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ABSTRACT 

In this study, an exact solution of the Navier-Stokes and energy equations is obtained for the problem of 
unsteady three-dimensional stagnation point flow and heat transfer of viscous, incompressible fluid on a flat 
plate. An external flow with strain rate / (1 )a at  impinges obliquely on the flat plate when the plate is 
assumed to be with transpiration. This flow consists of an irrotational stagnation-point flow (Hiemenz) and a 
tangential component. The relative importance of these two flows is measured by a parameter  . Appropriate 
similarity transformations are introduced, for the first time, to reduce the governing Navier-Stokes and energy 
equations to a coupled system of ordinary differential equations.

 
The fourth-order Runge-Kutta method along 

with a shooting technique is applied to numerically solve the ordinary differential equations. The results 
obtained from numerical procedure are presented and discussed for a wide range of parameters characterizing 
the problem. The results achieved reveal that the transpiration rate has a considerable effect on the 
distributions of velocity components, temperature and pressure. Moreover, it is shown that the main 
consequence of the free stream obliqueness is to move the stagnation point away from the origin of the 
coordinate system.  

 
Keywords: Exact solution; Similarity transformations; Obliqueness; Transpiration. 

NOMENCLATURE 

a  flow strain rate  
b  constant 

, ,f g h  similarity functions  

Pr  Prandtl number  
p  pressure  

S  dimensionless transpiration rate  
T  temperature  
t  time   

t  dimensionless time   
, ,u v w  velocity components near the plate in  x, y 

and z directions  
, ,u v w  dimensionless velocity components near 

the plate in x, y and z directions  
, ,U V W  potential region velocity components .in x, 

y and z directions 

0W   transpiration rate 

 

, ,x y z dimensionless Cartesian coordinates

 
  thermal diffusion   
  similarity variable 
  dynamic viscosity  

  dimensionless temperature  
  ratio of shear flow to normally 

impinging flow 
  velocity ratio  
  density  

  kinematic viscosity  
  surface shear stress   

,x y   shear stress components in x and 

directions  
0  stagnation point 
w  wall 
  infinite 
 

 

1. INTRODUCTION 

The study of stagnation flow and heat transfer of a 
viscous fluid in the vicinity of a plate or cylinder 

has been of considerable interest during the last 
decades. It is because of its great technical 
importance in many branches of industrial 
applications

 
such as drying of papers and films and 
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high-pressure washers. Nonlinearity of the Navier-
Stokes and energy equations has been always a 
technical problem for these equations to be solved. 
Hence, researches seek similarity methods to 
resolve this problem. By applying the similarity 
solution method, the Navier-Stokes and energy 
equations are reduced to ordinary differential 
equations which are much easier to numerically 
solve. There are some fundamental publications 
regarding the problem of stagnation flow in the 
vicinity of a body in the last years. 

The two-dimensional and axisymmetric three-
dimensional stagnation-point flows on a cylinder 
were firstly studied by Hiemenz (1911) and 
Homann (1936). Problem of stagnation flow against 
an axisymmetric flat plate was investigated by 
Howarth (1954) and Davey (1951). Afterwards, 
Chiam (1994), Mahapatra and Gupta (2002), Reza 
and Gupta (2005) along with Lok and Amin (2006) 
scrutinized the steady two-dimensional stagnation 
point flow of an incompressible viscous fluid over a 
flat deformable sheet. The sheet is stretched in its 
own plane with a velocity proportional to the 
distance from the stagnation point. The flow 
impinges on the wall either orthogonal or at an 
arbitrary angle of incidence. Also, Stuart (1959), 
Tamada (1979),  Niimi et al. (1981) and Dorrepaal 
et al. (1986) obtained an exact solution of the 
Navier-Stokes equations representing the problem 
of two-dimensional stagnation-point flow of an 
incompressible viscous fluid impinging obliquely 
on a plane rigid wall. Afterwards, in Laboropulu et 
al. (1996), the obliquely impinging flow on a wall 
with suction or blowing was solved. Some other 
papers studied the steady or unsteady three-
dimensional case of stagnation flow along with heat 
transfer on a flat plate. Firstly, unsteady three 
dimensional stagnation point flow was discussed by 
Cheng et al. (1971). In another research, Wang 
(1984) solved the three dimensional flow over a 
stretching flat surface. Devi et al. (1986) studied 
unsteady three dimensional boundary layer flows 
due to a stretching surface. Shokrgozar and Rahimi 
(2009) considered the three dimensional stagnation 
flow and heat transfer on a flat plat with 
transpiration. Besides, the problem of three 
dimensional boundary layer flows due to a 
permeable shrinking sheet was studied by Bachok 
(2010). The study of stagnation flow on a cylinder 
has been an interest of many researches so far. 
Gorla (1976, 1977, 1977, and 1978) in a series of 
papers studied the steady and unsteady stagnation 
flow and heat transfer in the vicinity of a circular 
cylinder for the cases of constant or axial 
movement. Furthermore, Axisymmetric and 
nonaxisymmetric stagnation-point flow and heat 
transfer of a viscous, incompressible fluid on a 
moving cylinder in different physical phenomena is 
the main subject of papers conducted by Saleh and 
Rahimi (2004) and Rahimi and Saleh (2007, 2008). 
They investigated the effects of different forms of 
axial and angular cylinder motion on velocity and 
temperature profiles. Stagnation point flow 
impinging obliquely on a cylinder has been; also, 
investigated by a number of authors.  Firstly, 
Weidman (1976) conducted an investigation for the 

