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a b s t r a c t 

The transportation of biomedical samples is a key component of healthcare supply chains. The samples 

are collected, consolidated into cooler boxes, and then transported to be analyzed in a specialized lab- 

oratory. Since many hospitals and samples’ collection points are assigned to the same laboratory, it is 

important to manage the flow of samples arriving to the laboratory to avoid congestion. In other words, 

it is preferable to try to desynchronize the samples’ arrivals by managing the vehicles’ departure times 

and the routes ordering. We propose a mathematical model and a multi-start heuristic to minimize the 

route duration times and the maximum number of samples’ boxes arriving at the laboratory within a 

given time period. Based on real data, we demonstrated that both the model and the heuristic are very 

efficient in solving real size instances. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Vehicle routing and scheduling are key components of the

efficiency of modern supply chains, where quantities of goods and

raw materials should be continuously exchanged in the seamless

way possible. In its most common version, the vehicle routing

problem (VRP) is used to plan the distribution of goods from a

depot to a set of customers, ( Koç, Bektas, Jabali, & Laporte, 2016,

Laporte, 2009, Semet, Toth, & Vigo, 2014 ) and subject to some

constraints, like time windows ( Bräysy & Gendreau, 2005a, 2005b ),

vehicle restrictions ( Semet, 1995 ) and many other practical and

industrial considerations ( Coelho, Renaud, & Laporte, 2016 ). In

other situations, products are exchanged between the customers,

which leads to the pickup and delivery VRP ( Berbeglia, Cordeau, &

Laporte, 2010, Gschwind, 2015; Berbeglia, Cordeau, Gribkovskaia,

& Laporte, 2007 ). Vehicles can also be used to bring back the

customers’ goods to a central depot, or consolidation point, like in

the waste collection problem ( Ghiani, Laganà, Manni, Musmanno,

& Vigo, 2014 ). These practical routing problems deal with many
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eal-world constraints and are often referred as rich VRP ( Lahyani,

hemakhem, & Semet, 2015 ). 

In this article, we focus on a situation arising in the healthcare

upply chain context which corresponds to the daily transportation

f biomedical samples from hospitals or clinics, which will be re-

erred to as collection points (CP), to a single laboratory (Lab) where

hey will be analyzed. Transportation is done by a fleet of vehicles

erforming multiple routes during the day. As the lifespan of these

amples is limited, CPs often require multiple collection requests

n a given day, and each collection request is generally bounded by

 time window. Samples are consolidated in cold boxes that, once

ollected, must arrive to the Lab within a limited specified time to

reserve samples’ integrity. The boxes are opened at the Lab, and

ach sample is manually registered in the system and bar-coded

or tracking purposes during the analysis process. These manual

asks are time consuming and according to our partner’s experts,

he Quebec’s Ministère de la santé et des services sociaux (Ministry

f Health and Social Services – MSSS), they constitute a bottleneck

f the samples’ supply chain. In fact, if too many boxes arrive in

 short period of time, samples are queued and may suffer long

ait, which might exceed their remaining lifetime making them

nsuitable to be analyzed. Our observations on the ground con-

rmed that some days or periods are more popular for sample col-

ection. Thereby, reducing the maximum number of samples boxes

rriving within a time period is desirable in order to normalize the

ab workload and minimize sample losses. Thus, the objective of

http://dx.doi.org/10.1016/j.ejor.2016.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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his vehicle routing problem with desynchronized arrivals at the de-

ot (VRP-DA) can be defined as minimizing the sum of the routes’

raveling time as well as the maximum number of boxes arriving

t the Lab within any time period of the considered planning day.

his work is motivated by the reengineering of the health supply

hain performed by the Quebec’s government under the name of

he Optilab project ( MSSS, 2012 ). One of the first objective was to

entralize the transportation needs of the collection points to ob-

ain better tariffs from the carriers ( Anaya Arenas, Chabot, Renaud,

 Ruiz, 2016 ). Now the MSSS seeks at reducing the number of lab-

ratories in order to better use the strategic ones. In order to do

o, it clearly appears that a good management of samples arriving

o the Lab would be an important issue. To the best of our knowl-

dge, our contribution is the first one considering desynchronizing

he vehicles’ arrivals to the depot as this is closely related to sam-

les’ limited lifetime, which is not the case for most of classical or

ndustrial goods. 

Instead of regularizing the arrivals, many works have tried

o balance the vehicles’ workload. Jozefowiez, Semet, and Talbi

2009) considered a bi-objective VRP which minimized the total

ength of routes and the balance of routes, which is defined as

he difference between the maximal route length and the minimal

oute length. Kritikos and Ioannou (2010) studied a VRP with time

indows (VRPTW) where they balanced the load carried by each

ctive vehicle. Baños, Ortega, Gil, Márquez, and de Toro (2013) also

onsidered a multi-objective VRPTW with both distance and load

mbalances. López-Sánchez, Hernández-Díaz, Vigo, Caballero, and

olina (2014) solved a balanced open VRP where the maximum

ime spent on the vehicle must be minimized. We note that, if all

ehicles depart at the same time, balancing the routes will indeed

oncentrate the vehicle arrival times at the depot. 

Closer to our context, Doerner, Gronalt, Hartl, Kiechle, and

eimann (2008) and Doerner and Hartl (2008) studied a blood col-

ection problem which shares some characteristics with our prob-

em. However, in their study they considered that the blood de-

erioration process begins right after the donation, and they used

nterdependent time windows. They also did not consider arrival

imes at the depot. Liu, Xie, Augusto, and Rodríguez (2013) con-

idered the pickup and delivery of four demand types in a home

ealth care system. They dealt with many specific constraints, but

hey did not consider a time limit for the samples’ delivery to

he depot, nor did they manage vehicles’ arrival times. Ş ahinyazan,

ara, and Taner (2015) studied a system composed of bloodmo-

iles and shuttles which brought the collected blood to the depot

o prevent spoilage. In order to maximize the collected blood and

inimize the transportation cost, they managed the activities of

he bloodmobiles and shuttles over a time horizon. However, they

id not consider a time limit for the blood’s return to the depot.

inally, and as stated before, this particular context was introduced

y Anaya Arenas et al. (2016) which minimized traveling distance,

ut did not consider desynchronizing the arrivals at the Lab. 

The remainder of this article is as follows. In Section 2 we pro-

ose the problem formulation and some valid inequalities designed

o improve its solvability. A multi-start heuristic is developed in

ection 3 . The efficiency of this formulation and of the heuris-

ic and the impact of desynchronized arrivals are evaluated in

ection 4 , based on a set of real instances obtained from the MSSS

f Quebec, Canada. We also demonstrate how this new formulation

nd heuristic improve upon those of Anaya Arenas et al. (2016) ,

here desynchronized arrivals were not considered. Our conclu-

ions are presented in Section 5 . 

