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The transportation of biomedical samples is a key component of healthcare supply chains. The samples
are collected, consolidated into cooler boxes, and then transported to be analyzed in a specialized lab-
oratory. Since many hospitals and samples’ collection points are assigned to the same laboratory, it is
important to manage the flow of samples arriving to the laboratory to avoid congestion. In other words,
it is preferable to try to desynchronize the samples’ arrivals by managing the vehicles’ departure times
and the routes ordering. We propose a mathematical model and a multi-start heuristic to minimize the
route duration times and the maximum number of samples’ boxes arriving at the laboratory within a
given time period. Based on real data, we demonstrated that both the model and the heuristic are very
efficient in solving real size instances.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Vehicle routing and scheduling are key components of the
efficiency of modern supply chains, where quantities of goods and
raw materials should be continuously exchanged in the seamless
way possible. In its most common version, the vehicle routing
problem (VRP) is used to plan the distribution of goods from a
depot to a set of customers, (Kog, Bektas, Jabali, & Laporte, 2016,
Laporte, 2009, Semet, Toth, & Vigo, 2014) and subject to some
constraints, like time windows (Brdysy & Gendreau, 2005a, 2005b),
vehicle restrictions (Semet, 1995) and many other practical and
industrial considerations (Coelho, Renaud, & Laporte, 2016). In
other situations, products are exchanged between the customers,
which leads to the pickup and delivery VRP (Berbeglia, Cordeau, &
Laporte, 2010, Gschwind, 2015; Berbeglia, Cordeau, Gribkovskaia,
& Laporte, 2007). Vehicles can also be used to bring back the
customers’ goods to a central depot, or consolidation point, like in
the waste collection problem (Ghiani, Lagana, Manni, Musmanno,
& Vigo, 2014). These practical routing problems deal with many
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real-world constraints and are often referred as rich VRP (Lahyani,
Khemakhem, & Semet, 2015).

In this article, we focus on a situation arising in the healthcare
supply chain context which corresponds to the daily transportation
of biomedical samples from hospitals or clinics, which will be re-
ferred to as collection points (CP), to a single laboratory (Lab) where
they will be analyzed. Transportation is done by a fleet of vehicles
performing multiple routes during the day. As the lifespan of these
samples is limited, CPs often require multiple collection requests
on a given day, and each collection request is generally bounded by
a time window. Samples are consolidated in cold boxes that, once
collected, must arrive to the Lab within a limited specified time to
preserve samples’ integrity. The boxes are opened at the Lab, and
each sample is manually registered in the system and bar-coded
for tracking purposes during the analysis process. These manual
tasks are time consuming and according to our partner’s experts,
the Quebec’s Ministére de la santé et des services sociaux (Ministry
of Health and Social Services — MSSS), they constitute a bottleneck
of the samples’ supply chain. In fact, if too many boxes arrive in
a short period of time, samples are queued and may suffer long
wait, which might exceed their remaining lifetime making them
unsuitable to be analyzed. Our observations on the ground con-
firmed that some days or periods are more popular for sample col-
lection. Thereby, reducing the maximum number of samples boxes
arriving within a time period is desirable in order to normalize the
Lab workload and minimize sample losses. Thus, the objective of
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this vehicle routing problem with desynchronized arrivals at the de-
pot (VRP-DA) can be defined as minimizing the sum of the routes’
traveling time as well as the maximum number of boxes arriving
at the Lab within any time period of the considered planning day.
This work is motivated by the reengineering of the health supply
chain performed by the Quebec’s government under the name of
the Optilab project (MSSS, 2012). One of the first objective was to
centralize the transportation needs of the collection points to ob-
tain better tariffs from the carriers (Anaya Arenas, Chabot, Renaud,
& Ruiz, 2016). Now the MSSS seeks at reducing the number of lab-
oratories in order to better use the strategic ones. In order to do
so, it clearly appears that a good management of samples arriving
to the Lab would be an important issue. To the best of our knowl-
edge, our contribution is the first one considering desynchronizing
the vehicles’ arrivals to the depot as this is closely related to sam-
ples’ limited lifetime, which is not the case for most of classical or
industrial goods.

Instead of regularizing the arrivals, many works have tried
to balance the vehicles’ workload. Jozefowiez, Semet, and Talbi
(2009) considered a bi-objective VRP which minimized the total
length of routes and the balance of routes, which is defined as
the difference between the maximal route length and the minimal
route length. Kritikos and loannou (2010) studied a VRP with time
windows (VRPTW) where they balanced the load carried by each
active vehicle. Bafios, Ortega, Gil, Marquez, and de Toro (2013) also
considered a multi-objective VRPTW with both distance and load
imbalances. Lopez-Sanchez, Hernandez-Diaz, Vigo, Caballero, and
Molina (2014) solved a balanced open VRP where the maximum
time spent on the vehicle must be minimized. We note that, if all
vehicles depart at the same time, balancing the routes will indeed
concentrate the vehicle arrival times at the depot.

Closer to our context, Doerner, Gronalt, Hartl, Kiechle, and
Reimann (2008) and Doerner and Hartl (2008) studied a blood col-
lection problem which shares some characteristics with our prob-
lem. However, in their study they considered that the blood de-
terioration process begins right after the donation, and they used
interdependent time windows. They also did not consider arrival
times at the depot. Liu, Xie, Augusto, and Rodriguez (2013) con-
sidered the pickup and delivery of four demand types in a home
health care system. They dealt with many specific constraints, but
they did not consider a time limit for the samples’ delivery to
the depot, nor did they manage vehicles’ arrival times. Sahinyazan,
Kara, and Taner (2015) studied a system composed of bloodmo-
biles and shuttles which brought the collected blood to the depot
to prevent spoilage. In order to maximize the collected blood and
minimize the transportation cost, they managed the activities of
the bloodmobiles and shuttles over a time horizon. However, they
did not consider a time limit for the blood’s return to the depot.
Finally, and as stated before, this particular context was introduced
by Anaya Arenas et al. (2016) which minimized traveling distance,
but did not consider desynchronizing the arrivals at the Lab.

