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Abstract 
 
Introduction 
we aimed to introduce a 6-universal-prismatic-spherical (UPS) parallel mechanism for the human jaw motion 

and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate 

solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for 

the direct kinematic problem by reducing the number of required iterations in order to reach the desired 

accuracy level.  

Materials and Methods 

To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson 

algorithm were combined to provide an improved hybrid method. In this method, approximate solution was 

presented for the direct kinematic problem by the neural network. This solution could be considered as the 

initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of 

accuracy. 

Results 
The results showed that the proposed combination could help find a approximate solution and reduce the 

execution time for the direct kinematic problem, The results showed that muscular actuations showed 

periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter 

and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time 

could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of 

iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional 

Newton method. 

Conclusion 

The present analysis could allow researchers to characterize and study the mastication process by specifying 

different chewing patterns (e.g., muscle displacements).  
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1. Introduction 
Mastication is a complex process which is 

driven by a complex assembly of more than 

twenty muscles working as an ensemble. 

These muscles are placed on both sides of the 

mandible. To investigate the dynamic behavior 

of chewing in humans, a robotic device is 

required. Various researchers have 

investigated the mastication system, its 

modeling, and robotics [1-7]. To understand 

the natural trajectory of mastication, the jaw 

movements must be tracked. For the first time, 

Posselt recorded the human jaw motions in the 

mid 1950s [1], describing an envelope of 

maximum mandibular movements. Moreover, 

Pap and Bronlund reported the maximum 

displacement and angular movements of the 

mandible [2]. Röhrle et al. also measured the 

three-dimensional (3D) coordinates of the 

incisor point (IP) and three angular motions of 

the mandible [3]. In addition, Koolstra and 

Eijden developed a biomechanical model of 

the jaw [4].  

Many researchers have investigated the 

kinematics of parallel manipulators. In 

general, kinematic problems can be regarded 

as either direct or inverse. Based on the 

literature, the inverse kinematic problem (IKP) 

of a parallel robot, unlike a serial robot, is 

often simpler to solve than the corresponding 

direct kinematic problem (DKP) [8-20].  

The goal in IKP is to determine the value of an 

actuated joint, leg length, or joint angle, based 

on the given position and orientation of the 

mobile platform (e.g., the mandible). In 

contrast, DKP seeks to determine the position 

and orientation of the mobile platform, based 

on the given value of the actuated joint, leg 

length, or joint angle. The former problem is 

usually considered in control applications, 

whereas the latter is often utilized for 

simulation purposes [8, 9]. 

Newton's method is widely employed to solve 

the DKP of parallel robots [21-26]. The initial 

guess highly impacts the number of iterations, 

needed for solution-finding and even the 

convergence of the process. Pratik and Lam 

presented a novel strategy to provide an 

appropriate initial guess for the standard 

Newton–Raphson technique by using neural 

networks [27]. In fact, many researchers have 

employed the artificial neural network (AAN) 

approach to solve DKPs, so far [28-32].  

The multi-layer perceptron AAN (MLPANN) 

is a universal approximation for non-linear 

input-output mapping. The masticatory system 

can be modeled by a parallel robot, where the 

skull, mandible, and muscles are represented 

by the fixed base, the moving platform, and 

linear actuators, respectively. Although more 

than 20 muscles are involved in the process of 

human mastication, only six play a major role 

[33].  

Numerous studies have evaluated the 

performance of temporomandibular joint 

(TMJ), using the trajectory of condylar paths 

[34]. Previous studies have presented 2D and 

3D characterizations of TMJ compound 

movements. Spoor and Gallo et al. used the 

screw axis model (also known as the finite 

helical axis model) to present a 3D model of 

TMJ movements [35, 36]. Also, Grimes et al. 

employed a tracking system and a program 

with the screw displacement axis model to 

perform a mathematical 3D analysis of an 

object movement [37]. They calculated the 

rotation, translation, and 2D and 3D charting 

of the condylar path. 