. Problem definition and formulation 

In order to formulate the vehicle routing problem with desyn-

hronized arrivals, we need to identify both the locations of the
Ps and the collections requests. The n CPs are represented by

 

′ = { v ′ 1 , . . . , v ′ n } and each CP l requires Q l collection requests,

eading to a total of p = 

∑ n 
l=1 Q l requests. Each request is com-

osed of one box that contains several samples. Then we de-

ne a complete graph G = { V, A } , where V = { v 0 , v 1 , . . . , v p , v p+1 }
s the set of nodes in the network, which includes the labora-

ory as nodes { v 0 , v p+1 } where every route must start and end,

nd the set P = { v 1 , v 2 , . . . , v p } , being the p transportation re-

uests. Also, we note P l as the set of request nodes in V which

orresponds to the same CP location. We consider the arc set

 = { ( v i , v j ) : v i , v j ∈ V, i � = j, i = 0 , . . . , p, j = 1 , . . . p + 1 } and 

 travel time ( t i j ) and a travel distance ( d i j ) are assigned to each

rc ( v i , v j ) . Clearly, t i j and d i j are equal to zero for every ( v i , v j )
f i and j ∈ P l (i.e., i and j correspond to two requests from the

ame CP). In addition, each request needs to be served within a

ime window [ a j , b j ] . Finally, any two requests related to the same

ollection point cannot be on the same route. 

K uncapacited vehicles are available for satisfying the trans-

ortation requests, and each vehicle can perform multiple routes

 r = 1 , . . . , R ) within a work shift, but a limit on the length of the

orking day ( T k ) must be respected. In addition, we need to con-

ider a loading time ( τi ) for each transportation request, as well

s the vehicle’s unloading time ( τ0 ) at the Lab before a new route

an be started. Furthermore, let T i max be the maximal transporta-

ion time for the samples associated to request i . The objective is

o minimize the total traveling time of the vehicle, including the

aiting times, plus a weighted penalty θ associated to the maxi-

um number of boxes arriving at the depot during the most vis-

ted time period. In the following sections we present the VRP-DA

ormulation followed by some valid inequalities to strengthen it. 

.1. VRP-DA formulation 

The following decision variables are needed to define the VRP-

A: 

 i jkr Binary variable equal to 1 if vehicle k travels from request

i to request j in its route r; 0 otherwise. 

 ikr Continuous variable that indicates the visit time (start of

loading) of transportation request i by vehicle k in route

r. 

 itkr Binary variable equal to 1 if the request i performed by

the r th route of the vehicle k , arrives at the Lab within

the t th time period; 0 otherwise. 

 Highest number of boxes arriving to the Lab within any

given time period (the busiest one). 

The model VRP-DA reads as follows. 

in 

K ∑ 

k =1 

R ∑ 

r=1 

(
u p+1 kr − u 0 kr 

)
+ θw (1) 

ubject to: 

K 
 

k =1 

R ∑ 

r=1 

p ∑ 

i =0 

x i jkr = 1 j = 1 , . . . , p (2)

∑ 

j ∈ P l 

p ∑ 

i =0 

x i jkr ≤ 1 l = 1 , . . . , n ; k = 1 , . . . , K; r = 1 , . . . , R (3)

p 
 

i =0 

x i jkr −
p+1 ∑ 

l=1 

x jlkr = 0 j = 1 , . . . , p; k = 1 , . . . , K; r = 1 , . . . , R 

(4) 

p 
 

j=1 

x 0 jkr ≤ 1 k = 1 , . . . , K; r = 1 , . . . , R (5)
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∑
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p ∑ 

j=1 

x 0 jkr −
p ∑ 

j=1 

x j,p+1 kr = 0 k = 1 , . . . , K; r = 1 , . . . , R (6)

a j − T k 

( 

1 −
p ∑ 

i =0 

x i jkr 

) 

≤ u jkr ≤ b j + T k 

( 

1 −
p ∑ 

i =0 

x i jkr 

) 

j = 1 , . . . , p; k = 1 , . . . , K; r = 1 , . . . , R (7)

u ikr − u jkr + 

(
b i + τi + t i j − a j 

)
x i jkr ≤ b i − a j 

i = 0 , . . . , p; j = 1 , . . . , p + 1 ;
k = 1 , . . . , K; r = 1 , . . . , R (8)

u 0 kr ≥ u p+1 ,k,r−1 k = 1 , . . . , K; r = 2 , . . . , R (9)

u p+1 ,kr − u jkr ≤ T j max + T k 

( 

1 −
p ∑ 

i =0 

x i jkr 

) 

j = 1 , . . . , p; k = 1 , . . . , K; r = 1 , . . . , R (10)

u p+1 ,kr − u 0 ,k 1 ≤ T k k = 1 , . . . , K; r = 1 , . . . , R (11)

K ∑ 

k =1 

R ∑ 

r=1 

T ∑ 

t=0 

y itkr = 1 i = 1 , . . . , p (12)

y itkr ≤
p+1 ∑ 

j=1 

x i jkr i = 1 , . . . , p; t = 0 , . . . , T ;

k = 1 , . . . , K; r = 1 , . . . , R (13)

u p+1 ,kr < ω ( t + 1 ) + M ( 1 − y itkr ) i = 1 , . . . , p; t = 0 , . . . , T ;
k = 1 , . . . , K; r = 1 , . . . , R (14)

u p+1 ,kr ≥ ωt − M ( 1 − y itkr ) i = 1 , . . . , p; t = 0 , . . . , T ;
k = 1 , . . . , K; r = 1 , . . . , R (15)

w ≥
K ∑ 

k =1 

R ∑ 

r=1 

p ∑ 

i =1 

y itkr t = 0 , . . . , T (16)

x i jkr ∈ { 0 , 1 } i = 0 , . . . , p; j = 1 , . . . , p + 1 ;
k = 1 , . . . , K; r = 1 , . . . , R (17)

u ikr ∈ R + i = 0 , . . . , p; k = 1 , . . . , K; r = 1 , . . . , R (18)

y itkr ∈ { 0 , 1 } i = 0 , . . . , p; t = 0 , . . . , T ;
k = 1 , . . . , K; r = 1 , . . . , R (19)

w ∈ R + (20)

The first part of the objective function ( 1 ) minimizes the routes’

total duration (end time minus starting time) which includes the

necessary waiting time to respect the time windows. In our case,

the total duration of the routes may be different from the total

operating time of a vehicle as waiting times are allowed at the

Lab between routes. The second applies a penalty factor θ to the

maximum number of boxes arriving within a time period ( w ). In

preliminary computations we found that minimizing traveling dis-

tance was inefficient, as the model simply added useless waiting

times within the route to span the arrivals over the time periods.