The remainder of this article is as follows. In Section 2 we pro-
pose the problem formulation and some valid inequalities designed
to improve its solvability. A multi-start heuristic is developed in
Section 3. The efficiency of this formulation and of the heuris-
tic and the impact of desynchronized arrivals are evaluated in
Section 4, based on a set of real instances obtained from the MSSS
of Quebec, Canada. We also demonstrate how this new formulation
and heuristic improve upon those of Anaya Arenas et al. (2016),
where desynchronized arrivals were not considered. Our conclu-
sions are presented in Section 5.

2. Problem definition and formulation

In order to formulate the vehicle routing problem with desyn-
chronized arrivals, we need to identify both the locations of the

CPs and the collections requests. The n CPs are represented by
Vi= {v)...., v,} and each CP [ requires Q; collection requests,
leading to a total of p= 3., Q requests. Each request is com-
posed of one box that contains several samples. Then we de-
fine a complete graph G = {V, A}, where V = {vg.v;.....vp, vpsq}
is the set of nodes in the network, which includes the labora-
tory as nodes {vy., v,.1} where every route must start and end,
and the set P= {vq,v,,...,vp}, being the p transportation re-
quests. Also, we note P, as the set of request nodes in V which
corresponds to the same CP location. We consider the arc set
A= {(.vj): vpvjeV, i# j i=0,....,p, j=1,...p+1} and
a travel time (t;) and a travel distance (d;;) are assigned to each
arc (v;, vj). Clearly, t;; and d;; are equal to zero for every (v;, v;)
ifiand j €P (ie., i and j correspond to two requests from the
same CP). In addition, each request needs to be served within a
time window [a;, b;]. Finally, any two requests related to the same
collection point cannot be on the same route.

K uncapacited vehicles are available for satisfying the trans-
portation requests, and each vehicle can perform multiple routes
(r=1,...,R) within a work shift, but a limit on the length of the
working day (T;) must be respected. In addition, we need to con-
sider a loading time (t;) for each transportation request, as well
as the vehicle’s unloading time (7p) at the Lab before a new route
can be started. Furthermore, let T, be the maximal transporta-
tion time for the samples associated to request i. The objective is
to minimize the total traveling time of the vehicle, including the
waiting times, plus a weighted penalty 6 associated to the maxi-
mum number of boxes arriving at the depot during the most vis-
ited time period. In the following sections we present the VRP-DA
formulation followed by some valid inequalities to strengthen it.

2.1. VRP-DA formulation

The following decision variables are needed to define the VRP-
DA:

Xijlr Binary variable equal to 1 if vehicle k travels from request
i to request j in its route r; O otherwise.
Uikr Continuous variable that indicates the visit time (start of

loading) of transportation request i by vehicle k in route
r.

Yitkr Binary variable equal to 1 if the request i performed by
the " route of the vehicle k, arrives at the Lab within
the t'" time period; 0 otherwise.

w Highest number of boxes arriving to the Lab within any
given time period (the busiest one).

The model VRP-DA reads as follows.

K R

Min Y > (up+1kr — Ugir) +OW (1)
k=1 r=1

Subject to:

K R p

DD M =1 j=1....p (2)

k=1 r=1 i=0

p
o> Xije=1 I=1,...m k=1 K r=1,..R (3)
jePpi=0

p+1

P
D Xijkr — ) _Xjur =0 j=1,...
iz0 =1

.p: k=1,....K; r=1,...,R

P
ZXOjkrfl kZ],...,I(;
j=1
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P P
> Xojr = O Xjpre=0 k=1,....K;: r=1,...R (6)
= =1

P P
aj = Te| 1= Xijr | < Ujir <bj + Tl 1= xijier

i=0 i=0
j=1,....p. k=1,...K r=1,..R ™)

Uikr — Ujer + (bi + T + tij — ) Xijer < by —
i=0,....p; j=1,....,p+1;
k=1, K r=1,..R ®)

Ugkr = Uppipr—1 k=1,....K; r=2,...,R (9)

p
J
Upitkr — Ujkr < Tax + Tk (1 - injkr>

i=0
j=1,....p; k=1,...,K; r=1,...,R (10)
Upiikr —Ugra =Ty k=1,....K; r=1,....R (11)
K R T
3D V=1 i=1.....p (12)
k=1 r=1 t=0

p+1

Yir < ) Xijr i=1,....p; t=0,...,T;
=1

k=1,....K; r=1,...,R (13)
Upirhr < OE+1)+MA =yiy) i=1,....p0 t=0,....T;
k=1,....,K; r=1,...,R (14)
uPH,erwt_M(l_Yitkr) i=1,....,p; t=0,....T;
k=1,....,K; r=1,...,R (15)
K R »p
W=y 3 Vi t=0,.... T (16)
k=1 r=1 i=1
Xijr € (0.1} i=0,....p; j=1,....p+1;
k=1,....K; r=1,...,R (17)
UpreRy i=0,....,p; k=1,....K; r=1,....R (18)
yitkre{os1} i=0,...,p; t=0,...,T;
k=1,....K; r=1,...,R (19)
we R, (20)