In this study, we first developed the robot 

kinematics and then proposed an algorithm to 

solve the forward kinematic problem of the 

mastication robot. By introducing a novel 

method, we aimed to accelerate the solution-

finding process for FKP of the mastication 

robot. To achieve this goal, by combining 

AAN and the third-order numerical algorithm, 

an improved hybrid strategy was proposed for 

direct kinematic analysis of parallel 

manipulators.  

In this method, a near-exact solution for DKP 

was produced by the neural network. This 

solution was then considered as the initial 

guess for the third-order numerical technique, 

which solved the non-linear direct kinematic 

equations to provide an answer with the 

desired level of accuracy.  

In the present study, the proposed mastication 

robot is described in details in the system 
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description section. The mathematical 

modeling, as well as the inverse and direct 

kinematic formulations for the robot, is 

presented in the kinematic model section, 

which also covers the details of the proposed 

improved hybrid method. In the section of 

tracking jaw movements, the actual chewing 

trajectories of three male subjects and the 

recording process are discussed. The results 

and discussion sections present the simulation 

results of the biomechanical model. Finally, 

some concluding remarks are made in the 

conclusion section of the article. 

 

2. Materials and Methods 
2.1 . System description 

Although more than 20 muscles are involved 

in the process of human mastication, only six 

of these muscles play a major role [6, 38]. To 

represent the geometry of human mastication, 

we proposed the use of a general 6-universal-

prismatic-spherical (UPS) Stewart–Gough 

platform. The mobile and stationary platforms 

represented the human mandible and skull, 

respectively, and the actuators denoted jaw 

muscles (schematic presentation in Figure 1).  

 We selected a general 6-UPS parallel 

mechanism rather than the previously 

recommended spherical-prismatic-

spherical (SPS) joints [6] for several 

reasons. Firstly, UPS joints model the 

muscle motion more realistically than 

SPS joints. Also, 6-SPS provides six 

additional passive degrees of freedom 

(DOF), which allow in-place rotation 

of the leg around its own axis. 

However, this leg motion does not 

represent a realistic motion of the jaw 

muscle which does not rotate along its 

axial axis. 

Secondly, according to Chebychev–Grübler–

Kutzbach criterion [6], 6-UPS and 6-SPS both 

offer six DOFs. Thirdly, the six additional 

passive DOFs in the legs in 6-SPS do not 

affect the kinematic input-output relationships 

of the manipulator, although they increase the 

size of dynamic equations [39]. Although 6-

UPS has six differential equations, 6-SPS must 

have 12 equations to account for the six 

additional passive DOFs. 

Actuators S1 to S6 in Figure 1(a) represent the 

lateral pterygoid, temporalis, and masseter 

muscles, respectively, while Gi and bi (i=1, 2 

..., 6) represent the connecting locations of 

these muscles relative to the skull and 

mandible. The muscle actuators are connected 

to the spherical and universal joints at the 

mandible and skull. It should be mentioned 

that the dimensions were selected, based on 

the available literature [6, 7].  

  

(a) (b) 

Figure 1. (a) The mandible, actuators, and connecting points, (b) the schematic diagram of the 6-UPS 

mastication robot 
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2.2. The kinematic model 

In this section, we applied vector algebra to 

obtain the closed-form equations for the 

kinematics of the human-like mastication 

robot. First, the inverse kinematic formulations 

were derived, and the closed-form solutions 

were obtained. Next, the direct kinematic 

formulations and their solutions, obtained via 

the improved hybrid method, were presented. 

The kinematic models and the provided 

solutions could enable us to investigate the 

relationship between the length and orientation 

of muscles during different mandibular 

movements. 

2.2.1 Inverse kinematics 

Inverse kinematics present the motion 

properties of the actuator, such as 

displacement, velocity, and acceleration, based 

on the IP trajectory during mastication. The 

configuration of the mastication robot was 

specified by the position and orientation of the 

system {𝐌} with respect to {𝐒} (Figure 1b). 

