Three new [3-NO $\left.\mathbf{N}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right] \mathbf{P}(\mathrm{O})\left[\mathrm{NRR}^{\prime}\right]_{2}\left(\mathrm{NRR}^{\prime}=\mathbf{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)\right.$, $\left.\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O} \& \mathrm{NC}_{5} \mathrm{H}_{9}-4-\mathrm{CH}_{3}\right)$ phosphoric triamide structures

Shadi Derakhshan-Rad ${ }^{1}$, Mehrdad Pourayoubi ${ }^{1}$, Vahid Rezaei Yazdan-Abad ${ }^{1}$, Václav Eigner ${ }^{2}$, Michal Dušek ${ }^{2}$
${ }^{1}$ Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{2}$ Institute of Physics AS CR, v.v.i., Na Slovance 218221 Prague 8, Czech Republic

Abstract

In this work, we report on the synthesis, spectroscopic characterization and X-ray crystal structure determination of three new [3-NO $\left.\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right] P(O)\left[\mathrm{NRR}^{\prime}\right]_{2} \quad\left[\mathrm{NRR}^{\prime}=\mathrm{N}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)\left(\mathrm{C}_{6} \mathrm{H}_{1 I}\right)\right.$ (1), $\mathrm{NC}_{4} \mathrm{H}_{8} \mathrm{O}$ (2) and $\mathrm{NC}_{5} \mathrm{H}_{9}-4-\mathrm{CH}_{3}$ (3)] phosphoric triamides. In all three compounds, the $P-N_{C P}$ bond length ($N_{C P}$ is the nitrogen atom of the $C(O) N H P(O)$ segment) is longer than the two other $P-N$ bond lengths, because of the resonance interaction of the $N_{C P}$ lone pair with the π system of $C=O$ group that causes a partial multiple bond character in $C-N_{C P}\left(\right.$ the $C-N_{C P}$ bond length is shorter than the other $C-N$ bond lengths in each structure). The $O P N_{C P}$ angle is less than the two OPN angles. All of the compounds are aggregated as centrosymmetric dimers via pairs of intermolecular $N_{C P}-H \ldots O=P$ hydrogen bonds.

Keywords: Phosphoric triamide, Hydrogen bond, Structural feature, X-Ray crystallography.

1. INTRODUCTION

The chemistry of phosphoramides has been developed recently due to their biological activity [1] and complexation reactions [2]. In this paper, we synthesized three new compounds of this family (containing a $[\mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H})] \mathrm{P}(\mathrm{O})[\mathrm{N}]_{2}$ segment) as well as spectroscopic characterization and X-ray crystallography investigation.

2. EXPERIMENTAL

2.1. Syntheses

The reagent $\left[3-\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right] \mathrm{NHP}(\mathrm{O}) \mathrm{Cl}_{2}$ was prepared according to the schematic procedure shown in Scheme 1, according to the literature method described for the synthesis of [4- $\left.\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right] \mathrm{NHP}(\mathrm{O}) \mathrm{Cl}_{2}$ [3], by using of 3- NO_{2} $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$ instead of 4- $\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}$.

Scheme 1. Schematic procedure for [3-NO $\left.\mathrm{N}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O})\right] \mathrm{NHP}(\mathrm{O}) \mathrm{Cl}_{2}$

2.1.1. Synthesis of (1)

To a solution of [3-NO $\left.\mathrm{NO}_{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{NH}\right] \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}(2 \mathrm{mmol})$ in dry acetonitrile, a solution of N-ethylcyclohexylamine (4 mmol) and triethylamine (4 mmol) in the same solvent was added at 273 K under stirring. After 4 h , the solvent was evaporated and the solid obtained was washed with distilled water. Single crystals were obtained from a mixture of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{7} \mathrm{H}_{16}(5: 1 \mathrm{v} / \mathrm{v})$ by slow evaporation at room temperature. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3104,2935,2859,1674,1535,1455$, 1348, 1268, 1199, 1121, 1028, 989, 854. Selected crystal data: Triclinic, $P-1, a=8.3499(3) \AA, b=10.6515(4) \AA, c=$ 14.5012(5) $\AA, \beta=93.042(3)^{\circ}, Z=2, V=1197.21(8) \AA^{3}$, Mo $K \alpha$ Radiation, $\mu=0.15 \mathrm{~mm}^{-1}, T=120 \mathrm{~K}, 0.79 \times 0.55 \times 0.43 \mathrm{~mm}$,

Page 1
$R_{\text {int }}=0.022, R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.035, w R\left(F^{2}\right)=0.104, S=1.560$, Reflections $=5490$, Parameters $=292$, Restraints $=0$, $\Delta \rho_{\text {max }}=0.28$ e $\AA^{-3}, \Delta \rho_{\text {min }}=-0.31 \mathrm{e} \AA^{-3}$.