The first part of the objective function (1) minimizes the routes’
total duration (end time minus starting time) which includes the
necessary waiting time to respect the time windows. In our case,
the total duration of the routes may be different from the total
operating time of a vehicle as waiting times are allowed at the
Lab between routes. The second applies a penalty factor 6 to the
maximum number of boxes arriving within a time period (w). In
preliminary computations we found that minimizing traveling dis-
tance was inefficient, as the model simply added useless waiting
times within the route to span the arrivals over the time periods.
We found that minimizing the route’s duration, including the wait-
ing time, was a more logical objective, even if it is more compli-
cated to optimize. Constraints (2) assure that each request is ser-
viced by exactly one route. Since some of the original collection

points are duplicated, constraints (3) ensure that a route visits only
one original point at a time. Flow conservation is ensured by con-
straints (4). Constraints (5) state that truck k can start a route r
or not, and if a route is started, it has to come back to the depot
by constraints (6). If vehicle k in its route r performs request j, the
time windows must be respected by constraints (7). Constraints (8)
are the sub-tour elimination constraints. Constraints (9) state that
route r of vehicle k starts later than the arrival of its route r-1. The
time needed to return to the depot after visiting a request node is
bounded by constraints (10) to satisfy sample lifetime. Constraints
(11) set the maximum duration on any route. Constraints (12) state
that the request i will arrive at the depot within a given time pe-
riod t. Constraints (13) ensure that, if request i has been visited
by the rth route of vehicle k, the variable yj,, can take the value
one. Constraints (14) and (15) force the relation between the flow
and y variables and discretize time into periods of w units of time.
When using these constraints in the case where y;;, = 1, we have
wt < Uy < o(t+1), meaning that the depot must be visited
within the ttht" time period, thus within time wt and w(t +1).
Constraints (16) calculate the Lab’s maximum workload during the
available time periods. As expressed by (16), the number of boxes
arriving during a given time period corresponds to the number of
locations visited by the routes which return to the depot during
this period. Assuming that a sample box is collected at each re-
quest location, the workload then corresponds to the number of
boxes arriving at the depot during this period. Domains of the vari-
ables are given by (17)-(20).

2.2. Valid inequalities

The solvability of the model (1)-(20) can be improved by the
addition of the following groups of inequalities.

p p
> Xojur — > _Xojkr—1 <0 k=1,....K: r=2.....R (21)
j=1 j=1
p
Uiler — Z (aj+rj—ai+tj,~)xj,»kr2a,~
j=0&i#]
i=1,....p+1; k=1,....K; r=1,....R (22)
p P
ZXOjkI_ZXOjk—l,ISO k=2,,K (23)
j=1 j=1
R p j-1 R p
ZZxUkr—ZZinlk_lwrso j=1,...,p; k=2,...,K
r=1 i=1 =1 r=1 i=1
(24)
p R T p T
D3 Viw <MY D Yieern  k=2.....p (25)
i=1 r=1 t=0 i=1 t=1
p T p T
DD Ve MDY Vikra k=1,...K r=2...R (26)
i=1 t=0 i=1 t=1
DY X <ISI-1 Sc{1,2,....p}, |S|=20r3 (27)
ieS jeS
K R

szijkrzo Vi,jeV\{O,p+1}|(a,-+r,-+t,-j>bj) (28)
k=1 r=1

K R
szijkr =0 Vl,] € V\{O, p+ 1}|(aj — b,’ + T+ tj,er] > Tmax)
k=1 r=1

(29)



Z. Naji-Azimi et al./European Journal of Operational Research 255 (2016) 58-67 61

K R -1
D3 Vi =0 VieV\{0, p+ 1}|(ai+ T + ti i1 = wt);

k=1 r=1 =1

t=1,....T-1 (30)

To avoid symmetry, active routes are ordered by constraint (21).
Constraint (22) puts a lower bound on the minimum value of each
variable u. Essentially, when visiting the arc (i, j) by the rt" route
of vehicle k we have X, =1 and consequently, uy, +7;+ t; <
Ujr- In case that x;j, =0 we have uy, — uj, <b;—a; which is
always valid. Constraints (23) and (24) are adaptations of the sym-
metry breaking constraints proposed by Coelho and Laporte (2014).
Essentially, they eliminate many symmetric solutions of same val-
ues by ordering the use of the vehicles and the assignment of re-
quests to vehicles. Constraints (25) and (26) are symmetry defeat-
ing constraints and are only introduced to enhance the model by
breaking the symmetry caused by variables y. In particular, none
of the requests can be performed by routes of the vehicle k, when-
ever the first route of the vehicle k — 1 has not already been used.
In addition, (26) states that route r of the vehicle k can be used to
deliver a request to the Lab only if route r — 1 of the same vehi-
cle has already been used. Constraint (27) is a classical sub-tours
elimination constraint generated for subsets of two and three re-
quests. Constraints (28) to (30) are generated only if specific con-
ditions are respected. Constraint sets (28) and (29) state that we
cannot visit arc (i, j) by different routes of available vehicles when
aj+ T+ t;j > bjand a; + tj +tj p 1 — b; > Tmax, respectively. In fact,
(28) and (29) respectively remove redundant arcs violating the
time window and maximum sample travel time. Constraint (30)
shows the relation between the earliest visit time of a request and
the possible time periods where its corresponding sample can be
delivered at the Lab. Essentially, when a; + 7; + t; ,,1 > wt, request
i cannot be delivered to the Lab sooner than the ttht" time period.

Model (1)-(30) extends and strengthens the one proposed by
Anaya Arenas et al. (2016) who used constraints (2)-(7), (9)-(11),
(21), (23), (24) and the following connectivity constraint:

i=0,....,p;j=1,....,p+1;
Ui + T+ tj — Ujir < Tie(1 = Xijier) k=1 Kre1 R
(31)

We improved this constraint by using (8) and (22). In their
model, they also minimized the total traveled distance which is a
different objective function than (1). Nonetheless, the formulation
is only able to solve efficiently small to medium sized instances, as
it will be shown in the section devoted to numerical experiments.
The development of a fast and efficient solving method was there-
fore necessary to deal with the larger real-life instances provided
by our partner.

3. Heuristic algorithm

In this section, we develop a multi-start algorithm for the in-
troduced problem. In the next sections we first describe the algo-
rithm, followed by a detailed description of how visiting times are
updated efficiently to handle the time windows and the maximal
sample transportation time constraints.