For each leg, a vector loop equation could be 

written as follows: 

(1) 
𝐚𝑆

𝑖 + 𝐬𝑆
𝑖 = 𝐏𝑆 + 𝐑𝑀

𝑆 𝐛𝑀
𝑖    

(𝑖 = 1, 2, . . , 6) 

where 𝐏𝑆  and 𝐚𝑆
𝑖  are the position vectors of 

IP and mandible joint with respect to the skull 

coordinate system, respectively. Also, 𝐛𝑀
𝑖  

represents the position vector of the ball joint 

with respect to the coordinate system of the 

mandible. The magnitude of s𝑖 represents the 

actuated muscle length.  

The orientation of the mandible system {𝐌} 
with respect to skull coordinates {𝐒}, referred 

to as the mandible's rotation matrix 𝐑𝑀
𝑆 , was 

defined, using roll, pitch, and yaw angles 

(𝛾, 𝛽, and 𝛼), as shown in Equation (2): 

 

(2) 𝐑𝑀
𝑆 = [

𝑐𝛾 𝑐𝛽 𝑐𝛾 𝑠𝛽 𝑠𝛼 − 𝑠𝛾 𝑐𝛼 𝑐𝛾 𝑠𝛽 𝑐𝛼 + 𝑠𝛾 𝑠𝛼
𝑠𝛾 𝑐𝛽 𝑠𝛾 𝑠𝛽 𝑠𝛼 + 𝑐𝛾 𝑐𝛼 𝑠𝛾 𝑠𝛽 𝑐𝛼 − 𝑐𝛾 𝑠𝛼
−𝑠𝛽 𝑐𝛽 𝑠𝛼 𝑐𝛽 𝑐𝛼

] 

 

Where 𝑐𝛽 = cos(𝛽) , 𝑠𝛽 = sin(𝛽), and so on. 

According to Equation (1), we could obtain 

Equation (3): 

(3) {

𝑠𝑥

𝑠𝑦

𝑠𝑧

} = {

𝑃𝑥

𝑃𝑦

𝑃𝑧

} + 𝐑𝑀
𝑆 {

𝑏𝑥

𝑏𝑦

𝑏𝑧

} − {

𝑎𝑥

𝑎𝑦

𝑎𝑧

} 

Therefore, the lengths of the actuators could be 

obtained as follows: 

(4) 

𝑆𝑖 = ‖𝐬𝑖‖ = √𝑠𝑖𝑥
2 + 𝑠𝑖𝑦

2 + 𝑠𝑖𝑧
2  

=  √ 𝑠𝑆
𝑖
𝑇 𝑠𝑆

𝑖          

  (𝑖 = 1,2, … ,6) 

Equation (4) could provide a solution to IKP. 

Position vectors 𝐚𝑆
𝑖  and 𝐛𝑀

𝑖  were fixed and 

established in the IKP. Therefore, by 

specifying the trajectory of the mandible, and 

therefore, having 𝐏𝑆  and 𝐑𝑀
𝑆 , Equation (4) 

could provide the required lengths of the six 

muscles. 

2.2.2. The improved hybrid method for direct 

kinematics 

The aim of direct kinematic approach was to 

determine the position and orientation of the 

mobile platform on the basis of the given leg 

lengths. Overall, the DKP of parallel robots is 

quite complicated, and the few available 

analytical approaches are not suitable for real-

time control.  

In this study, we described a strategy for 

solving DKP, which consisted of MLPANN 

and the third-order Newton-Raphson method 

[27, 40, 41] (Figure 2). With this strategy, 

referred to as the “improved hybrid method”, 

MLP was first trained and then used to provide 

the initial guess, employed in the Newton-

Raphson method. By using the improved 

hybrid method, the direct kinematic solution of 

the mastication robot could be obtained with 

low computational time and high accuracy. 