We found that minimizing the route’s duration, including the wait-

ing time, was a more logical objective, even if it is more compli-

cated to optimize. Constraints ( 2 ) assure that each request is ser-

viced by exactly one route. Since some of the original collection
oints are duplicated, constraints ( 3 ) ensure that a route visits only

ne original point at a time. Flow conservation is ensured by con-

traints ( 4 ). Constraints ( 5 ) state that truck k can start a route r

r not, and if a route is started, it has to come back to the depot

y constraints ( 6 ). If vehicle k in its route r performs request j , the

ime windows must be respected by constraints ( 7 ). Constraints ( 8 )

re the sub-tour elimination constraints. Constraints ( 9 ) state that

oute r of vehicle k starts later than the arrival of its route r -1. The

ime needed to return to the depot after visiting a request node is

ounded by constraints ( 10 ) to satisfy sample lifetime. Constraints

 11 ) set the maximum duration on any route. Constraints ( 12 ) state

hat the request i will arrive at the depot within a given time pe-

iod t . Constraints ( 13 ) ensure that, if request i has been visited

y the r th route of vehicle k , the variable y itkr can take the value

ne. Constraints ( 14 ) and ( 15 ) force the relation between the flow

nd y variables and discretize time into periods of ω units of time.

hen using these constraints in the case where y itkr = 1 , we have

 t ≤ u p+1 kr < ω ( t + 1 ) , meaning that the depot must be visited

ithin the tt h 

th time period, thus within time ωt and ω( t + 1 ) .

onstraints ( 16 ) calculate the Lab’s maximum workload during the

vailable time periods. As expressed by ( 16 ), the number of boxes

rriving during a given time period corresponds to the number of

ocations visited by the routes which return to the depot during

his period. Assuming that a sample box is collected at each re-

uest location, the workload then corresponds to the number of

oxes arriving at the depot during this period. Domains of the vari-

bles are given by ( 17 )–( 20 ). 

.2. Valid inequalities 

The solvability of the model ( 1 )–( 20 ) can be improved by the

ddition of the following groups of inequalities. 

p 
 

j=1 

x 0 jkr −
p ∑ 

j=1 

x 0 jkr−1 ≤ 0 k = 1 , . . . , K; r = 2 , . . . , R (21)

 ikr −
p ∑ 

j=0& i � = j 

(
a j + τ j − a i + t ji 

)
x jikr ≥ a i 

 = 1 , . . . , p + 1 ; k = 1 , . . . , K; r = 1 , . . . , R (22)

p 
 

j=1 

x 0 jk 1 −
p ∑ 

j=1 

x 0 jk −1 , 1 ≤ 0 k = 2 , . . . , K (23)

R 
 

r=1 

p ∑ 

i =1 

x i jkr −
j−1 ∑ 

l=1 

R ∑ 

r=1 

p ∑ 

i =1 

x ilk −1 ,r ≤ 0 j = 1 , . . . , p; k = 2 , . . . , K 

(24)

p 
 

i =1 

R ∑ 

r=1 

T ∑ 

t=0 

y itkr ≤ M 

p ∑ 

i =1 

T ∑ 

t=1 

y itk −1 , 1 k = 2 , . . . , p (25)

p 
 

i =1 

T ∑ 

t=0 

y itkr ≤ M 

p ∑ 

i =1 

T ∑ 

t=1 

y itk,r−1 k = 1 , . . . , K; r = 2 , . . . , R (26)

 

i ∈ S 

∑ 

j∈ S 
x i jkr ≤ | S | − 1 S ⊆ { 1 , 2 , . . . , p } , | S | = 2 or 3 (27)

K 
 

k =1 

R ∑ 

r=1 

x i jkr = 0 ∀ i, j ∈ V \ { 0 , p + 1 } | (a i + τi + t i j > b j 
)

(28)

K 
 

k =1 

R ∑ 

r=1 

x i jkr = 0 ∀ i, j ∈ V \ { 0 , p + 1 } | (a j − b i + τ j + t j,p+1 > T max 

)
(29)
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K 
 

k =1 

R ∑ 

r=1 

t−1 ∑ 

l=1 

y ilkr = 0 ∀ i ∈ V \ { 0 , p + 1 } | (a i + τi + t i,p+1 ≥ ωt 
)
;

 = 1 , . . . , T − 1 (30) 

To avoid symmetry, active routes are ordered by constraint ( 21 ).

onstraint ( 22 ) puts a lower bound on the minimum value of each

ariable u . Essentially, when visiting the arc ( i, j ) by the r th route

f vehicle k we have x i jkr = 1 and consequently, u ikr + τi + t i j ≤
 jkr . In case that x i jkr = 0 we have u ikr − u jkr ≤ b i − a j which is

lways valid. Constraints ( 23 ) and ( 24 ) are adaptations of the sym-

etry breaking constraints proposed by Coelho and Laporte (2014) .

ssentially, they eliminate many symmetric solutions of same val-

es by ordering the use of the vehicles and the assignment of re-

uests to vehicles. Constraints ( 25 ) and ( 26 ) are symmetry defeat-

ng constraints and are only introduced to enhance the model by

reaking the symmetry caused by variables y . In particular, none

f the requests can be performed by routes of the vehicle k, when-

ver the first route of the vehicle k − 1 has not already been used.

n addition, ( 26 ) states that route r of the vehicle k can be used to

eliver a request to the Lab only if route r − 1 of the same vehi-

le has already been used. Constraint ( 27 ) is a classical sub-tours

limination constraint generated for subsets of two and three re-

uests. Constraints ( 28 ) to ( 30 ) are generated only if specific con-

itions are respected. Constraint sets ( 28 ) and ( 29 ) state that we

annot visit arc ( i, j ) by different routes of available vehicles when

 i + τi + t i j > b j and a j + τ j + t j,p+1 − b i > T max , respectively. In fact,

 28 ) and ( 29 ) respectively remove redundant arcs violating the

ime window and maximum sample travel time. Constraint ( 30 )

hows the relation between the earliest visit time of a request and

he possible time periods where its corresponding sample can be

elivered at the Lab. Essentially, when a i + τi + t i,p+1 ≥ ωt , request

 cannot be delivered to the Lab sooner than the tt h 

th time period.

Model ( 1 )–( 30 ) extends and strengthens the one proposed by

naya Arenas et al. (2016) who used constraints ( 2 )–( 7 ), ( 9 )–( 11 ),

 21 ), ( 23 ), ( 24 ) and the following connectivity constraint: 

 ikr + τi + t i j − u jkr ≤ T k ( 1 − x i jkr ) 
i = 0 , . . . , p; j = 1 , . . . , p + 1 ;

k = 1 , . . . , K; r = 1 , . . . , R 

(31) 

We improved this constraint by using ( 8 ) and ( 22 ). In their

odel, they also minimized the total traveled distance which is a

ifferent objective function than ( 1 ). Nonetheless, the formulation

s only able to solve efficiently small to medium sized instances, as

t will be shown in the section devoted to numerical experiments.

he development of a fast and efficient solving method was there-

ore necessary to deal with the larger real-life instances provided

y our partner. 

. Heuristic algorithm 

In this section, we develop a multi-start algorithm for the in-

roduced problem. In the next sections we first describe the algo-

ithm, followed by a detailed description of how visiting times are

pdated efficiently to handle the time windows and the maximal

ample transportation time constraints. 