3.1. Multi-start algorithm

The multi-start algorithm is based on three procedures, namely
Construction, Extraction-Reinsertion and Swap. To ensure that differ-
ent executions lead to different solutions, the algorithm sets a level
of randomization which modifies two important parameters of the
problem: the maximal sample transportation time (Tjng) and the

maximum length of a vehicle working day (T). These parame-
ters impact the Construction algorithm, which may provide differ-
ent initial feasible or unfeasible solutions. Parameters are adjusted
according to the feasibility of the solution produced at the previous
execution. Only feasible solutions are passed to the improvement
steps.

Construction procedure

Initial solutions are built by a constructive method in which
nodes are sequentially added to the routes. We use the following
rules to select ny, the first node to be visited by a route.

e N; = argmax;.p{to;} i.e., the set of nodes i€ P = {vy, vy,...,Vp}
whose travel time from the Lab is the greatest.

* N, = argminey, {b;} i.e, the set of nodes i< N; whose time
window upper bound is the lowest.

e n; = Choose a node from N, randomly.

At each step, to add a new node to the set of visited nodes of
the working route, we verify the possibility of adding each unvis-
ited node to every insertion place of the current route and select
the insertion leading to the smallest increase in the route’s total
travel time. For instance, if node i is inserted between nodes j and
k, the detour is computed as tj; + ty —t;;. The general framework
of the construction phase is sketched in Algorithm 1, where K is
the number of vehicles and R the maximum number of routes per
vehicle.

Extraction-Reinsertion procedure

In this procedure, the goal is to reduce the value of the ob-
jective function (1) by repositioning some of the nodes. Thus, the
length of the time period w must be considered in the calculation
of this cost. To try improving the solution, the procedure extracts
a node from its location and reinserted into its best feasible posi-
tion. Starting from the first route of the first vehicle, all the nodes
are repositioned in all possible locations. A move is accepted as
soon as it leads to an improvement, and the whole procedure is
repeated until no improvement can be reached. During this pro-
cedure, we are allowed to create a new route or close an already
existing one.

Swap

Following their order in the current solution, we consider each
pair of nodes and their corresponding positions are swapped. This
swap is applied to all possible combinations of two nodes over all
the vehicles’ routes. As soon as a move improves the solution’s
cost, it is accepted and the procedure stops whenever the swap-
ping of all available nodes offers no more improvement.

Multi-start heuristic algorithm

The general framework of the multi-start algorithm is pro-
vided in Algorithm 2 and consists of two loops. During the inner
loop’s execution, the goal is to construct an initial feasible solution.
Within this loop, we run the Construction procedure by setting dif-
ferent temporary values for the maximum vehicle travel time (Tj)
and the sample travel time (Tpqx) parameters until a feasible solu-
tion is obtained (the Repeat - Until loop). Essentially, the algorithm
is initialized at the first iteration by setting Tempy, . = Timax and
Tempr, =Ty, which are the initial feasible parameters of the in-
stance. For the other iterations, if the generated solution produced
by applying the Construction procedure is feasible, the values of
Tempr, and Tempr,,,, are decreased by a factor o which is an input
parameter (set to 0.1 in our computational experiments):

Tempy, = Tempr, — Ty
Tempr,, = Tempr,, — @Tnax

Otherwise, in order to increase the chance of obtaining a fea-
sible solution, the corresponding values of the parameters are



62 Z. Naji-Azimi et al./European Journal of Operational Research 255 (2016) 58-67

Algorithm 1 The construction procedure.

For (i=1 to K) do
For (r =1 to R) do

Initialize the route r by visiting the first node n,
While (there is an un-routed node to be added in a feasible position) do
Add to the route r, the node having the smallest detour in time

End While
r=r+1
End For
k=k+1
End For

Algorithm 2 The multi-start algorithm.

BestSolution = ¢
Tempy, =Ty
Tempr,,, = Tnax
For (Iter=1 to Maxie,) do
Repeat
T, = rand(0, T, — Tempy,) + Tempy,
Tnax = rand (0, Typax — Tempr,, ) + Tempy, ..
CurrentSolution = Construction (T, Trax)
If (CurrentSolution is feasible)
Tempr,,, = Tempr,, — 0tTax
Tempy, = Tempy, — Ty
Else
Tempr,,, = Tempr,, + 0¢Tnax

If (Tempy,,, > Tnax) Then Tempr,, = Tnax

Tempy, = Tempy, +aT;
If (Tempy, > Ty) Then Tempy, = T
End If
Until CurrentSolution is feasible

CurrentSolution = Extraction-Reinsertion (CurrentSolution)

CurrentSolution = Swap (CurrentSolution)

If (CurrentSolution improves the cost of the best known solution) BestSolution = CurrentSolution

End For

increased by applying the updates:
Tempy, = Min{Tempr, + aT;; Ty }
Temprs,,, = Min{Tempr, . + &¢Tnax; Tmax}

Finally, the values to be used as the maximum travel and sam-
ple times when running the Construction procedure are set by ap-
plying the following relations in which rand(0, x) is a random in-
teger number between 0 and x.

T, = rand(0, T, — Tempy,) + Tempr,
Tnax = rand(0, Tynax — Tempr,, ) + Tempr, .

Upon obtaining an initial feasible solution, we apply the
Extraction-Reinsertion and Swap procedures to try to improve the
quality of the initial solution. To do so, we use the original val-
ues for the sample travel time (i.e. Tnqx) and vehicle travel time
(i.e. Ty). The algorithm stops after a given number of iterations (i.e.
Maxiter)-

3.2. Information update

In order to efficiently manage the time windows and the
maximum sample transportation time constraints, we need rules
to update the earliest and the latest start time of nodes in the so-
lution. In the following, we offer an adaptation of the method pro-
posed by Campbell and Savelsbergh (2004) for the VRP with time
windows.