case of axisymmetric stagnation flow impinging 
obliquely on circular cylinder.  After that, Rahimi 
and Esmaeilpour (2010) solved the problem of 
axisymmetric stagnation flow obliquely impinging 
on a moving circular cylinder with uniform 
transpiration. Also, Rahimi and Mossavinik (2007) 
studied axisymmetric stagnation point flow and heat 
transfer obliquely impinging on a rotating circular 
cylinder.  

In this study, the exact solution of Navier-Stokes 
and energy equations is intended to be obtained for 
the problem of unsteady three dimensional 
stagnation point flow and heat transfer of a viscous, 
incompressible fluid impinging obliquely on a flat 
plate. The problem is investigated in the vicinity of 
the plate in the presence of suction and blowing 
effects. An external flow impinges obliquely on the 
flat plate with strain rate / (1 )a at . This flow 
consists of irrotational stagnation point flow 
(Hiemenz) and a tangential component. The 
governing equations are reduced to a coupled 
system of ordinary differential equations by using 
appropriate similarity transformations introduced 
for the first time. These ordinary equations are 
solved using numerical techniques. Velocity 
profiles, surface stress tensors, pressure profiles and 
temperature profiles are presented for a wide range 
of characterizing parameters. 

2. PROBLEM FORMULATION  

The problem of unsteady three-dimensional 
stagnation-point flow and heat transfer of a viscous, 
incompressible fluid impinging obliquely on a flat 
plate is aimed to solve for the first time. In order to 
solve this problem, three-dimensional Cartesian 
coordinate system ( , , )x y z  with corresponding 

velocity components ( , , )u v w  is selected, as it is 
illustrated in Fig. 1. An external potential flow 
impinges on the plate with strain rate / (1 )a at . 
This flow consists of irrotational stagnation point 
and a uniform shear flow parallel to the surface. 
The relative importance of these two flows is 
measured by the parameter  . After impingement 
of the fluid on x-y plane, two separated regions are 
produced. These regions are the potential region 
and the region of rapid changes of velocity 
components in x and y directions. If the flow 
pattern on the plate is bounded from both sides in 
one of the directions, for example x-axis, because of 
some physical limitations, a difference between the 
values of x and y velocity components will be 
captured in the region of rapid changes. A 
parameter characterizing this situation is  , the 
coefficient indicating the ratio of x to y velocity 
components in potential region when the flow 
impinges on the plate normally. This parameter is 
defined between 0 and 1, 0 1  , Ref [3]. The 
flow will be the axisymmetric if 1   and will be 
considered the two-dimensional if 0  .  In such a 
situation, there is no velocity component in x-
direction. With the increase of   from 0 to 1, the 
problem crosses the line from two-dimensionality to 
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axisymmetric three-dimensionality.  

 
Fig. 1. Schematic of the problem. 

 
The Navier-Stokes and enefffrgy equations 
governing this problem are as follow. 
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                         (5) 

Where , , ,p     and T are the fluid pressure, 
density, kinematic viscosity, thermal diffusivity and 
temperature, respectively. It is worth noting that the 
dissipation terms of the energy equation are 
negligible at the stagnation region.  