2.1.2. Synthesis of (2)

Compound (2) was obtained in a similar procedure to (1), but by using morpholine instead of N ethylcyclohexylamine. Single crystals were obtained from a mixture of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{7} \mathrm{H}_{16}(5: 1 \mathrm{v} / \mathrm{v})$ by slow evaporation at room temperature. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3084, 2969, 2891, 2852, 1681, 1614, 1532, 1489, 1446, 1353, 1265, 1194, 1118, 970, 868. Selected crystal data: Monoclinic, $P 2{ }_{1} / n, a=10.4702(6) \AA, b=16.9847(7) \AA, c=10.7105(6) \AA, \beta=110.901(5)^{\circ}, Z=$ $4, V=1779.35(17) \AA^{3}$, Mo $K \alpha$ Radiation, $\mu=0.2 \mathrm{~mm}^{-1}, T=120 \mathrm{~K}, 0.9 \times 0.71 \times 0.49 \mathrm{~mm}, R_{\text {int }}=0.020, R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=$ $0.040, w R\left(F^{2}\right)=0.119, S=1.810$, Reflections $=4097$, Parameters $=251$, Restraints $=4, \Delta \rho_{\max }=0.36 \mathrm{e} \AA^{-3}, \Delta \rho_{\min }=-0.34 \mathrm{e}$ \AA^{-3}.

2.1.3. Synthesis of (3)

Compound (3) was obtained in a similar procedure to (1), but by using 4-methylpipiridine instead of N ethylcyclohexylamine. Single crystals were obtained from a mixture of $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{C}_{7} \mathrm{H}_{16}(5: 1 \mathrm{v} / \mathrm{v})$ by slow evaporation at room temperature. IR (KBr, cm^{-1}): 3090, 2920, 2855, 1685, 1618, 1535, 1472, 1355, 1265, 1197, 1093, 917, 817, 734. Selected crystal data: Monoclinic, $C 2 / c, a=18.8320(8) \AA, b=8.4148(3) \AA, c=26.6633(11) \AA, \beta=94.844(3)^{\circ}, Z=8, V=$ $4210.2(3) \AA^{3}$, Mo $K \alpha$ Radiation, $\mu=0.16 \mathrm{~mm}^{-1}, T=120 \mathrm{~K}, 0.66 \times 0.43 \times 0.27 \mathrm{~mm}, R_{\text {int }}=0.023, R\left[F^{2}>3 \sigma\left(F^{2}\right)\right]=0.035$, $w R\left(F^{2}\right)=0.107, S=1.640$, Reflections $=4903$, Parameters $=256$, Restraints $=1, \Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}, \Delta \rho_{\text {min }}=-0.35 \mathrm{e} \AA^{-3}$.

(1)

(2)

(3)

Scheme 2. Chemical structures of 1 - 3

3. DISCUSSION

Single crystals of compounds 1-3 were obtained from a solution of methanol and 1-heptane after slow evaporation at room temperature. Selected bond lengths and angles are given in Table 1 and Hydrogen bonding data are listed in Table 2. The molecular structures of compounds are shown in Fig. 1.

(1)

(2)

(3)

Fig 1. Displacement ellipsoid plots (50\% probability) of structures (1) - (3) showing the atom-numbering schemes. H atoms are drawn as spheres of arbitrary radii.

The phosphorus atoms in the structures $1-3$ have a distorted tetrahedral configuration. For a typical example, in compound 1 the minimum and maximum values of bond angles at the phosphorus atoms are $104.32(5)^{\circ}[\angle \mathrm{N} 10-\mathrm{P} 1-\mathrm{N} 19]$ and $117.67(6)^{\circ}$ [$\left.\angle \mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 10\right]$, respectively. In all structures, the phosphoryl and the NH groups are syn with respect to each other, Fig. 1. The nitrogen atoms adopt a practically planar environment, which are reflected in the bond angles around the nitrogen atom. For example, in compound 1 the bond angles $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4, \mathrm{C} 2-\mathrm{N} 1-\mathrm{P} 1$ and $\mathrm{C} 4-\mathrm{N} 1-\mathrm{P} 1$ are $117.26(10), 117.25(7)$ and $125.35(8)^{\circ}$, respectively. Similar results were obtained for compounds 2 and 3. These results confirm the $s p^{2}$ hybridization states for the nitrogen atoms.