We represent the rth route of vehicle k by k=
kr  kr kr kr ky kr : . . ~
{cg" q s G ’Ci+1""’cnkr’cnk,+1} in which ny is the num

ber of nodes visited by the r route of vehicle k. We denote by

Eckr and Lckr' the earliest and the latest time at which node cgf’ can
! ‘

J
be visited by the rt" route of vehicle k, respectively.

At the beginning, for each k and r, we set Eckr = Eckr
0 ”kr'H

= ag and

= by. In case of visiting node c*r between nodes ¢k

L kr = Lckr j i

‘% ny, +1

and cﬁ] we apply the relations (R1) and (R2) to update the earliest
and latest visit time of cifr as follows:

Eg =maX[acjk_,,Ecik, + Tor +t4<r5§r} (R1)
Li =miniby, Ly —Twx —ti i R2
g =minfby Ly~ Ty~ | (%)

If Ei =L inserting c’]ff between cf’ and cﬁl will not violate

the timje Winélows, but it is still necessary to verify that both the
maximum duration of the vehicle length and the maximum sample
travel time are satisfied. To do so, we use the relations (R3) and
(R4) to update the earliest and latest start time of nodes visited

after and before cz?* as follows:

E i =max{acsk,A,Ecﬁl+rck, +tck,1ecfr} s=1i+1,....m +1

s s—1 5—

(R3)

Lcﬁ" = mln{bcgr, Lfffg — chr — tcfrcfil } s =0,...,1 (R4)
Finally, the minimum length of the rt" route of vehicle k re-
quires serving the route at the latest feasible time, by setting it

to vt i — vt .. In this expression, vt ;. is the real visit time of
c T 1 Or C_r
nkf+ 1
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Table 1
Performance of the mathematical models on small and medium instances.

Small instances Medium instances

BSTP-EG VRP-DA BSTP-EG VRP-DA

# Dist Second Second # Dist. Second Second
1 1939 005 0.04 13 754.4 2.76 0.26
2 1253  0.05 0.02 14 230.3 0.49 0.21
3 311.8  0.06 0.08 15 234.0 1.32 0.28
4 2358  0.07 0.07 16 126.0 1.30 0.59
5 3242 013 0.08 17 193.0 0.78 0.52
6 270.7 0.9 0.18 18 193.0 0.87 0.36
7 2799 051 0.30 19 284.7 444 0.39
8 2679  0.27 0.17 20 301.3 3.71 0.78
9 1840 0.23 0.16 21 154.9 15.87 1.70
10 556.8 0.4 0.12 22 230.1 10.08 0.69
11 6189  0.07 0.14 23 931.3  883.61 0.72
12 1994 029 0.17 24 995.3  286.93 1.51
25 991.3 66.68 4.51
Avg. 0.17 0.13 Avg. 98.37 0.96

node cfff by the rth route of vehicle k and can be calculated as
u-tC?r = max{acfr, vtcﬁ1 + rcfg +thj],Cfr}' i=1,...,m +1. In addi-
tion, chf = Lckr.

Satisfaction of the maximum vehicle travel time and the max-

imum sample travel time are ensured by Eqgs. R5 and R6, respec-
tively:

Vti, —Vty <T (R5)
Cn +1 CO
kg
Vtiy —Uly < Tmax T=1,....R (R6)
nkr+1 1

In addition, vt ,, = vt
C c r—1
0 ne o+l
-1

forr=2,...,R.

4. Computational results

In this section we evaluate both the efficiency of the model and
the heuristic to solve the set of instances in Anaya Arenas et al.
(2016). These instances were obtained from the Quebec’s MSSS and
correspond to real biomedical sample transportation problems in
four administrative regions in the province of Quebec.

The heuristic algorithms were implemented in C using Mi-
crosoft Visual Studio 2010 and executed on an Intel Core I-7 with
a 3.4 gigahertz processor and 32 gigabyte of RAM. The mathemat-
ical formulations were solved using Cplex 12.6. As the algorithms
developed in this article can also solve the instances in Anaya Are-
nas et al. (2016), our experiments will be separated in two parts.

Table 2
Performance of the models on large instances.

First, we compare our formulation and heuristic to those in Anaya
Arenas et al. (2016). Then, we evaluate the model’s behavior and
the heuristic in the context of desynchronized arrivals.

4.1. Results on biomedical sample transportation instances

The proposed model VRP-DA of Section 2 can be used to
solve the BSTP if we use constraints (2)-(15) and replace the
objective function (1) by the distance minimization objective
Yo X0 Skt 28 dijxijie- These results are reported under
columns VRP-DA in the following tables. Columns BSTP-EG corre-
spond to the Anaya Arenas et al. (2016) model. Table 1 reports data
on the small and medium instances. These instances have up to 10
collection points and 20 transportation requests.

As can be observed, both formulations solved all the instances
to optimality. For medium instances, the BSTP-EG proposed by
Anaya Arenas et al. (2016) required 98 seconds in averages, while
our formulation required only 0.96.

Table 2 reports the results for the larger instances having up to
20 collection points and 50 requests. We ran the BSTP-EG model,
but it was never able to produce any feasible solution after 10 800
seconds of computing. This behavior was also observed by Anaya
Arenas et al. (2016) and this is why they initialized their model
with the best solution given by their heuristics. Thus, column
BSTP-EG in Table 2 reports their original results (distance and fi-
nal Cplex gap in percentage after 10 800 seconds). Column VRP-DA
reports our results after 3600 and 10800 seconds of computing
time, respectively. Values marked by an asterisk indicate instances
for which Cplex ran out of memory and the best feasible solutions
for them are reported.

The new model clearly offers a better performance, obtaining
better solutions for all the cases except instances 33 and 38. The
average solution cost was reduced from 1388 for the previous
model to respectively 1322 and 1290 after 3600 and 10,800 sec-
onds of computing time with the new VRP-DA model. Average op-
timality gap was also reduced from 21.51 percent for BSTP-EG to
8.77 percent for VRP-DA. Thus, the new formulation is shown to
be faster and more effective.