.1. Multi-start algorithm 

The multi-start algorithm is based on three procedures, namely

onstruction , Extraction-Reinsertion and Swap . To ensure that differ-

nt executions lead to different solutions, the algorithm sets a level

f randomization which modifies two important parameters of the

roblem: the maximal sample transportation time ( T max ) and the
aximum length of a vehicle working day ( T k ). These parame-

ers impact the Construction algorithm, which may provide differ-

nt initial feasible or unfeasible solutions. Parameters are adjusted

ccording to the feasibility of the solution produced at the previous

xecution. Only feasible solutions are passed to the improvement

teps. 

onstruction procedure 

Initial solutions are built by a constructive method in which

odes are sequentially added to the routes. We use the following

ules to select n 1 , the first node to be visited by a route. 

• N 1 = argma x i ∈ P { t 0 i } i.e., the set of nodes i ∈ P = { v 1 , v 2 , . . . , v p }
whose travel time from the Lab is the greatest. 

• N 2 = argmi n i ∈ N 1 { b i } i.e., the set of nodes i ∈ N 1 whose time

window upper bound is the lowest. 
• n 1 = Choose a node from N 2 randomly. 

t each step, to add a new node to the set of visited nodes of

he working route, we verify the possibility of adding each unvis-

ted node to every insertion place of the current route and select

he insertion leading to the smallest increase in the route’s total

ravel time. For instance, if node i is inserted between nodes j and

 , the detour is computed as t ji + t ik − t i j . The general framework

f the construction phase is sketched in Algorithm 1 , where K is

he number of vehicles and R the maximum number of routes per

ehicle. 

xtraction-Reinsertion procedure 

In this procedure, the goal is to reduce the value of the ob-

ective function ( 1 ) by repositioning some of the nodes. Thus, the

ength of the time period ω must be considered in the calculation

f this cost. To try improving the solution, the procedure extracts

 node from its location and reinserted into its best feasible posi-

ion. Starting from the first route of the first vehicle, all the nodes

re repositioned in all possible locations. A move is accepted as

oon as it leads to an improvement, and the whole procedure is

epeated until no improvement can be reached. During this pro-

edure, we are allowed to create a new route or close an already

xisting one. 

wap 

Following their order in the current solution, we consider each

air of nodes and their corresponding positions are swapped. This

wap is applied to all possible combinations of two nodes over all

he vehicles’ routes. As soon as a move improves the solution’s

ost, it is accepted and the procedure stops whenever the swap-

ing of all available nodes offers no more improvement. 

ulti-start heuristic algorithm 

The general framework of the multi-start algorithm is pro-

ided in Algorithm 2 and consists of two loops. During the inner

oop’s execution, the goal is to construct an initial feasible solution.

ithin this loop, we run the Construction procedure by setting dif-

erent temporary values for the maximum vehicle travel time ( T k )

nd the sample travel time ( T max ) parameters until a feasible solu-

ion is obtained (the Repeat - Until loop). Essentially, the algorithm

s initialized at the first iteration by setting T em p T max 
= T max and

 em p T k = T k , which are the initial feasible parameters of the in-

tance. For the other iterations, if the generated solution produced

y applying the Construction procedure is feasible, the values of

 em p T k and T em p T max 
are decreased by a factor α which is an input

arameter (set to 0.1 in our computational experiments): 

T em p T k = T em p T k − αT k 

 em p T max 
= T em p T max 

− αT max 

Otherwise, in order to increase the chance of obtaining a fea-

ible solution, the corresponding values of the parameters are
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Algorithm 1 The construction procedure. 

For ( i = 1 to K) do 

For ( r = 1 to R ) do 

Initialize the route r by visiting the first node n 1 
While (there is an un-routed node to be added in a feasible position) do 

Add to the route r, the node having the smallest detour in time 

End While 

r = r + 1 

End For 

k = k + 1 

End For 

Algorithm 2 The multi-start algorithm. 

BestSolution = ∅ 
Tem p T k = T k 
Tem p T max 

= T max 

For ( Iter = 1 to Ma x iter ) do 

Repeat 

T k = rand( 0 , T k − Tem p T k ) + Tem p T k 
T max = rand( 0 , T max − Tem p T max 

) + Tem p T max 

CurrentSolution = Construction ( T k , T max ) 

If ( CurrentSolution is feasible ) 

T em p T max 
= T em p T max 

− αT max 

T em p T k = T em p T k − αT k 
Else 

T em p T max 
= T em p T max 

+ αT max 

If ( Tem p T max 
> T max ) Then Tem p T max 

= T max 

T em p T k = T em p T k + αT k 
If ( Tem p T k > T k ) Then Tem p T k = T k 

End If 

Until CurrentSolution is feasible 

CurrentSolution = Extraction-Reinsertion ( CurrentSolution ) 

CurrentSolution = Swap ( CurrentSolution ) 

If ( CurrentSolution improves the cost of the best known solution) BestSolution = CurrentSolution 

End For 
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increased by applying the updates: 

T em p T k = Min 

{
T em p T k + αT k ; T k 

}
T em p T max 

= Min { T em p T max 
+ αT max ; T max } 

Finally, the values to be used as the maximum travel and sam-

ple times when running the Construction procedure are set by ap-

plying the following relations in which rand( 0 , x ) is a random in-

teger number between 0 and x . 

T k = rand 
(
0 , T k − T em p T k 

)
+ T em p T k 

T max = rand ( 0 , T max − T em p T max ) + T em p T max 

Upon obtaining an initial feasible solution, we apply the

Extraction-Reinsertion and Swap procedures to try to improve the

quality of the initial solution. To do so, we use the original val-

ues for the sample travel time (i.e. T max ) and vehicle travel time

(i.e. T k ). The algorithm stops after a given number of iterations (i.e.

Ma x iter ). 

3.2. Information update 

In order to efficiently manage the time windows and the

maximum sample transportation time constraints, we need rules

to update the earliest and the latest start time of nodes in the so-

lution. In the following, we offer an adaptation of the method pro-

posed by Campbell and Savelsbergh (2004) for the VRP with time

windows. 

We represent the rth route of vehicle k by k r =
{ c k r 

0 
, c k r 

1 
, . . . , c k r 

i 
, c k r 

i +1 
, . . . , c k r n k r 

, c k r 
n k r +1 

} in which n k r is the num-

ber of nodes visited by the r th route of vehicle k . We denote by
 

c 
k r 
j 

and L 
c 

k r 
j 

, the earliest and the latest time at which node c k r 
j 

can

e visited by the r th route of vehicle k , respectively. 