3. SELF-SIMILAR SOLUTIONS 

3.1. Fluid Flow Solution  

The velocity components and pressure term gained 
by solving the governing equations (1-4) in the 
potential region are expressed as follow, [9], [10] 
and [12], 

1 1

a x b z
U

at at


 

 
     (6) 

1

a y
V

at



               (7) 

0(1 )

1

a z W
W
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  



                                  (8) 

2
2 2

0 2

2 2
0

(1 )
[ ( )

2(1 )

( )]          ,0 1

a
P P x z

at

a y W bx a z
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 




  


    

      (9) 

Where 0,a p and 0W are a constant used in the 

strain rate relation, the stagnation pressure and the 
transpiration rate in z direction. Besides, b  is a 
constant indicating the importance of shear flow to 
irrotational stagnation flow. Moreover,   is a 
coefficient being the aspect ratio of potential 
velocity components in x  to y directions when the 
flow impinges on the plate along z-direction. This 
parameter is defined between 0 and 1, as it was 
explained in section 2. The solution of the 
governing Navier-Stokes and energy equations (1-
5) in the viscous region close to the plate must 
approach the solution of the outer inviscid flow. A 
reduction of the governing equations to ordinary 
differential equations in viscous region is 
accomplished by using suitably introduced new 
similarity transformations as bellow,  

1

z
a

at
 


                                      (10) 

( ) ( )

1 1

ax f b h
u a

at at

  


 
 

    (11) 

[ ( ) ( )]

1

a y f g
v

at

  



     (12) 

0(1 ) ( ) ( )
1

a W
w f g

at a


  



 
       

        (13) 

In the above relations,  is the similarity variable, 

the terms ( ), ( )f g   and ( )h   are similarity 
function which appear in similarity solution and the 
prime denotes differentiation with respect to η. 
Moreover, t  is the time which must be in the range 

of
1

t
a

    , mathematically. It is worth noting 

that for the case of normally impinging flow 0b   
with constant strain rate a , the similarity 
transformations introduced in (10) to (13) become 
similar to those obtained in Shokrgozar and Rahimi 
(2009). 

Inserting the similarity transformations (10) to (13) 
into the governing equations (1) to (4) causes the 
Continuity equation to be satisfied, automatically, 
and gives a coupled system of ordinary differential 
equations reduced from x-momentum and y-
momentum and, also, an expression for the 
pressure, obtained by integrating Eq. (4) in z-
direction, as follow, 

 
2

1
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2

1 0

f f f g S f

f f

 

 
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     
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 
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In which, 
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In the above equations, S is the dimensionless 
transpiration rate and is defined as,  

0W
S

a
      (19) 

Note that 0S  corresponds to suction into the 
plate and 0S  refers to blowing out of it.   

The needed boundary conditions for solving the set 
of similarity equations (14) to (16) are,  

0 :  0,   0,  0,  0,  0f f g g h             (20)  

 : 1,  1,  0f h g              (21) 

3.2. Heat Transfer Solution  

To transform the energy equation into a 
dimensionless, similarity form for the case of 
defined wall temperature, we introduce 

( )

w

T T

T T

 







     (22) 

In which, T is the free stream temperature and 

wT is the wall temperature. Making use of similarity 

transformations (10) to (13) and (22), the energy 
equation is written as 

1
Pr (1 ) 0

2
f g S           

 
    (23)  

Where Pr is the Prandtl number and is defined 
as, 

Pr   



          (24) 

The boundary conditions needed to solve the 
equation (23) are as follow, 

0 :  1            (25) 

:  0         (26) 

Besides, the heat loss per area from the plate can be 
obtained by using the following relation,  

1 2
1 2

1
( ) ( ) (0)

(1 )
w

dT a
Q k k T T

d t


     


 

   (27) 

A finite difference procedure including tri-diagonal 
matrix algorithm (TDMA) is used to discretize the 
governing equations (14) to (18) and (23) 
describing the sets of laws. Also, the fourth-order  
Runge-Kutta  method  of  integration  along  with  a  
shooting  method is applied to numerically solve the 
governing equations. The numerical procedure is 
repeated until the difference between the results of 
two repeated sequences of each of the equations 
becomes less than 0.00001.   