In compound 1 , the $\mathrm{P} 1-\mathrm{N} 19$ bond length $(1.6950(12) \AA$) is longer than the $\mathrm{P} 1-\mathrm{N} 1$ and $\mathrm{P} 1-\mathrm{N} 10$ bond lengths (1.6367(11) \AA and $1.6355(11) \AA$, respectively) due to the resonance interaction of the N19 nitrogen lone pair with the π system of $\mathrm{C}=\mathrm{O}$ group that causes a partial multiple-bond character in N19-C20 (Table 1). Similar results were obtained for the phosphorus-nitrogen bond lengths for the other compounds.

(1)

(2)

(3)

Fig. 2. Views of the centrosymmetric dimers in structures (1)-(3), produced by pairs of $N-H \ldots O=P$ hydrogen bonds.
In the structures of $1-3$, pairs of $\mathrm{N}_{\mathrm{CP}}-\mathrm{H} \ldots \mathrm{O}=\mathrm{P}$ hydrogen bonds (Table 2) form centrosymmetric dimers as $R_{2}^{2}(8)$ ring motif (Fig. 2).

4. ACKNOWLEDGMENTS

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

5. REFERENCES

[1] Domínguez, M. J., Sanmartín, C., Font, M., Palop, J. A., San Francisco, S., Urrutia, O., Houdusse, F. \& García-Mina, J. M. (2008). J. Agric.Food Chem. 56, 3721-3731.
[2] Saneei, A., Pourayoubi, M., Crochet, A. \& Fromm, K. (2016). Acta Cryst. C72, 230-233.
[3] Sabbaghi, F., Rostami Chaijan, M., \& Pourayoubi, M. (2010). Acta Cryst. E66, o1754.

Page 3

Table 1 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for compounds $1-3$.
(1)

$\mathrm{P} 1-\mathrm{O} 1$	$1.4817(9)$
$\mathrm{P} 1-\mathrm{N} 1$	$1.6367(11)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 1$	$109.25(5)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 10$	$117.67(6)$
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 19$	$104.73(5)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 4$	$117.26(10)$
$\mathrm{P} 1-\mathrm{N} 1-\mathrm{C} 4$	$125.35(8)$

(2)

P1a-O1a	1.482(7)	P1b-O1b	1.475(8)
P1a-N1	$1.6309(13)$	P1b-N1	1.6336 (14)
P1a-N13	1.6935(18)	P1b-N13	1.695(2)
P1a-N7a	1.627(3)	P1b-N7b	1.631(3)
O1a-P1a-N1	112.8(3)	O1b-P1b-N1	106.4(4)
O1a-P1a-N13	110.0(3)	O1b-P1b-N13	103.0(4)
O1a-P1a-N7a	119.2(3)	O1b-P1b-N7a	106.9(3)
N1-P1a-N13	112.10(10)	N1-P1b-N13	111.90(13)
N1-P1a-N7a	102.58(12)	N1-P1b-N7b	108.76(17)
N13-P1a-N7a	99.20(13)	N13-P1b-N7a	111.42(15)
N13-P1b-N7b	110.86(17)	O1b-P1b-N7b	115.8(3)
P1a-P1b-N7b	153.2(5)		
(3)			
P1-N1	1.6325(11)	P1-N15	1.6859(10)
P1-N8	1.6342(10)		
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 1$	118.42(5)	N1-P1-N8	104.19(5)
$\mathrm{O} 1-\mathrm{P} 1-\mathrm{N} 8$	110.67(5)	N1-P1-N15	105.60(5)
O1-P1-N15	105.83(5)	N8-P1-N15	112.18(5)

Table 2 Hydrogen bond parameters for compounds $1-3\left(A^{\circ},^{\circ}\right)$.

D-H \cdots A	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
(1)				
N19-H1n19 . ${ }^{\text {O }} 1^{\text {i }}$	0.800(13)	1.999(13)	2.7937(12)	171.7(18)
(2)				
N13-H1n13 \cdots O1a ${ }^{\text {ii }}$	0.908(17)	1.809(19)	2.706(8)	169(2)
N13-H1n13 \cdots O1b ${ }^{\text {ii }}$	0.908(17)	1.968(19)	2.870(9)	172.4(17)
(3)				
N15-H1n15 . $\mathrm{O}^{\text {ii }}$	0.870(3)	1.951(3)	2.8123(14)	170.5(13)
Symmetry code: (i) $-x,-y,-z$; (ii) $-x+1,-y+1,-z$.				

Page 4