Table 3 reports heuristics’ results for all the 38 instances. Col-
umn “Anaya-Arenas” reports their best found results over different
heuristic combinations. Columns “Heuristic” report the results of
the algorithm developed in Section 4 after 1 and 100 iterations,
respectively. Computing times are not reported, as they are negli-
gible. Our multi-start algorithm can be applied to the BSTP by us-
ing the travel time as a cost function for the Extraction-Reinsertion
and Swap procedures and by setting the value of 8 = 0. For each
heuristic, we report the distance (Dist) and the gap (Gap), with

BSTP-EG (10 800 seconds)  VRP-DA (max 3

600 seconds)

VRP-DA (max 10 800 seconds)

# Cost Gap Cost Gap second Cost Gap second
26 11932  26.8 1193.0 0.0 58.7 1193.0 0.0 58.7
27 1832.8 1.2 1832.8 0.0 502.2 1832.8 0.0 502.2
28 21089 56.2 1932.9 20.1 3 600 1932.9 11.5 10 800
29 497.0 83 469.5 41 3 600 468.9 3.9 10 800
30 523.7 10.1 484.8 5.1 3 600 484.3 3.6 10 800
31 636.8 13.7 578.8 6.9 3 600 569.6x 6.1 5560
32 1700.7 233 1602.5 15.2 3 600 1551.4 1.4 10 800
33 586.7 6.9 586.9x 8.1 OOM 586.9x 8.1 OOM
34 1787.0  29.7 1660.7 223 3 600 1560.3 15.7 10 800
35 1883.1 28.5 1725.8 17.8 3 600 1692.9 14.1 10 800
36 18883  29.6 1867.9 214 3 600 1689.6 12.2 10 800
37 20223 290 1929.0 18.7 3 600 1928.5 18.6 OOM
38 4451 16.3 * * * * * *

Avg. 1388.4 21.5 percent 1322.0 11.6 percent 1290.9 8.7 percent
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Table 3
Heuristics’ performance for the BSTP instances.

Best Anaya-Arenas Heuristic (1 it.) Heuristic (100 it.)
# Cplex Dist Gap Dist Gap Dist Gap
1 193.9 193.9 0.00 193.9 0.00 193.9 0.00
2 125.3 125.3 0.00 0.00 125.3 0.00
3 311.8 311.8 0.00 0.00 311.8 0.00
4 235.8 235.8 0.00 0.00 235.8 0.00
5 324.2 324.2 0.00 0.00 3242 0.00
6 270.7 285.8 5.58 0.00 270.7 0.00
7 279.9 292.6 4.54 279.9 0.00 279.9 0.00
8 267.9 286.8 7.05 267.9 0.00 267.9 0.00
9 184.0 184.0 0.00 184.0 0.00 184.0 0.00
10 556.8 556.8 0.00 0.00 556.8 0.00
1 618.9 618.9 0.00 618.9 0.00 618.9 0.00
12 199.4 206.4 3.51 3.36 1994 0.00
13 754.4 754.4 0.00 754.4 0.00 754.4 0.00
14 230.3 246.8 7.16 230.3 0.00 230.3 0.00
15 234 234.0 0.00 2379 1.67 234.0 0.00
16 126 131.0 3.97 126.0 0.00 126.0 0.00
17 193 193.0 0.00 193.0 0.00 193.0 0.00
18 193 193.0 0.00 2233 15.70 193.0 0.00
19 284.7 284.7 0.00 284.7 0.00 284.7 0.00
20 301.3 3304 9.66 301.3 0.00 301.3 0.00
21 154.9 160.0 3.29 5.29 154.9 0.00
22 230.1 244.8 6.39 269.3 17.04 230.1 0.00
23 931.3 949.6 1.96 931.3 0.00 931.3 0.00
24 995.3 1003.2 0.79 995.3 0.00 995.3 0.00
25 990.5 1031.2 411 990.5 0.00 990.5 0.00
Avg. 367.5 375.1 2.32 percent 371.0 1.72 percent 367.8 0.00 percent
26 1193.0 1229.3 3.04 1257.3 5.39 1193.0 0.00
27 1832.8 19233 4.94 1832.8 0.00 1832.8 0.00
28 1932.9 2108.9 9.11 1932.9 0.00 1932.9 0.00
29 468.9 497.0 5.99 468.9 0.00 468.9 0.00
30 4843 523.7 8.14 511.0 5.51 4843 0.00
31 569.6 636.8 11.80 612.4 7.51 572.7 0.54
32 1551.4 1700.7 9.62 1582.5 2.00 1552.5 0.07
33 586.9 638.4 8.77 626.8 6.80 575.2 -1.99
34 1560.3 1787.0 14.53 1658.6 6.30 1560.3 0.00
35 1692.9 1883.1 11.24 1879.1 11.00 1683.2 -0.57
36 1689.6 1888.3 17.76 1886.1 11.63 1688.2 —0.08
37 1928.5 2022.3 4.86 2011.3 4.29 1793.7 —6.99
38 4451 460.7 3.50 0.22 432.6 -2.81
Avg. 1225.86 1330.73 8.25 percent 1285.06 4.67 percent 1213.10 —0.91 percent

respect to the best solution obtained by Cplex (solution to in-
stances 1 to 27 are proven optimal). For small and medium size
instances 1 to 25, the proposed heuristic with 100 iterations
produced all of the optimal solutions. For the larger instances,
we improved the average gap produced by Anaya Arenas et al.
(2016) heuristic, 8.25 percent, to 4.67 percent when only 1 iter-
ation of the heuristic is run, and to —0.91 percent after 100 itera-
tions. Even more, the multi-start heuristic produced solutions that
improved the best known ones (produced by Cplex) in 5 times.