Each component of the hybrid method will be 

discussed in the proceeding paragraphs. 
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Figure 2. The improved hybrid method 

 

2.2.2.1. MLPANN 

To reduce the simulation time, an MLPANN 

structure was adopted for producing the initial 

guess and implementing the Newton-Raphson 

method [27]. Detailed descriptions of 

MLPANN can be found in the literature [28-

32]. The leg lengths (muscle lengths) of the 

mastication robot, 𝑙𝑖(𝑖 = 1,2, … , 6), and the 

position and orientation of the 

mandible[𝑥𝐼𝑃, 𝑦𝐼𝑃, 𝑧𝐼𝑃, 𝛾, 𝛽, 𝛼 ], were 

considered as the inputs and outputs of the 

network, respectively. 

The inverse kinematic approach, describing 

the system, was used to produce data for 

training the network. First, an approximate 

workspace of the human mastication 

movements was specified. Next, a random 

sample of points (positions and orientations) in 

the workspace was selected, and the 

corresponding leg lengths were obtained. 

Finally, the obtained leg lengths and the 

Cartesian space parameters of the mandible 

were used as the inputs and outputs for 

training the MLPANN, respectively.  

In this study, MLPANN consisted of two 

layers, with 15 and 20 neurons in the first and 

second layers, respectively. All neurons had a 

sigmoid activation function, except for those 

in the output layer with a linear activation 

function. The Levenberg Marquardt (LM) 

algorithm was used for back-propagation 

training of the network.  

2.2.2.2. Newton–Raphson method 

The Newton–Raphson method yields accurate 

results, given the sufficient number of 

algorithm iterations [40, 41]. For a system of 

multiple equations and variables, the Newton-

Raphson method presents the following 

equation: 

𝐗𝑚+1 = 𝐗𝑚 − (
𝜕𝐅(𝐗𝑚)

𝜕𝐗𝑚
)

−1

𝐅(𝐗𝑚) (5) 

where 𝐗 is a vector of the variables to be 

estimated, 𝐅 is a vector function, which 

approaches zero during the iterative process, 

and 𝑚 is denotes the iteration number. For the 

mastication robot, we defined: 

𝐗𝑇

= [𝑥𝐼𝑃, 𝑦𝐼𝑃, 𝑧𝐼𝑃, 𝛼, 𝛽, 𝛾 ] 
(6) 

and 

𝐅(𝐗)

= [
‖ 𝐑𝑀

𝑠 𝐛𝑀
1𝑖+ 𝐏𝑠 − 𝐚𝑠 1 ‖ − 𝑙1

⋮

‖ 𝐑𝑀
𝑠 𝐛𝑀

6𝑖+ 𝐏𝑠 − 𝐚𝑠 6 ‖ − 𝑙6

]

6×1

= [
‖ 𝐬𝑆

1 ‖ − 𝑙1
⋮

‖ 𝐬𝑆
6 ‖ − 𝑙6

]

6×1

 

(7) 

where ‖ 𝐬𝑆
𝑖 ‖ and 𝑙𝑖 are the estimated and 

actual lengths of the actuated muscle 𝑖, 
respectively. By differentiating (7), we 

obtained Equation (8): 

𝜕𝐅(𝐗𝑚)

𝜕𝐗𝑚

= 𝐉𝟔×𝟔 (𝑥𝐼𝑃, 𝑦𝐼𝑃, 𝑧𝐼𝑃, 𝛾, 𝛽, 𝛼) 

(8) 

where 𝐉𝟔×𝟔 is the Jacobian matrix, obtained by 

differentiating both sides of Equation (4): 

�̇�𝑖 =
𝑠𝑆
𝑖
𝑇 �̇�𝑆

𝑖

√ 𝑠𝑆
𝑖
𝑇 𝑠𝑆

𝑖

 
(9) 

For �̇�𝑀
𝑆 = 𝛚𝐼𝑃 ×𝑆 𝐑𝑀

𝑆  and 𝐀 ∙ (𝐁 × 𝐂) =
(𝐂 × 𝐀) ∙ 𝐁, we obtained Equation (10): 
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�̇�𝑖 =
1