The results are presented for different values of 
, ,S  and Pr numbers in section 4. 

3.3. Shear Stress 

The shear stress on z=0 plane is achieved by using 
the following relation, 

0
x y

z

u v
e e e ex y x yz z

   


        

         (28) 

By using the similarity transformations introduced 
in relations (10) to (12), the shear stress 
components at the wall become, 

3/2
0

1(1 ) z

u xf h
x z tt

   


  
      

    

     (29) 

3/2

( )

(1 ) 0

v y f g
y z t z

  
   

       
      (30) 

There are some dimensionless parameters used in 
(29) and (30) equations. These parameters are 
defined as follow,           

,     ,     ,     
b a a

x x y y t at
a


  

         (31) 

In which, ,x y and t are dimensionless forms of 
coordinates ,x y  and time. Moreover,  is the 
dynamic viscosity. Besides,  is the parameter 
indicating the relative importance between the 
normally impinging flow and the uniform shear 
flow parallel to the surface. If 0  , the shear 
flow is negligible and in the case of    , the 
flow includes only shear flow. 

In an obliquely impinging flow, the obliqueness 
causes the stagnation point to be shifted toward the 
incoming flow in x-direction. In order to calculate 
the position of the stagnation point in an obliquely 
stagnation flow, equation (32) is introduced. In this 
equation, sx is the distance between the origin of 

the coordinate system and the location of the 
stagnation point.  
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1 2(0)
(1 )

(0)s
h

x t
f

 
  


    (32) 

4. PRESENTATION OF RESULTS 

In this section, the results achieved by numerically 
solving the coupled system of self-similar equations 
(14) to (18) and (23) will be presented.   

 

 
(a) 

 
(b) 
Fig. 2. Distributions of 'f  profiles for different 

values of S  parameter when (a) 0.1   and 
(b) 0.9  . 

 

As we know, S parameter represents the suction 

into the plate  0S   or blowing out of it  0S  . 

Here, the effects of transpiration rate S  on 
dimensionless velocity profiles in x and y directions 
are presented for three dimensional cases, defined 
with 0.1  and 0.9  , in Figs. 2 and 3. 
According to these two figures, the thickness of the 
viscous layer in the region close to the plate is 
higher for negative values of S  compared to that 
when 0S  . Moreover, it is clear from (a) and (b) 
parts of these figures that as the stagnation flow 
patterns approach the axisymmetric case, 0.9  , 
the viscous layer thickness decreases and the 
amount of velocity components increases at any 
specified values of S and . Furthermore, 
distributions of the velocity component in z-
direction along with ( )f  and ( )g  functions are 
illustrated in figure (4) in terms of selected values 

of S and  parameters. As it is shown in this figure, 
the more the amount of S , the more the value of 

( )f   and, also, the absolute value of w-component 
will be in all three dimensional cases. Besides, it is 
revealed that the influence of suction or blowing 
intensity on ( )g  distributions is more considerable 

when 0  . 
 

 
(a) 

 
(b) 

Fig. 3. Distributions of ' 'f g  profiles for 

different values of S  parameter when (a) 
0.1   and (b) 0.9   

 

In figure (5), the variations of ( )h   function with 

respect to   for different values of S  and   
parameters are illustrated. It can be found out from 
this figure that with enhancement of suction intensity, 
the value of ( )h   function increases as well.  

The pressure profiles inside the boundary layer are 
depicted in Fig. 6 for different values of 

transpiration rate S  and velocity ratio  . As it is 

captured, the increase in the value of S  parameter 
from -1 to 2 causes the pressure gradients to 
increase in the region close to the plate. This 
phenomenon brings about the increase in the 
absolute value of pressure at any specified values of 
 . Also comparing the results in parts (a) and (b) 
of this figure reveals the important note that the 
pressure gradients in the vicinity of the plate are 
more considerable for higher value of  , 0.9   
for instance. 
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Fig. 4. Distributions of w-component of 

velocity, ( )f  and ( )g   functions for different 

values of S  parameter when (a) 0.1   and 
(b) 0.9  . 