4.2. Results for the VRP with desynchronized arrivals

In this section we analyze the ability of the VRP-DA formula-
tion and the multi-start heuristic to minimize the largest number
of boxes arriving to the Lab during any time period. Our compu-
tational experiments were still based on the Anaya Arenas et al.
(2016) set of instances, as they are the practical foundation of this
work. However, for each instance, we set the opening and clos-
ing times of the laboratory and then divided the working hours
into time periods of @ minutes. Clearly the length of these periods
not only influences the size of the model, but also the maximal
number of boxes arriving within a period. Managing the time pe-
riods adds a new complexity level to the problem and impacts the
size of the instances that can be solved to optimality. This is why
the instances in this section are divided into to two sets, with in-

stances 1 to 19 in the first one and instances 20 to 38 in the sec-
ond one. The VRP-DA model can only be solved to optimality by
Cplex for the latter set.

Let us first analyze the behavior of model VRP-DA when the
synchronization factor is not considered. To this end, we set the
penalty factor & =0 in the objective function (1). The model op-
timizes only the sum of the route’s durations and we observe for
each instance the number of boxes arriving to the Lab at the busi-
est period.

Table 4 reports the numerical results produced for these exper-
iments when w was set to 60 and 30 minutes. Columns RD provide
the optimal duration of the routes. The routes’ duration produced
by the heuristic are reported in columns RD. Column w reports the
number of boxes arriving during the busiest period, giving an idea
of the values that one should obtain if desynchronization is not
consider in the optimization process. Finally, columns Second re-
port the Cplex computing time in seconds. We do not report the
heuristic computing time as it is always below a second.

As expected, the routes’ durations are not impacted by the
length of the considered period. However, the average comput-
ing time of Cplex rises from 269 seconds to 331 seconds when
the time period is reduced from 60 to 30 minutes. We can ob-
serve the excellent performance of the heuristic (with 100 itera-
tions), which was able to find the optimal route’s duration for all
instances. It is also worth to mention that both methods led to the
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Table 4

65

Results for the VRP-DA with no penalty on the number of arrivals (6 = 0).

Time period @ = 60

Time period @ = 30

Cplex Heuristic Cplex Heuristic
# RD w Second  RD w RD w Second  RD w
1 270.0 1 0.2 270.0 1 270.0 1 0.2 270.0 1
2 179.0 2 0.1 179.0 2 1790 2 0.1 179.0 2
3 3780 2 0.4 378.0 2 3780 2 0.9 3780 2
5 4440 2 21 444.0 3 4440 2 1.8 4440 2
6 4440 4 56 4440 2 4440 2 102 4440 2
7 4260 4 39 426.0 4 4260 2 8.2 4260 2
8 431.0 2 5.0 431.0 2 431.0 2 11.9 431.0 2
9 4230 3 9.1 423.0 3 4230 3 27.2 4230 3
12 3116 3 48 311.6 3 3116 3 8.0 3116 3
13 8530 4 77.2 853.0 4 853.0 3 392.0 853.0 4
14 347.6 7 285.0 347.6 7 347.6 4 577.0 347.6 4
15 5150 3 9.5 515.0 3 5150 3 28.6 5150 2
16 3066 4 3600.0 306.6 4 3066 4 3600.0 3066 4
17 3306 4 83.0 330.6 4 3306 4 331.0 3306 4
18 3376 4 1.2 337.6 4 3376 4 19.8 3376 4
19 599.0 4 207.9 599.0 4 599.0 3 279.1 599.0 3
Avg. 4122 33 269.1 412.2 3.25 4122 28 331.0 4122 275
Table 5
Results for the VRP-DA with penalty on the number of box arrivals (¢ = 100).
Time period w = 60 Time period w = 30
Cplex Heuristic Cplex Heuristic
# RD w RD w Second RD w w  RD W  Second RD w
1 2700 1 2700 1 0.1 2700 1 1 2700 1 0.2 270.0 1
2 179.0 2 179.0 2 0.1 179.0 2 1 179.0 2 0.1 179.0 2
3 3780 1 3840 1 0.3 3780 2 1 3840 1 0.7 378.0 2
5 4440 1 5250 1 29 4440 3 1 5120 1 48 4440 2
6 4440 1 4700 1 6.7 4440 2 1 470.0 1 132 4440 2
7 4260 1 4710 1 59 4480 2 1 4580 1 14.0  426.0 2
8 4310 1 4560 1 7.2 4310 2 1 4560 1 13.7 431.0 21
9 4230 1 4860 1 22.2 4390 2 1 4860 1 331 486.0
12 3116 2 330.1 2 15.3 3516 2 1 3301 2 57.4 330.1 2
13 853.0 1 8920 2 202.3 8800 3 1 8940 1 319.1 867.0 3
14 3476 1 390.1 2 1598.5 4151 2 1 4721 1 3600.0 3751 2
15 5150 2 5220 2 14.7 5580 2 1 5150 2 103.1 515.0 2
16 3066 1 3463 2 3600.0 3593 2 1 4120 1 3600.0 3426 2
17 3306 1 3396 2 145.2 3876 3 1 3306 2 1077.8 4833 2
18 3376 2 3496 2 15.6 3776 3 1 3376 2 56.4  394.0 2
19 599.0 2 623.0 2 285.7 607.0 3 1 599.0 2 2319 623.0 2
Avg. 4122 13 4396 15 370 4356 23 1 4441 1.3 571 436.7 1.9
Gap(percent) 6.5 6.3 8.2 6.8

same w value in almost all but four cases. This can be explained
by the presence of an equivalent solution with respect to the route
duration.

Table 5 reports the results when we set the penalty factor to
6 =100, which means that the model reaches a compromise be-
tween minimizing the route’s duration and the number of arrivals
during the busiest period. In column RD, we report the lower
bound on the route duration as per Table 4, which is valid for both
values of w. In order to obtain a lower bound on the number of
box arrivals in the busiest period, we ran the model with a very
high penalty factor (& = 100 000). These results are reported in
columns w.