𝑆𝑖
[( 𝐏𝑆

𝑖 + 𝐑𝑀
𝑆 𝐛𝑀

𝑖 − 𝐚𝑆
𝑖 )

𝑇
( 𝐑𝑀

𝑆 𝐛𝑀
𝑖 × ( 𝐏𝑆

𝑖 − 𝐚𝑆
𝑖 ))

𝑇
] [

𝐯𝐼𝑃
𝑆

𝛚𝐼𝑃
𝑆

] (10) 

where 𝐯𝐼𝑃
𝑆  and 𝛚𝐼𝑃

𝑆  are the transitional and 

angular velocities of the mandible, 

respectively. Based on equations (8) and (10), 

Equation (11) could be obtained: 

𝜕𝐅(𝐗𝑚)

𝜕𝐗𝑚
= 𝐉

=

[
 
 
 
 
1

𝑆1
[( 𝐏𝑆 + 𝐑𝑀

𝑆 𝐛𝑀
1 − 𝐚𝑆

1 )
𝑇
]

1

𝑆1
[( 𝐑𝑀

𝑆 𝐛𝑀
1 × ( 𝐏𝑆 − 𝐚𝑆

1 ))
𝑇

]

⋮ ⋮
1

𝑆6
[( 𝐏𝑆 + 𝐑𝑀

𝑆 𝐛𝑀
6 − 𝐚𝑆

6 )
𝑇
]

1

𝑆6
[( 𝐑𝑀

𝑆 𝐛𝑀
6 × ( 𝐏𝑆 − 𝐚𝑆

6 ))
𝑇

]
]
 
 
 
 

6×6

 

(11) 

The convergence rate of the Newton–Raphson 

technique is highly dependent on the selected 

order, with higher orders providing more 

accurate solutions. However, higher orders 

require the calculation of multiple-order 

derivatives (higher than one). A practical 

approach has been recently proposed for 

solving systems of non-linear equations, which 

allows the use of higher orders of Newton–

Raphson technique with no need to calculate 

higher-order derivatives [40, 41]. Consider the 

non-linear Equation (12): 

𝐅(𝐗) = 0 (12) 

where 𝐅𝑛×1 is the non-linear system and 𝐗 is a 

vector of the variables we aim to estimate. By 

using the following iterative scheme, Darvishi 

and Barati solved the non-linear system in 

Equation (12) and showed that this method has 

a convergence order of three [40]: 

(13) 
𝐗𝑚+1 = 𝐗𝑚 − 𝐅′(𝐗𝑚)−1(𝐅(𝐗𝑚)

+ 𝐅(𝐗∗
𝑚)) 

(14) 𝐗∗
𝑚+1 = 𝐗𝑚 − 𝐅′(𝐗𝑚)−1𝐅(𝐗𝑚) 

where 𝐅′ is the Jacobian matrix and 𝐉6×6,  is 

defined by Equation (15): 

(15) 𝐅′(𝐗𝑚) =
𝜕𝐅(𝐗𝑚)

𝜕𝐗𝑚
 

where the stopping criterion is defined as 

follows: 

(16) ‖𝐗𝑚+1 − 𝐗𝑚‖∞ < 𝐸max 

The improved hybrid method presented in this 

study extends previous research [27] by 

increasing the order of Newton–Raphson 

technique to the fifth degree. Specifically, 

equation (5) was used to construct the hybrid 

method, and equations (13) and (14) were used 

to obtain the improved hybrid method. All 

kinematic codes were implemented in 

MATLAB R2010b. 

2.3 Tracking jaw movements 

To obtain the chewing trajectory, three male 

subjects (age range: 24–28 years) were 

selected. All subjects were informed about the 

procedure, and written informed consents were 

obtained prior to the experiment, which 

consisted of three sessions of six mandibular 

opening and closing movements. The Ethics 

Committee of Ferdowsi University of 

Mashhad approved this study. 

To track the jaw motion, small reflective 

markers, nearly 10 mm in diameter, were 

adhered to specific facial locations (Figure 3). 