At the beginning, for each k and r, we set E 
c 

k r 
0 

= E 
c 

k r 
n k r 

+1 

= a 0 and

 

c 
k r 
0 

= L 
c 

k r 
n k r 

+1 

= b 0 . In case of visiting node c k r 
j 

between nodes c k r 
i 

nd c k r 
i +1 

we apply the relations ( R1 ) and ( R2 ) to update the earliest

nd latest visit time of c k r 
j 

as follows: 

 

c k r 
j 

= max 

{ 

a 
c k r 

j 

, E 
c k r 

i 

+ τ
c k r 

i 

+ t 
c k r 

i 
c k r 

j 

} 

(R1)

 

c k r 
j 

= min 

{ 

b 
c k r 

j 

, L 
c k r 

i +1 

− τ
c k r 

j 

− t 
c k r 

j 
c k r 

i +1 

} 

(R2)

If E 
c 

k r 
j 

≤ L 
c 

k r 
j 

, inserting c k r 
j 

between c k r 
i 

and c k r 
i +1 

will not violate

he time windows, but it is still necessary to verify that both the

aximum duration of the vehicle length and the maximum sample

ravel time are satisfied. To do so, we use the relations ( R3 ) and

 R4 ) to update the earliest and latest start time of nodes visited

fter and before c k r 
j 

as follows: 

 

c k r s 
= max 

{ 

a 
c k r s 

, E 
c k r 

s −1 

+ τ
c k r 

s −1 

+ t 
c k r 

s −1 
,c k r s 

} 

s = i + 1 , . . . , n k r + 1 

(R3)

 

c k r s 
= min 

{ 

b 
c k r s 

, L 
c k r 

s +1 

− τ
c k r s 

− t 
c k r s c k r 

s +1 

} 

s = 0 , . . . , i (R4)

Finally, the minimum length of the r th route of vehicle k re-

uires serving the route at the latest feasible time, by setting it

o v t 
c 

k r 
n k r 

+1 

− v t 
c 

k r 
0 

. In this expression, v t 
c 

k r 
i 

is the real visit time of
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Table 1 

Performance of the mathematical models on small and medium instances. 

Small instances Medium instances 

BSTP-EG VRP-DA BSTP-EG VRP-DA 

# Dist Second Second # Dist. Second Second 

1 193 .9 0 .05 0 .04 13 754 .4 2 .76 0 .26 

2 125 .3 0 .05 0 .02 14 230 .3 0 .49 0 .21 

3 311 .8 0 .06 0 .08 15 234 .0 1 .32 0 .28 

4 235 .8 0 .07 0 .07 16 126 .0 1 .30 0 .59 

5 324 .2 0 .13 0 .08 17 193 .0 0 .78 0 .52 

6 270 .7 0 .19 0 .18 18 193 .0 0 .87 0 .36 

7 279 .9 0 .51 0 .30 19 284 .7 4 .44 0 .39 

8 267 .9 0 .27 0 .17 20 301 .3 3 .71 0 .78 

9 184 .0 0 .23 0 .16 21 154 .9 15 .87 1 .70 

10 556 .8 0 .14 0 .12 22 230 .1 10 .08 0 .69 

11 618 .9 0 .07 0 .14 23 931 .3 883 .61 0 .72 

12 199 .4 0 .29 0 .17 24 995 .3 286 .93 1 .51 

25 991 .3 66 .68 4 .51 

Avg. 0 .17 0 .13 Avg. 98 .37 0 .96 
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ode c k r 
i 

by the rth route of vehicle k and can be calculated as

 t 
c 

k r 
i 

= max { a 
c 

k r 
i 

, v t 
c 

k r 
i −1 

+ τ
c 

k r 
i −1 

+ t 
c 

k r 
i −1 

,c 
k r 
i 

} , i = 1 , . . . , n k r + 1 . In addi-

ion, v t 
c 

k r 
0 

= L 
c 

k r 
0 

. 

Satisfaction of the maximum vehicle travel time and the max-

mum sample travel time are ensured by Eqs. R5 and R6 , respec-

ively: 

 t 
c 

k R 
n k R 

+1 

− v t 
c 

k 1 
0 

≤ T k (R5) 

 t 
c k r 

n k r 
+1 

− v t 
c k r 

1 

≤ T max r = 1 , . . . , R (R6)

In addition, v t 
c 

k r 
0 

= v t 
c 

k r−1 
n k r−1 

+1 

for r = 2 , . . . , R . 

. Computational results 

In this section we evaluate both the efficiency of the model and

he heuristic to solve the set of instances in Anaya Arenas et al.

2016) . These instances were obtained from the Quebec’s MSSS and

orrespond to real biomedical sample transportation problems in

our administrative regions in the province of Quebec. 

The heuristic algorithms were implemented in C using Mi-

rosoft Visual Studio 2010 and executed on an Intel Core I-7 with

 3.4 gigahertz processor and 32 gigabyte of RAM. The mathemat-

cal formulations were solved using Cplex 12.6. As the algorithms

eveloped in this article can also solve the instances in Anaya Are-

as et al. (2016) , our experiments will be separated in two parts.
Table 2 

Performance of the models on large instances. 

BSTP-EG (10 800 seconds) VRP-DA (max 3 600 

# Cost Gap Cost Gap 

26 1193 .2 26 .8 1193 .0 0 .0 

27 1832 .8 1 .2 1832 .8 0 .0 

28 2108 .9 56 .2 1932 .9 20 .1 

29 497 .0 8 .3 469 .5 4 .1 

30 523 .7 10 .1 484 .8 5 .1 

31 636 .8 13 .7 578 .8 6 .9 

32 1700 .7 23 .3 1602 .5 15 .2 

33 586 .7 6 .9 586 .9 ∗ 8 .1 

34 1787 .0 29 .7 1660 .7 22 .3 

35 1883 .1 28 .5 1725 .8 17 .8 

36 1888 .3 29 .6 1867 .9 21 .4 

37 2022 .3 29 .0 1929 .0 18 .7 

38 445 .1 16 .3 ∗ ∗
Avg. 1388 .4 21 .5 percent 1322 .0 11 .6 perc
irst, we compare our formulation and heuristic to those in Anaya

renas et al. (2016) . Then, we evaluate the model’s behavior and

he heuristic in the context of desynchronized arrivals. 

.1. Results on biomedical sample transportation instances 

The proposed model VRP-DA of Section 2 can be used to

olve the BSTP if we use constraints ( 2 )–( 15 ) and replace the

bjective function ( 1 ) by the distance minimization objective
 n 
i =0 

∑ n +1 
j=1 

∑ K 
k =1 

∑ R 
r=1 d i j x i jkr . These results are reported under 

olumns VRP-DA in the following tables. Columns BSTP-EG corre-

pond to the Anaya Arenas et al. (2016) model. Table 1 reports data

n the small and medium instances. These instances have up to 10

ollection points and 20 transportation requests. 

As can be observed, both formulations solved all the instances

o optimality. For medium instances, the BSTP-EG proposed by

naya Arenas et al. (2016) required 98 seconds in averages, while

ur formulation required only 0.96. 