When we set w = 60 minutes and 6 =100, Cplex produced op-
timal solutions having in average a route duration of 439.6 instead
of 412.2 units (lower bound in Table 4). However, the average num-
ber of boxes arriving during the busiest period is reduced from 3.3
to 1.5 boxes. The heuristic produced average values of 435.6, and
2.3 for the same indicators. When we set w = 30 minutes, the av-
erage number of boxes arriving during the busiest period produced
by Cplex decreases to 1.3, whereas the lower bound (w) is equal to

1. For this case, and comparing to the results in Table 4, we can say
that a better desynchronization has allowed reducing the maximal
number of boxes received within the busiest period from 2.8 to 1.3
at the cost of an additional 8.2 percent in the total route duration
the reduction.

Table 6 reports the results produced for the larger instances.
Since Cplex was unable to produce a feasible solution after 3 600
seconds of computing time, only heuristic results are reported. Ex-
periments were run for penalty factor = 100 and @ =60 minutes.
To evaluate the heuristic’s robustness and how the number of it-
erations influences the quality of the solutions, we report the re-
sults produced right after the construction phase of the heuristic
and after 1, 10 and 500 iterations. Computing times are only re-
ported for 500 iterations, as they are otherwise negligible. Finally,
since we do not have bounds on the route duration and the num-
ber of arrivals, we ran 10 000 iterations of the heuristic to try and
get “good” bounds. To this end, first we set # = 0 to minimize
the route’s duration (column RD’), and then we set # = 100 000 to
minimize the number of arrivals during the busiest period (column
w').
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Table 6
Heuristic performance for 6 = 100, @ = 60.

Construction

Heuristic (1 it.)

Heuristic (10 it.)  Heuristic (500 it.)

# RD’ w’ RD w RD w RD w RD w Second
20 496.0 2 606.0 6 560.0 2 551.0 2 551 2 0.2
21 4600 3 592.0 4 479.0 3 479.0 3 4710 3 0.2
22 538.0 2 575.0 4 538.0 3 538.0 3 567.0 2 0.2
23 1077.0 3 1216.0 4 1214.0 3 1105.0 3 11050 3 0.3
24 12100 3 1273.0 6 1272.0 5 1249.0 3 1249.0 3 0.3
25 12600 3 1341.0 6 1285.0 3 1285.0 3 12850 3 0.4
26 14040 3 1584.0 8 1520.0 5 1422.0 4 14730 3 0.6
27 20550 3 2207.0 4 2088.0 4 2104.0 3 21040 3 1.1
28 22710 5 2445.0 8 2321.0 6 2284.0 6 23280 5 13
29 9573 4 988.3 10 985.3 9 1014.5 4 9875 4 2.0
30 10283 4 1105.3 12 1060.3 6 1062.3 5 10523 5 1.7
31 11675 5 1249.3 13 1212.3 7 1241.3 6 12143 5 4.5
32 1865.0 5 2176.0 10 2028.0 8 1998.0 5 19980 5 2.3
33 11925 5 1280.3 12 1267.3 7 1270.5 5 12655 5 4.8
34 19780 5 2264.0 12 2263.0 7 2084.0 6 21370 5 3.6
35 20880 6 2497.0 12 2302.0 7 2176.0 7 21530 7 34
36 21100 6 2525.0 12 2407.0 7 2269.0 7 21990 6 32
37 22170 6 2627.0 1 2450.0 7 2300.0 7 23520 6 3.6
38 12249 6 13444 15 12771 7 1267.5 7 13005 6 4.8
Avg 14000 4.2 1573.5 8.9 1501.5 5.6 1457.9 4.7 1462.7 43 19
Gap(percent) 124 m 333 41 11.9 45 24

Table 6 shows that the lowest route duration was achieved with
10 iterations with a deviation of 4.1 percent from the minimum
(obtained with & = 0). With 500 iterations, the heuristics improve
the maximum number of arrivals to 4.3, while the minimum (ob-
tained with & = 100 000) was 4.2, however the routes duration
was increased slightly. Thus, running the heuristic with 500 itera-
tions seems a good compromise while the computing time remains
below five seconds.

5. Conclusions

This article deals with an important practical transportation
problem encountered in the health system of the Quebec province.
This problem requires the transport of biomedical samples from
collection points to a laboratory where they are analyzed. As the
laboratory is the bottleneck of the system, it is important to avoid
congestion by balancing the arrival of samples. To this end, we dis-
cretize the working hours into periods and try to minimize the
number of samples boxes arriving to the laboratory in the busi-
est period. We modeled the problem as a vehicle routing problem
with desynchronized arrivals (VRP-DA). To the best of our knowl-
edge, it is the first time that this problem has been addressed
and modeled. We formulated it as a MIP and developed a heuris-
tic to solve it. The formulation and the heuristic were adapted
to deal with a similar routing problem in which desynchroniza-
tion was not considered, and both outperformed existing meth-
ods. Our computational results demonstrated also that the prob-
lem with desynchronized arrivals is much more difficult to solve
to optimality. For medium size real instances, the formulation was
solved to optimality within few seconds. However, for larger in-
stances, the Cplex was unable to obtain any feasible solution, al-
though the heuristic proved to be efficient in minimizing both the
route’s duration and the number of arrivals during the busiest pe-
riod.

The algorithms developed in this research have been applied
to four administrative regions in the Quebec province. On an an-
nual basis, more than 2.1 million kilometers are involved in the
new routes configurations (Renaud, Ruiz, Chabot, Anaya Arenas, &
Zue Ntoutoume, 2014). We are currently working with the Ministry
to reorganize transportation operations of the other 13 administra-
tive regions as part of the global laboratories optimization project.

From a broader perspective, we believe that this practical situation,
where the route planner might avoid congestion at depots or other
facilities, justifies additional research.
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