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 In this research, softening and ratcheting behavior of SS304L thin-walled shells under cyclic pure 
bending load were investigated. Experimental tests were carried out by a servo-hydraulic INSTRON 
8802 machine under force-control and displacement-control conditions and the effect of different 
parameters such as mean force, force amplitude, length of the shells existence and position of cutout 
were examined. Under displacement-control loading, softening behavior was observed and under force-
control loading with non-zero mean force, accumulation of plastic deformation or ratcheting phenomena 
occurred. Based on experimental results, linear relation was observed between plastic energy and rate of 
plastic deformation, which shows the rigidity of fixtures used in the experimental tests. It was observed 
that increase of the force amplitude was accompanied by an increase in maximum force and plastic 
deformation. Also, analyzing the existence of cutout, ratcheting displacement of cylindrical shells with 
cutout in the middle of shell is higher than that of the shell without cutout and crack propagation 
occurred in this area. Under displacement-control loading, reaction of thin-walled shells under cyclic 
pure bending load is divided into four areas, incubation, transition, steady-state and crack propagation. 
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Fig.1 Test machine with fixture  
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Fig.2 designed fixture in order to making pure bending 
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Fig.3 stress-strain curve for SS304 

3 SS304 

1   
Table 1 Mechanical property of specimens 
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Fig.4 Converting tensile-compact load into pure bending load by 
fixture  
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Fig.5 Load-displacement hysteresis loops curve 
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1 Transient point 
2 Transient ratcheting 
3 Continuous ratcheting 

  
Fig.6 Ratcheting displacement vs. number of cycles for cylindrical 
shells with different mean forces and force amplitude 1.4kN under pure 
bending 
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Fig.7 Ratcheting bending vs. number of cycles with mean force 0.1kN 
and different force amplitudes 
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Fig.8 Ratcheting displacement rate vs. number of cycles for cylindrical 
shells under pure bending with different mean forces 
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Fig.9 Plastic energy vs. number of cycles for cylindrical shells with 
different mean forces and force amplitude 1.4kN under pure bending 
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Fig.10 Plastic energy vs. ratcheting displacement rate 
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Fig.11 Circular cutout at the middle of cylindrical shells  
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Fig.12 failure of specimen from location of cutout 

12   

  
 

 .0.3kN 
1.4kN  .

 .

50 14 . 

      
  

 13 14  
 

 [18]. 

4 -1-6-  
  

 280mm650mm 
  0.3kN 1.4kN 

 .15 
   .

  .

 
   

4 -1-7- 
  

16 
 25mm32mm     

  
  

 25mm32mm 
  

 

  
Fig.13 ratcheting displacement vs. number of cycles for cylindrical 
shells with mean force 0.3kN and force amplitude 1.4kN with/without 
circular cutout under pure bending 
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Fig.14 Ratcheting displacement vs. number of cycles of cylindrical 
shells with the mean force 0.3kN and force amplitude 1.4kN with a 
cutout at quarter of bending length and without cutout under pure 
bending  
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Fig.15 Ratcheting displacement vs. number of cycles for cylindrical 
shells for mean force 0.3kN and force amplitude 1.4kN and the length 
280mm and 650mm 
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Fig.16 Ratcheting displacement vs. number of cycles of cylindrical 
shells with mean force 0.3kN and force amplitude 1.4kN and length 
280mm with different diameters 
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Fig.17 Force changes vs. number for displacement-control in different 
geometries 
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