   profiles with Ref. 

(Mozayyeni and Rahimi 2013) for stationary 

plate )0.0
~

( S . 
 
In Figs. 3-5, the boundary layer velocity profile in 
r direction for exponential, polynomial and co 
sinusoidal, respectively, plate velocity functions in 
different time values are shown. As it can be seen in 
Fig. 3, when the time increases, the f   values 
decrease in the region close to the plate. It is 
important to note that with the passing of time, the 
plate velocity and acceleration approaches zero.  
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Fig. 3. distribution of f   at different times for 

Exponential plate velocity function. 

Hence, the velocity profile gradually tends toward 
the Homann flow. If the plate moves with the 
polynomial velocity function, Fig.4, the increase of 
time causes the boundary layer thickness to 
decrease considerably. In Fig. 5, the plate is 
assumed to be moved with a co sinusoidal velocity 
function. As we know, at the time 0, the plate 
velocity has the value of +1, i.e. moving with the 
highest speed toward the impinging flow. As the 
time goes by, the velocity reduces until gets the 
value of -1 at the time π, i.e. moving with the 
highest speed away from the incoming potential 
flow. 

The decrease in the velocity value in this time 

duration causes the f   boundary layer thickness to 
increase. If the passing of time is continued from π 
to 2π, the value of the plate velocity increases 
gradually from -1 to +1 and brings about the change 
in the direction of the plate movement. This 
phenomenon causes the decrease in the boundary 
layer thickness, as expected.   
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Fig. 4. distribution of f   at different times for 

Polynomial plate velocity function. 
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Fig. 5. distribution of f  at different times for co 

sinusoidal plate velocity function. 
 
The effect of time on dimensionless distribution of 
w velocity component is illustrated in Figs. 6 to 8 
for selected velocity functions. For an exponentially 
moving plate, Fig. 6, with the increase of the time 
the velocity component in z -direction decreases. In 
contrast, if the plate moves with polynomial 
function, the f  values are growing in the vicinity 
of the plate as the time passes. It is because of the 
increase in the velocity and acceleration of the 
plate. For the case of co sinusoidal movement, the 
more the time departures from 0 to π, the higher 
values are captured for z -direction velocity 
component. If the passage of time is continued, 
from π to 2π, the f function values are decreased, 
gradually, until reach the lowest ones at the time 2π.   
 
The dimensionless pressure distributions are 
depicted in Figs. 9 and 10 for moving plate with 
exponential and co sinusoidal, respectively, velocity 
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functions. According to Fig. 9, the passage of time 
causes the decrease in the absolute values of 
pressure in the region close to the plate. This feature 
is more dominated at the beginning of the motion. 
For the case of co sinusoidal movement, one can 
see the sample results for pressure distributions in 
one periodic motion over a time period of 0 to 2π.   
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Fig. 6. f  function distribution at different times 

for Exponential plate velocity function. 
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Fig. 7. f function distribution at different times 

for Polynomial plate velocity function. 
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Fig. 8. f function distribution at different times 

for co sinusoidal plate velocity function. 
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Fig. 9. Pressure distribution at different times 

for Exponential plate velocity function. 
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Fig. 10. Pressure distributions at different times 

for co sinusoidal plate velocity function. 
 
In Figs. 11 and 12, the thermal boundary layer 
profiles are shown for exponential plate velocity 
function and selected values of Pr  number, 0.1 and 
20. Not many considerable changes are reported for 
temperature distributions of a fluid with Pr  number 
0.1 when the time passes, Fig. 11. In contrast, the 
thermal boundary layer thickness decreases rapidly 
with the passage of time, for a fluid with high-
valued Pr  number. Besides, Figs.13 and 14 depict 
the temperature distributions with respect to time in 
the vicinity of the plate for the case of polynomial 
velocity function and for selected Pr  numbers 0.1 
and 20. As it can be noticed, the increase of time 
brings about the decrease of the thermal boundary 
layer thickness for any value of Pr number. 
Moreover, it can be found out by comparing these 
two figures that the thermal boundary layer 
thickness becomes smaller noticeably if the Pr  
number gets higher values. Figure 15, shows 
temperature distributions at different times when 
the velocity of the plate obeys the co sinusoidal 
function. According to this figure, when the time 
departures from 0 to π the thermal boundary layer is 
growing continuously. However, the thermal 
boundary layer thickness starts decreasing when the 
passage of time is continued from π to 2π.        
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Fig. 11. Temperature distributions at different 
times for Exponential plate velocity function 

when.  
Pr =0.1 
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Fig. 12. Temperature distributions at different 
times for Exponential plate velocity function 

when. 
Pr =20 
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Fig.13. Temperature distributions at different 
times for Polynomial plate velocity function 

when. 
Pr =0.1 
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Fig. 14. Temperature distributions at different 

times for Polynomial plate velocity function 
when. 
Pr =20 
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Fig. 15. Temperature distribution at different 
times for co sinusoidal plate velocity function 