Forehead markers were used as reference 

points. Tracking was performed, using a Simi 

Reality Motion System GmbH (Germany). 

The recorded data were pre-processed prior to 

modeling, using the same system [35]. The 

camera output was digitized to 250 frames per 

second, and frequencies above 7 Hz were 

discarded. 
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(a) (b) 

Figure 3. (a) Marker position on the subject's face, (b) the two-dimensional reconstruction of the marker set 

 

3. Results  
3.1. Inverse kinematics 

Figure 4 shows the time-dependent 3D trajectory of 

the mandible during mastication in subject No. 

2.Figure 5 demonstrates the time-varying 

behaviors of muscle lengths in two subjects; this 

information was used to reproduce the chewing 

pattern. The temporalis muscles experienced 

larger length changes, compared to masseter and 

pterygoid muscles in all three subjects. The 

behavior of the muscles could be approximated 

by harmonic series functions.  

3.2. Direct kinematics: Results obtained by the 

improved hybrid method 

In this section, we solved DKP, using the 

improved hybrid technique and compared its 

performance with the Newton–Raphson method. 

The solution for DKP allowed us to have muscle 

lengths as the input and to obtain the position and 

orientation of the mandible. This information 

would enable us to characterize the behavior of 

muscles from a different perspective than the IKP 

solution. Additionally, this solution could be used 

for simulation and control purposes. 

 

       
Figure 4. The chewing trajectory in subject No. 2 

 

 

 

  
(a) Subject 1 (b) Subject 2 

Figure 5. Time-varying lengths of muscles during the chewing pattern 
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To train MLPANN, 500 randomly configured 

data points (positions and orientations) were 

selected within the workspace of mastication 

motion [6]. These data were considered as the 

input to the IKP, and the corresponding muscle 

lengths (output) were obtained. Then, the 

obtained leg lengths and the Cartesian space 

parameters of the mandible were used as the 

inputs and outputs for training MLPANN, 

respectively. Upon learning, MLPANN was 

utilized to obtain the initial guess for the 

improved hybrid method. Performance of the 

improved hybrid method, evaluated using the 

recorded trajectory for subject No. 2, is shown in 

Figure 6. As illustrated, the improved hybrid 

method could provide a near-exact solution.  

To permit a comprehensive discussion, the 

performance of different iterative methods (i.e., 

the improved hybrid method, conventional 

Newton-Raphson method, and hybrid method) 

were evaluated and compared with four levels of 

precision. The number of iterations, the 

maximum allowed error, and computational time 

are presented in Table 1, where N and t are the 

average number of iterations and running time of 

the corresponding method, respectively.  

 

 

 
Figure 6. Comparison of the hybrid strategy output with the 

real IP trajectory. The chewing pattern was obtained from 

subject No. 2. 

 

As shown in Table 1, faster computational 

performance was achieved with the second-order 

hybrid strategy (SOH) for relatively low levels of 

accuracy (e.g., 10−3m) and the third-order hybrid 

strategy (TOH) for relatively high levels of 

accuracy. These two hybrid strategies (i.e., SOH 

and TOH) showed a better performance than the 

Newton-Raphson method. Moreover, with TOH 

strategy, the number of iterations, as well as the 

running time, decreased, regardless of the level of 

accuracy.  

 

Table 1. Comparison of various iterative methods 

TOH** strategy SOH* strategy Newton-Rophson method Stop criteria Precision level 

N=1.3339 N=1.4052 N=4.7391 
10−3 1 

t=0.5919(sec) t=0.51 (sec) t=1.874 (sec) 

N=2.8748 N=3.9565 N=6.24 
10−6 2 

t=1.2495 (sec) t=1.404 (sec) t=2.679 (sec) 

N=3.6626 N=5.4904 N=8.1391 
10−10 3 

t=1.6114 (sec) t=1.937(sec) t=2.883 (sec) 

N=5.3687 N=7.6365 N=10.2487 
10−15 4 

t=2.3293 (sec) t=2.692 (sec) t=3.65 (sec) 

* SOH: Second-order hybrid strategy, ** TOH: Third-order hybrid strategy. SOH strategy is the hybrid strategy, while TOH 

strategy is the improved hybrid method. 