 

Dimensionless temperature distributions versus   

in terms of different values of S  parameter and 
selected values of Pr number are depicted in Fig. 7 
for 0.1   and in Fig. 8 for 0.9  .  As it can be 
found out from these two figures, the increase of S  
parameter from -1.0 to 2.0 brings about the decrease 
in the thermal boundary layer thickness and 
increase in the temperature gradient in the region 
near the wall at any fixed values of   and Pr 
numbers. It is worth noting that when the fluid is 
blown out of the plate, the temperature gradient 
near the plate tends to zero especially for fluids with 
a high Pr number. It means that there is no 
considerable heat transfer between the plate and 
fluid in such a situation. The obtained results also 
revealed that the increase of Pr number results in 
decrease in the thermal boundary layer thickness at 
any value of  , as expected.  

As it was mentioned before,   is a parameter being 
the ratio of the strength of outer shear flow to the 
outer normally impinging flow. In Figs. 9 to 12, 
sample forms of streamlines are presented for 
different values of   parameter when 

0.0,  =0.5S   . These streamlines are obtained by 
using the computed velocity components and are 
illustrated in the x   plane when 0y  . Fig. 9 
shows the obtained streamlines for the case of 

0  . As it can be noticed in Figs. 10 and 11, the 
flow pattern is inclined to the left-hand side for 
positive values of  . The more the   parameter, 
 

 

 
Fig. 5. Distributions of ( )h   profiles for different 

values of S  parameter when (a) 0.1   and 
(b) 0.9  . 

 

 

 
Fig. 6. Distributions of pressure profiles for 
different values of S  parameter when (a) 

0.1   and (b) 0.9  . 

(a) (a) 

(a) 

(b) (b) 

(b) 
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          (a) 

 
    (b) 

Fig. 7. Distributions of dimensionless 
temperature profiles for 0.1  and different 
values of S  parameter when (a) Pr 0.5  and 

(b) Pr 2.0 . 
 

the more deviation with respect to normal direction 
on the plate is captured for streamlines. Another 
considerable point in these two figures is that with 
increase of   parameter, the distance between the 
stagnation point position and the origin of the 
coordinate system enhances. Moreover, Fig. 12 
reveals that for negative value of  , the streamlines 
are deviated to the right-hand side.       

Next, the distributions of shear stress components in 
x and y directions are shown in Figs. 13 and 14 for 

0.0   and 1.0  , respectively, and in terms of 
different values of transpiration rate S  and velocity 
ratio  . According to these two figures, the shear 
stress component in y-direction is independent of 
  and   parameters; however, the increase of the 
value of S  number causes this component to 
enhance. Besides, as it is captured in Figs. 13 and 
14, the x-component of the shear stress increases as 
the flow pattern crosses the line from two-
dimensionality towards the axisymmetric three-
dimensionality. Another important note is that the 
more the value of  , the more the amount of shear 
stress component in x-direction will be at any value 
of  .     

 
        (a) 

 
       (b) 

Fig. 8. Distributions of dimensionless 
temperature profiles for 0.9  and different 
values of S  parameter when (a) Pr 0.5  and 

(b) Pr 2.0 . 

 
In the next three figures, the influences of 
transpiration rate S along with   and   numbers 
on the position of the stagnation point are 
investigated. As it is clear in these figures, the 
increase of   parameter causes the stagnation point 
to be shifted away from the origin of the coordinate 
system at any fixed value of transpiration rate 
S and velocity ratio  . Moreover, it is revealed that 
in an obliquely impinging flow, the stagnation point 
is less displaced when the fluid is sucked into the 

plate  0S   in comparison with the situation 

 

 where the fluid is blown out of the plate  0S  . 

Another interesting point is that as the flow patterns 
move toward the axisymmetric case  1.0  , the 

stagnation point becomes closer to the origin at any 
amount of transpiration rate. This phenomenon is 
more noticeable in high values of   parameter.    

With the enhancement of Pr number, the 
temperature gradient increases in the region close to 
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the wall. This fact is intended to be shown in Fig. 
18 for selected values of  parameters when 0.1S  . 
This figure illustrates that there is a considerably 
more heat transfer between the plate and fluids with 
high Pr number compared to the fluids with low Pr 
number. Moreover, as it is captured, increase of the 
velocity ratio   results in increase of the 
dimensionless temperature gradient at 0.0  .  

1. CONCLUSION 

In this paper, the unsteady three dimensional 
stagnation-point flow and heat transfer of a viscous, 
incompressible fluid yet obliquely impinging on a 

 
Fig. 9. Streamlines in x   plane for the case of 

0.0   when 0.5,  S=0.0  . 