when. 
Pr=1 

 
The effect of passage of time on distributions of 
dimensionless heat transfer coefficient is illustrated 
for different values of Prandtl number when the 
plate moves toward the impinging flow with an 
exponential velocity function, Fig. 16, and with a 
polynomial velocity function, Fig. 17. For an 
exponentially moving plate, the increase of time at 
the outset causes the noticeable decrease in the 
amount of heat transfer coefficient. This trend 
continues until reaching a constant value at steady- 
state condition. It should be noted that, the more the 
Pr number the more the coefficient H will be at any 
selected time. As it was discussed in Figs. 13 and 
14, if the plate moves toward the impinging flow 
with a polynomial velocity function, the 
temperature gradient of the fluid increases with 
increase of τ in the region close to the plate. 
According to Eq. 20, as the temperature gradient 
increases the dimensionless heat transfer coefficient 
increases as well.  This phenomenon has been 
illustrated in Fig. 17. According to this figure, the H 
coefficient consistently enhances with increase of τ. 
This enhancement is much more considerable if the 
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Pr number of the fluid is high.        
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Fig. 16. Distributions of H coefficient with 

respect to time for exponential plate velocity 
function for different values of Pr numbers. 
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Fig. 17. Distributions of H coefficient with 

respect to time for polynomial plate velocity 
function for different values of Pr numbers. 

 

In Fig. 18, the distribution of shear- stress on the 
plate is presented when the plate velocity varies 
with time with exponential and polynomial 
functions. As it can be seen in this figure, the trend 
of shear- stress change is completely different for 
these two velocity functions. With the passage of 
time, an exponentially moving plate approaches the 
steady- state condition. Consequently, the shear-
stress decreases gradually to reach a consistent 
value which is 1.313. It is worth noting that this 
value is close enough with that of Ref. (Zhong et al, 
2011). Hence, it can be considered as another 
validation criterion. In contrast, as it was seen in 
Fig. 4, if the velocity of the plate varies with a 
polynomial function, the velocity gradient in 
viscous boundary layer increases considerably with 
enhancement of τ. As a result, shear-stress on the 
plate increases with a high rate as time passes.        

5. CONCLUSIONS 

General formulation and similarity solution of the 
Navier-Stokes and energy equations have been 

derived in the study of axisymmetric three-
dimensional unsteady stagnation-point flow and 
heat transfer impinging on a flat plate where this 
plate is moving with arbitrary velocity and 
acceleration functions of time towards the main 
stream or away from it.  The results of the 
stagnation-point flow and heat transfer for the case 
of stationary plate, Homann flow, is reached by 
simplifications of this formulation. Example 
presented plate velocity functions are exponential, 
polynomial and co sinusoidal.  All kinds of 
applications of the plate movement is encountered 
in industry where the stagnation–point flow and 
heat transfer is involved but our main reason is use 
of exponential plate velocity function to formulate 
solidification and melting in these kinds of studies. 
Velocity and pressure profiles, boundary layer 
thickness along with temperature profiles have been 
presented in different physical phenomena governed 
on this problem. The results obtained show that the 
more the value of the plate velocity towards the 
impinging flow, the less the velocity and thermal 
boundary layer thicknesses will be. Moreover, it 
was captured that the increase of the Pr number 
causes the thermal boundary layer thickness to 
become smaller.     
 



f
''

(0
,

)

0 0.5 1 1.5 2
0

1

2

3

4

5

6

7

Polynomially Moving Plate
Exponentially Moving Plate



 
Fig. 18. Distributions of shear stress on the plate 

for polynomial and exponential plate velocity 
functions. 
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Appendix 

Using the Navier- Stokes and Energy equation and 
similarity transformations defined in the text, we 
have: 

(I) R-Momentum Equation: 
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Using dimensionless parameters defined in relation 
(12), the following equation is obtained, 
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By dividing both sides to the term 
0 0a a a  , it 

can be achieved that,  

0
~

~
1

~

~
1~)~2

~
(
























P

a

f
a

a
faffaSf 

 (9) 

(II) Pressure Equation: 
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Using dimensionless parameters defined in relation 
(12), the following equation is obtained, 
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By omitting the term o oa a   from both sides 

and, then, integrating with respect to , we have: 
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(15) 

Where  h   is the integration constant in which   

is dimensionless form of r-direction. 

As it can be seen from the relation (15),

 

 ddhP   and both these two terms are 

independent of  .Hence, in order to find  h  , 

inviscid momentum equation at r-directions will be 
used utilizing the velocity components in the 
potential region. 

Employing the inviscid r-momentum terms gives, 
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By using dimensionless parameters defined in the 
relation (12), the r-momentum equation is rewritten 
as follow, 
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By omitting the term 
o oa a   from both sides, it is 

achieved that, 

 2P dh da
a

d d
 

  


   


    (20) 

   
2 2

2
.

2 2

da
h a Const

d

 


    
   (21) 

As we know, the pressure at 0.0    is 

recognized as the stagnation pressure P . So, it can 
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be easily found out that PCosnt . . According to 

the explanations mentioned above, the final relation 
of the dimensionless pressure is achieved  

as, 
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(III) Energy Equation 
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By applying the dimensionless parameters defined 
in the relation (12) and eliminating the extra terms 
from both sides, it can be achieved the energy 
equation as bellow, 
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