Table 2 reports the results for the larger instances having up to

0 collection points and 50 requests. We ran the BSTP-EG model,

ut it was never able to produce any feasible solution after 10 800

econds of computing. This behavior was also observed by Anaya

renas et al. (2016) and this is why they initialized their model

ith the best solution given by their heuristics. Thus, column

STP-EG in Table 2 reports their original results (distance and fi-

al Cplex gap in percentage after 10 800 seconds). Column VRP-DA

eports our results after 3 600 and 10 800 seconds of computing

ime, respectively. Values marked by an asterisk indicate instances

or which Cplex ran out of memory and the best feasible solutions

or them are reported. 

The new model clearly offers a better performance, obtaining

etter solutions for all the cases except instances 33 and 38. The

verage solution cost was reduced from 1388 for the previous

odel to respectively 1322 and 1290 after 3600 and 10,800 sec-

nds of computing time with the new VRP-DA model. Average op-

imality gap was also reduced from 21.51 percent for BSTP-EG to

.77 percent for VRP-DA. Thus, the new formulation is shown to

e faster and more effective. 

Table 3 reports heuristics’ results for all the 38 instances. Col-

mn “Anaya-Arenas” reports their best found results over different

euristic combinations. Columns “Heuristic” report the results of

he algorithm developed in Section 4 after 1 and 100 iterations,

espectively. Computing times are not reported, as they are negli-

ible. Our multi-start algorithm can be applied to the BSTP by us-

ng the travel time as a cost function for the Extraction-Reinsertion

nd Swap procedures and by setting the value of θ = 0 . For each

euristic, we report the distance (Dist) and the gap (Gap), with
seconds) VRP-DA (max 10 800 seconds) 

second Cost Gap second 

58 .7 1193 .0 0 .0 58 .7 

502 .2 1832 .8 0 .0 502 .2 

3 600 1932 .9 11 .5 10 800 

3 600 468 .9 3 .9 10 800 

3 600 484 .3 3 .6 10 800 

3 600 569 .6 ∗ 6 .1 5560 

3 600 1551 .4 11 .4 10 800 

OOM 586 .9 ∗ 8 .1 OOM 

3 600 1560 .3 15 .7 10 800 

3 600 1692 .9 14 .1 10 800 

3 600 1689 .6 12 .2 10 800 

3 600 1928 .5 18 .6 OOM 

∗ ∗ ∗ ∗
ent 1290 .9 8 .7 percent 
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Table 3 

Heuristics’ performance for the BSTP instances. 

Best Anaya-Arenas Heuristic (1 it.) Heuristic (100 it.) 

# Cplex Dist Gap Dist Gap Dist Gap 

1 193 .9 193 .9 0 .00 193 .9 0 .00 193 .9 0 .00 

2 125 .3 125 .3 0 .00 125 .3 0 .00 125 .3 0 .00 

3 311 .8 311 .8 0 .00 311 .8 0 .00 311 .8 0 .00 

4 235 .8 235 .8 0 .00 235 .8 0 .00 235 .8 0 .00 

5 324 .2 324 .2 0 .00 324 .2 0 .00 324 .2 0 .00 

6 270 .7 285 .8 5 .58 270 .7 0 .00 270 .7 0 .00 

7 279 .9 292 .6 4 .54 279 .9 0 .00 279 .9 0 .00 

8 267 .9 286 .8 7 .05 267 .9 0 .00 267 .9 0 .00 

9 184 .0 184 .0 0 .00 184 .0 0 .00 184 .0 0 .00 

10 556 .8 556 .8 0 .00 556 .8 0 .00 556 .8 0 .00 

11 618 .9 618 .9 0 .00 618 .9 0 .00 618 .9 0 .00 

12 199 .4 206 .4 3 .51 206 .1 3 .36 199 .4 0 .00 

13 754 .4 754 .4 0 .00 754 .4 0 .00 754 .4 0 .00 

14 230 .3 246 .8 7 .16 230 .3 0 .00 230 .3 0 .00 

15 234 234 .0 0 .00 237 .9 1 .67 234 .0 0 .00 

16 126 131 .0 3 .97 126 .0 0 .00 126 .0 0 .00 

17 193 193 .0 0 .00 193 .0 0 .00 193 .0 0 .00 

18 193 193 .0 0 .00 223 .3 15 .70 193 .0 0 .00 

19 284 .7 284 .7 0 .00 284 .7 0 .00 284 .7 0 .00 

20 301 .3 330 .4 9 .66 301 .3 0 .00 301 .3 0 .00 

21 154 .9 160 .0 3 .29 163 .1 5 .29 154 .9 0 .00 

22 230 .1 244 .8 6 .39 269 .3 17 .04 230 .1 0 .00 

23 931 .3 949 .6 1 .96 931 .3 0 .00 931 .3 0 .00 

24 995 .3 1003 .2 0 .79 995 .3 0 .00 995 .3 0 .00 

25 990 .5 1031 .2 4 .11 990 .5 0 .00 990 .5 0 .00 

Avg. 367 .5 375 .1 2 .32 percent 371 .0 1 .72 percent 367 .8 0 .00 percent 

26 1193 .0 1229 .3 3 .04 1257 .3 5 .39 1193 .0 0 .00 

27 1832 .8 1923 .3 4 .94 1832 .8 0 .00 1832 .8 0 .00 

28 1932 .9 2108 .9 9 .11 1932 .9 0 .00 1932 .9 0 .00 

29 468 .9 497 .0 5 .99 468 .9 0 .00 468 .9 0 .00 

30 484 .3 523 .7 8 .14 511 .0 5 .51 484 .3 0 .00 

31 569 .6 636 .8 11 .80 612 .4 7 .51 572 .7 0 .54 

32 1551 .4 1700 .7 9 .62 1582 .5 2 .00 1552 .5 0 .07 

33 586 .9 638 .4 8 .77 626 .8 6 .80 575 .2 −1 .99 

34 1560 .3 1787 .0 14 .53 1658 .6 6 .30 1560 .3 0 .00 

35 1692 .9 1883 .1 11 .24 1879 .1 11 .00 1683 .2 −0 .57 

36 1689 .6 1888 .3 17 .76 1886 .1 11 .63 1688 .2 −0 .08 

37 1928 .5 2022 .3 4 .86 2011 .3 4 .29 1793 .7 −6 .99 

38 445 .1 460 .7 3 .50 446 .1 0 .22 432 .6 −2 .81 

Avg. 1225 .86 1330 .73 8 .25 percent 1285 .06 4 .67 percent 1213 .10 −0 .91 percent 
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respect to the best solution obtained by Cplex (solution to in-

stances 1 to 27 are proven optimal). For small and medium size

instances 1 to 25, the proposed heuristic with 100 iterations

produced all of the optimal solutions. For the larger instances,

we improved the average gap produced by Anaya Arenas et al.

(2016) heuristic, 8.25 percent, to 4.67 percent when only 1 iter-

ation of the heuristic is run, and to −0.91 percent after 100 itera-

tions. Even more, the multi-start heuristic produced solutions that

improved the best known ones (produced by Cplex) in 5 times. 