 
Fig. 10. Streamlines in x   plane for the case 

of 1.0   when 0.5,  S=0.0  . 

 
flat plate with transpiration was investigated. By 
using firstly introduced similarity transformations, 
an exact solution of the governing Navier-Stokes 
and energy equations was obtained when an 
unsteady external flow with strain rate 

/ (1 )a at impinges obliquely on the flat plate. This 
flow consists of stagnation-point flow (Hiemenz) 
and a tangential component. The relative 
importance of these two flows is measured by a 
parameter  . The obtained results were presented 
for a wide range of parameters characterizing the 
problem. The results revealed that the transpiration 

         

Fig. 11. Streamlines in x   plane for the case 

of 3.0   when 0.5,  S=0.0  . 

 

 
Fig. 12. Streamlines in x   plane for the case 

of 2.0    when 0.5,  S=0.0  . 

 
 

 
Fig. 13. Distributions of shear stress components 
in x and y directions in terms of different values 

of   and S  parameters when 0.0  . 
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Fig. 14. Distributions of shear stress components 
in x and y directions in terms of different values 

of   and S  parameters when 1.0  . 

 

 
 

Fig. 15. Stagnation point position for different 
values of  and   parameters when 1.0S   . 

 

 
Fig. 16. Stagnation point position for different 
values of  and   parameters when 0.0S  . 

 
rate S has a great influence on distributions of 
velocity components, temperature and pressure. 

Moreover, it was shown that   and   parameters 
have no effect on the amount of y-component shear 
stress, however, increase of the value of these two 

 
Fig. 17. Stagnation point position for different 
values of  and   parameters when 2.0S  . 

 

 
Fig. 18. Dimensionless temperature gradient 
distributions at 0.0  versus Pr number in 

terms of selected values of  parameter when 
0.1S   

parameters causes the value of shear stress 
component in x-direction to enhance. It was also 
shown that the main consequence of the free stream 
obliqueness is to shift the location of the stagnation 
point towards the incoming flow.  

2. REFERENCES   

Davey, A. (1951). Boundary Layer Flow at a 
Saddle Point of Attachment. Journal of Fluid 
Mechanics 63, 593-610. 

Shokrgozar, A. and A. B. Rahimi (2009). Three-
Dimensional Stagnation Flow and Heat 
Transfer on a Flat Plate with Transpiration. 
Journal of Thermophysics and Heat transfer 
23, 513-521. 

Rahimi, A. B. and M. Esmaeilpour (2010). 
Axisymmetric Stagnation Flow Obliquely 
Impinging on a Moving Circular Cylinder with 
Uniform Transpiration. International Journal 
for Numerical Methods in Fluid 65, 1084-
1095. 



M. H. Haddad Sabzevar et al. / JAFM, Vol. 9, No. 2, pp. 925-934, 2016.  
 

934 

Rahimi, A. B. and R. Saleh (2007). Axisymmetric 
Stagnation-Point Flow and Heat Transfer of a 
Viscous Fluid on a Rotating Cylinder with 
Time-Dependent Angular Velocity and 
Uniform Transpiration. Journal of Fluid 
Engineering 129, 106-115. 

Rahimi, A. B. and R. Saleh (2008). Similarity 
Solution of Unaxisymmetric Heat Transfer in 
Stagnation-Point Flow on a Cylinder with 
Simultaneous Axial and Rotational 
Movements. Journal of Heat Transfer 130(5), 
054502.1-054502.5. 

Rahimi, A. B. and V. Mossavinik (2007). 
Axisymmetric Stagnation-Point Flow and Heat 
Transfer Obliquely Impinging on a Rotating 
Circular Cylinder. International Journal of 
Engineering 20, 67-82. 

Devi, D. S., H. S. Takhar and G. Nath (1986). 
Unsteady Three Dimensional Boundary Layer 
Flow due to Stretching Surface. International 
Journal of Heat and Mass Transfer 29, 1996-
1999. 

Cheng, E. H., M. N. Ozisik and J. C. Williams 
(1971). Nonsteady Three-Dimensional 
Stagnation-Point Flow. Journal of Applied 
Mechanic 38, 282-287. 