 

Table 2 shows the percentage of improvements in 

computational time and number of iterations. For 

all precision levels, the hybrid strategies showed 

significant performance improvements, compared 

to the conventional Newton-Raphson method. 

For higher levels of accuracy, TOH strategy 

showed better time performance and fewer 

iterations, compared to SOH technique. 
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Table 2. The percentage of performance improvement in hybrid strategies versus the Newton-Raphson method 

 
TOH** SOH*   Stop criteria Precision level 

+255% +237% Improvement in N 10−3m 1 

+216% +267% Improvement in t 

 
+118% +58% Improvement in N 10−6m 2 

+114% +91% Improvement in t 

 

 +122% +48% Improvement in N 10−10m 3 

+78% +49% Improvement in t 

 
+90% +34% Improvement in N 10−15m 4 

+56% +36% Improvement in t 

* SOH: Second-order hybrid strategy, ** TOH: Third-order hybrid strategy 

 

4. Discussion 
In recent years, many efforts have been made 

to decrease the required time for solving the 

DKP of parallel robots. To address this issue, 

two types of approaches, namely analytical 

[42-43] and numerical approaches [21-26], 

have been introduced. In general, for real-time 

control and simulation, analytical approaches 

are unacceptable. Therefore, it seems 

necessary to develop methods, based on 

numerical approaches.  

By applying the proposed method, it was 

demonstrated that replacing the ordinary 

Newton-Raphson algorithm by its third-order 

counterpart could lead to a decline in the 

number of iterations (required to reach the 

desired accuracy level) and thus, reduce the 

DKP analysis time. By reducing the 

processing time allocated to solving DKP, 

more time could be devoted to control 

calculations. Therefore, more complicated 

control algorithms with better performances 

could be implemented. Moreover, this 

algorithm could be applied to any DKPs of 

parallel robots for obtaining near-exact 

solutions. It should be mentioned that direct 

kinematic approaches are commonly applied 

in simulation studies.  

The modified hybrid strategy provided a near-

exact solution for DKP and was 

computationally efficient. Specifically, the 

proposed method improved the accuracy of 

prediction, compared to the second-order 

hybrid strategy and the conventional Newton-

Raphson method. For relatively high levels of 

accuracy, the number of iterations and 

computational time decreased by 90% and 

56%, respectively, compared to the 

conventional Newton-Raphson method. Also, 

these parameters reduced by 56% and 20%, 

respectively in the proposed model, compared 

to the second-order hybrid strategy.  

 

5. Conclusion 
In this paper, we provided a framework for the 

development, analysis, and evaluation of a 

human-like mastication robot. We proposed 

the use of a general 6-UPS robot to simulate 

the human mastication process and presented 

solutions to IKP and DKP of the model. The 

DKP of parallel manipulators is usually 

complicated. In general, a closed-form 

solution cannot be proposed and often multiple 

solutions are offered. Therefore, we proposed 

an improved hybrid method, which was 

generated by combining the third-order 

Newton–Raphson method and MLPANN. In 

this method, MLPANN was used to determine 

the initial guess for the Newton-Raphson 

method. The results showed that the muscular 

actuations show periodic behaviors and the 

maximum length variation of the temporalis 

muscle is larger than that of masseter and 

pterygoid muscles. 
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This paper contributes to the literature by 

proposing the use of a general 6-UPS model as 

the masticatory system and applying vector 

algebra to obtain its direct and inverse 

kinematic formulations. Consequently, the 

closed-form equations of IKP were obtained, 

and an improved hybrid method was proposed, 

which combined the third-order Newton-

Raphson method with MLPANN to obtain 

near-exact solutions with high accuracies and 

low computational time. 
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