4.2. Results for the VRP with desynchronized arrivals 

In this section we analyze the ability of the VRP-DA formula-

tion and the multi-start heuristic to minimize the largest number

of boxes arriving to the Lab during any time period. Our compu-

tational experiments were still based on the Anaya Arenas et al.

(2016) set of instances, as they are the practical foundation of this

work. However, for each instance, we set the opening and clos-

ing times of the laboratory and then divided the working hours

into time periods of ω minutes. Clearly the length of these periods

not only influences the size of the model, but also the maximal

number of boxes arriving within a period. Managing the time pe-

riods adds a new complexity level to the problem and impacts the

size of the instances that can be solved to optimality. This is why

the instances in this section are divided into to two sets, with in-
tances 1 to 19 in the first one and instances 20 to 38 in the sec-

nd one. The VRP-DA model can only be solved to optimality by

plex for the latter set. 

Let us first analyze the behavior of model VRP-DA when the

ynchronization factor is not considered. To this end, we set the

enalty factor θ = 0 in the objective function ( 1 ). The model op-

imizes only the sum of the route’s durations and we observe for

ach instance the number of boxes arriving to the Lab at the busi-

st period. 

Table 4 reports the numerical results produced for these exper-

ments when ω was set to 60 and 30 minutes. Columns RD provide

he optimal duration of the routes. The routes’ duration produced

y the heuristic are reported in columns RD . Column w reports the

umber of boxes arriving during the busiest period, giving an idea

f the values that one should obtain if desynchronization is not

onsider in the optimization process. Finally, columns Second re-

ort the Cplex computing time in seconds. We do not report the

euristic computing time as it is always below a second. 

As expected, the routes’ durations are not impacted by the

ength of the considered period. However, the average comput-

ng time of Cplex rises from 269 seconds to 331 seconds when

he time period is reduced from 60 to 30 minutes. We can ob-

erve the excellent performance of the heuristic (with 100 itera-

ions), which was able to find the optimal route’s duration for all

nstances. It is also worth to mention that both methods led to the



Z. Naji-Azimi et al. / European Journal of Operational Research 255 (2016) 58–67 65 

Table 4 

Results for the VRP-DA with no penalty on the number of arrivals ( θ = 0 ) . 

Time period ω = 60 Time period ω = 30 

Cplex Heuristic Cplex Heuristic 

# RD w Second RD w RD w Second RD w 

1 270 .0 1 0 .2 270 .0 1 270 .0 1 0 .2 270 .0 1 

2 179 .0 2 0 .1 179 .0 2 179 .0 2 0 .1 179 .0 2 

3 378 .0 2 0 .4 378 .0 2 378 .0 2 0 .9 378 .0 2 

5 4 4 4 .0 2 2 .1 4 4 4 .0 3 4 4 4 .0 2 1 .8 4 4 4 .0 2 

6 4 4 4 .0 4 5 .6 4 4 4 .0 2 4 4 4 .0 2 10 .2 4 4 4 .0 2 

7 426 .0 4 3 .9 426 .0 4 426 .0 2 8 .2 426 .0 2 

8 431 .0 2 5 .0 431 .0 2 431 .0 2 11 .9 431 .0 2 

9 423 .0 3 9 .1 423 .0 3 423 .0 3 27 .2 423 .0 3 

12 311 .6 3 4 .8 311 .6 3 311 .6 3 8 .0 311 .6 3 

13 853 .0 4 77 .2 853 .0 4 853 .0 3 392 .0 853 .0 4 

14 347 .6 7 285 .0 347 .6 7 347 .6 4 577 .0 347 .6 4 

15 515 .0 3 9 .5 515 .0 3 515 .0 3 28 .6 515 .0 2 

16 306 .6 4 3600 .0 306 .6 4 306 .6 4 3600 .0 306 .6 4 

17 330 .6 4 83 .0 330 .6 4 330 .6 4 331 .0 330 .6 4 

18 337 .6 4 11 .2 337 .6 4 337 .6 4 19 .8 337 .6 4 

19 599 .0 4 207 .9 599 .0 4 599 .0 3 279 .1 599 .0 3 

Avg. 412 .2 3 .3 269 .1 412 .2 3 .25 412 .2 2 .8 331 .0 412 .2 2 .75 

Table 5 

Results for the VRP-DA with penalty on the number of box arrivals ( θ = 100 ) . 

Time period ω = 60 Time period ω = 30 

Cplex Heuristic Cplex Heuristic 

# RD w̄ RD w Second RD w w̄ RD W Second RD w 

1 270 .0 1 270 .0 1 0 .1 270 .0 1 1 270 .0 1 0 .2 270 .0 1 

2 179 .0 2 179 .0 2 0 .1 179 .0 2 1 179 .0 2 0 .1 179 .0 2 

3 378 .0 1 384 .0 1 0 .3 378 .0 2 1 384 .0 1 0 .7 378 .0 2 

5 4 4 4 .0 1 525 .0 1 2 .9 4 4 4 .0 3 1 512 .0 1 4 .8 4 4 4 .0 2 

6 4 4 4 .0 1 470 .0 1 6 .7 4 4 4 .0 2 1 470 .0 1 13 .2 4 4 4 .0 2 

7 426 .0 1 471 .0 1 5 .9 448 .0 2 1 458 .0 1 14 .0 426 .0 2 

8 431 .0 1 456 .0 1 7 .2 431 .0 2 1 456 .0 1 13 .7 431 .0 21 

9 423 .0 1 486 .0 1 22 .2 439 .0 2 1 486 .0 1 33 .1 486 .0 

12 311 .6 2 330 .1 2 15 .3 351 .6 2 1 330 .1 2 57 .4 330 .1 2 

13 853 .0 1 892 .0 2 202 .3 880 .0 3 1 894 .0 1 319 .1 867 .0 3 

14 347 .6 1 390 .1 2 1598 .5 415 .1 2 1 472 .1 1 3600 .0 375 .1 2 

15 515 .0 2 522 .0 2 14 .7 558 .0 2 1 515 .0 2 103 .1 515 .0 2 

16 306 .6 1 346 .3 2 3600 .0 359 .3 2 1 412 .0 1 3600 .0 342 .6 2 

17 330 .6 1 339 .6 2 145 .2 387 .6 3 1 330 .6 2 1077 .8 483 .3 2 

18 337 .6 2 349 .6 2 15 .6 377 .6 3 1 337 .6 2 56 .4 394 .0 2 

19 599 .0 2 623 .0 2 285 .7 607 .0 3 1 599 .0 2 231 .9 623 .0 2 

Avg. 412 .2 1 .3 439 .6 1 .5 370 435 .6 2 .3 1 4 4 4 .1 1 .3 571 436 .7 1 .9 

Gap(percent) 6 .5 6 .3 8 .2 6 .8 
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d
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a  

p  

s  

b  

g  

t  

m  

w

ame w value in almost all but four cases. This can be explained

y the presence of an equivalent solution with respect to the route

uration. 