Laboropulu, F., J. M. Dorrepaal and O. P. Chandna 
(1996). Oblique Flow Impinging on a Wall 
with Suction and Blowing. Acta Mech, 163, 
15-25. 

Homman, F. Z. (1936). Der  EINFLUSS 
GROSSER Zanhighkeit bei der strmung um 
den Zylinder und um die Kungel. Zeitschrift 
fuer angewandte Mathematik und Mechanik 
16(3), 153–164. 

Niimi, H., M. Minamiyama and S. Hanai (1981). 
Steady Axisymmetrical Stagnation-Point Flow 
Impinging obliquely on a wall. Journal of The 
physical Society of Japan 50, 7-8. 

Dorrepaal, J. M. (1986). An Exact Solution of The 
Navier-Stokes Equation Which Describes Non-
Orthogonal Stagnation Point Flow in Two 
Dimensions. Journal of Fluid Mechanic 163, 
141-147. 

Stuart, J. T. (1959). The Viscous Flow near a 
Stagnation Point when the External Flow has 
Uniform Vorticity. Journal of Aerospace 
Science 26, 124-125. 

Hiemenz, K. (1911). Boundary Layer for a 
Homogeneous Flow around a Dropping 
Cylinder. Dinglers Polytechnuc Journal 326, 
321-324. 

Tamada, K. (1979). Two-Dimensional Stagnation 
Point Flow Impinging Obliquely on a plane 
wall. Journal of The physical Society of Japan 
46(1), 310-311. 

Howarth, L. (1954). The Boundary Layer in Three-

Dimensional Flow, Part ΙΙ: The Flow near 
Stagnation Point. Philosophical Magazine 42, 
1433–1440. 

Reza, M. and A. S. Gupta (2005). Steady Two-
Dimensional Oblique Stagnation-Point Flow 
towards a Stretching surface. Journal of Fluid 
Dynamics Research 37, 334-340. 

Bachok, N., A. Ishak and I. Pop (2010). Unsteady 
Three-Dimensional Boundary Layer Flow due 
to Shirinking sheet. Applied Mathematics and 
Mechanics 31, 1421-1428. 

Weidman, P. D. and V. Putkaradze (1976). 
Axisymmetric Stagnation Flow Obliquely 
Impinging on a Circular Cylinder. European 
Journal of Engineering 32, 541-553. 

Saleh, R. and A. B. Rahimi (2004). Axisymmetric 
Stagnation-Point Flow and Heat Transfer of a 
Viscous Fluid on a Moving Cylinder with 
Time-Dependent Axial Velocity and Uniform 
Transpiration. Journal of Fluid Engineering 
12, 997-1005. 

Gorla, R. S. R. (1976). Heat Transfer in an 
Axisymmetric Stagnation Flow on a Cylinder, 
Applied Science Research 32, 541-553. 

Gorla, R. S. R. (1977). Unsteady Laminar 
Axisymmetric Stagnation Flow over a Circular 
Cylinder. Developments in Mechanics 9, 286-
288. 

Gorla, R. S. R. (1978). Nonsimilar Axisymmetric 
Stagnation Flow on a moving Cylinder. 
International Journal of Engineering Science 
16, 392-400. 

Gorla, R. S. R. (1978). Transient response behavior 
of an Axisymmetric Stagnation Flow on a 
Circular Cylinder Due to time-dependent free 
stream velocity. Letters in Applied Engineering 
Science 16, 493-502. 

Gorla, R. S. R. (1979). Unsteady Viscous Flow in 
the Vicinity of an Axisymmetric Stagnation-
Point on a Cylinder. International Journal of 
Engineering Science 17, 87-93. 

Chiam, T. M. (1994). Stagnation Point Flow 
towards a Stretching Plate. Journal of The 
physical Society of Japan 63(6), 2441-2444. 

Mahapatra, T. R. and A. S. Gupta (2002). Heat 
Transfer in Stagnation-Point Flow towards a 
Stretching sheet. Heat and mass Transfer 38, 
517-521. 

Wang, V. (1984). The Three Dimensional Flow 
Due to a Stretching Flat Surface. Physics of 
Fluids 27, 1915-1917. 

Lok, Y. Y. and N. Amin (2006). Non-Orthogonal 
Stagnation Point Flow towards a Stretching 
Sheet. International Journal of Non-Linear 
Mechanics 41, 622-627. 

 