Table 5 reports the results when we set the penalty factor to

= 100 , which means that the model reaches a compromise be-

ween minimizing the route’s duration and the number of arrivals

uring the busiest period. In column RD , we report the lower

ound on the route duration as per Table 4 , which is valid for both

alues of ω. In order to obtain a lower bound on the number of

ox arrivals in the busiest period, we ran the model with a very

igh penalty factor ( θ = 10 0 0 0 0 ). These results are reported in

olumns w̄ . 

When we set ω = 60 minutes and θ = 100, Cplex produced op-

imal solutions having in average a route duration of 439.6 instead

f 412.2 units (lower bound in Table 4 ). However, the average num-

er of boxes arriving during the busiest period is reduced from 3.3

o 1.5 boxes. The heuristic produced average values of 435.6, and

.3 for the same indicators. When we set ω = 30 minutes, the av-

rage number of boxes arriving during the busiest period produced

y Cplex decreases to 1.3, whereas the lower bound ( ̄w ) is equal to
. For this case, and comparing to the results in Table 4 , we can say

hat a better desynchronization has allowed reducing the maximal

umber of boxes received within the busiest period from 2.8 to 1.3

t the cost of an additional 8.2 percent in the total route duration

he reduction. 

Table 6 reports the results produced for the larger instances.

ince Cplex was unable to produce a feasible solution after 3 600

econds of computing time, only heuristic results are reported. Ex-

eriments were run for penalty factor θ = 100 and ω= 60 minutes.

o evaluate the heuristic’s robustness and how the number of it-

rations influences the quality of the solutions, we report the re-

ults produced right after the construction phase of the heuristic

nd after 1, 10 and 500 iterations. Computing times are only re-

orted for 500 iterations, as they are otherwise negligible. Finally,

ince we do not have bounds on the route duration and the num-

er of arrivals, we ran 10 0 0 0 iterations of the heuristic to try and

et “good” bounds. To this end, first we set θ = 0 to minimize

he route’s duration (column RD ’), and then we set θ = 10 0 0 0 0 to

inimize the number of arrivals during the busiest period (column

 

′ ). 
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Table 6 

Heuristic performance for θ = 100, ω = 60. 

Construction Heuristic (1 it.) Heuristic (10 it.) Heuristic (500 it.) 

# RD’ w’ RD w RD w RD w RD w Second 

20 496 .0 2 606 .0 6 560 .0 2 551 .0 2 551 2 0 .2 

21 460 .0 3 592 .0 4 479 .0 3 479 .0 3 471 .0 3 0 .2 

22 538 .0 2 575 .0 4 538 .0 3 538 .0 3 567 .0 2 0 .2 

23 1077 .0 3 1216 .0 4 1214 .0 3 1105 .0 3 1105 .0 3 0 .3 

24 1210 .0 3 1273 .0 6 1272 .0 5 1249 .0 3 1249 .0 3 0 .3 

25 1260 .0 3 1341 .0 6 1285 .0 3 1285 .0 3 1285 .0 3 0 .4 

26 1404 .0 3 1584 .0 8 1520 .0 5 1422 .0 4 1473 .0 3 0 .6 

27 2055 .0 3 2207 .0 4 2088 .0 4 2104 .0 3 2104 .0 3 1 .1 

28 2271 .0 5 2445 .0 8 2321 .0 6 2284 .0 6 2328 .0 5 1 .3 

29 957 .3 4 988 .3 10 985 .3 9 1014 .5 4 987 .5 4 2 .0 

30 1028 .3 4 1105 .3 12 1060 .3 6 1062 .3 5 1052 .3 5 1 .7 

31 1167 .5 5 1249 .3 13 1212 .3 7 1241 .3 6 1214 .3 5 4 .5 

32 1865 .0 5 2176 .0 10 2028 .0 8 1998 .0 5 1998 .0 5 2 .3 

33 1192 .5 5 1280 .3 12 1267 .3 7 1270 .5 5 1265 .5 5 4 .8 

34 1978 .0 5 2264 .0 12 2263 .0 7 2084 .0 6 2137 .0 5 3 .6 

35 2088 .0 6 2497 .0 12 2302 .0 7 2176 .0 7 2153 .0 7 3 .4 

36 2110 .0 6 2525 .0 12 2407 .0 7 2269 .0 7 2199 .0 6 3 .2 

37 2217 .0 6 2627 .0 11 2450 .0 7 2300 .0 7 2352 .0 6 3 .6 

38 1224 .9 6 1344 .4 15 1277 .1 7 1267 .5 7 1300 .5 6 4 .8 

Avg 1400 .0 4 .2 1573 .5 8 .9 1501 .5 5 .6 1457 .9 4 .7 1462 .7 4 .3 1 .9 

Gap(percent) 12 .4 111 7 .3 33 .3 4 .1 11 .9 4 .5 2 .4 
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Table 6 shows that the lowest route duration was achieved with

10 iterations with a deviation of 4.1 percent from the minimum

(obtained with θ = 0 ). With 500 iterations, the heuristics improve

the maximum number of arrivals to 4.3, while the minimum (ob-

tained with θ = 100 000 ) was 4.2, however the routes duration

was increased slightly. Thus, running the heuristic with 500 itera-

tions seems a good compromise while the computing time remains

below five seconds. 

5. Conclusions 

This article deals with an important practical transportation

problem encountered in the health system of the Quebec province.

This problem requires the transport of biomedical samples from

collection points to a laboratory where they are analyzed. As the

laboratory is the bottleneck of the system, it is important to avoid

congestion by balancing the arrival of samples. To this end, we dis-

cretize the working hours into periods and try to minimize the

number of samples boxes arriving to the laboratory in the busi-

est period. We modeled the problem as a vehicle routing problem

with desynchronized arrivals (VRP-DA). To the best of our knowl-

edge, it is the first time that this problem has been addressed

and modeled. We formulated it as a MIP and developed a heuris-

tic to solve it. The formulation and the heuristic were adapted

to deal with a similar routing problem in which desynchroniza-

tion was not considered, and both outperformed existing meth-

ods. Our computational results demonstrated also that the prob-

lem with desynchronized arrivals is much more difficult to solve

to optimality. For medium size real instances, the formulation was

solved to optimality within few seconds. However, for larger in-

stances, the Cplex was unable to obtain any feasible solution, al-

though the heuristic proved to be efficient in minimizing both the

route’s duration and the number of arrivals during the busiest pe-

riod. 

The algorithms developed in this research have been applied

to four administrative regions in the Quebec province. On an an-

nual basis, more than 2.1 million kilometers are involved in the

new routes configurations ( Renaud, Ruiz, Chabot, Anaya Arenas, &

Zue Ntoutoume, 2014 ). We are currently working with the Ministry

to reorganize transportation operations of the other 13 administra-

tive regions as part of the global laboratories optimization project.
rom a broader perspective, we believe that this practical situation,

here the route planner might avoid congestion at depots or other

acilities, justifies additional research. 
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