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Abstract
The powers of some tests for independence hypothesis against positive (negative) quadrant dependence in

generalized Farlie-Gumbel-Morgenstern distribution are compared graphically by simulation. Some of these
tests are usual linear rank tests of independence. Two other possible rank tests of independence are locally most
powerful rank test and a powerful nonparametric test based on the Cramér-von Mises statistic. We also eval-
uate the empirical power of the class of distribution-free tests proposed by Kochar and Gupta (1987) based on
the asymptotic distribution of a U-statistic and the test statistic proposed by Güven and Kotz (2008) in gen-
eralized Farlie-Gumbel-Morgenstern distribution. Tests of independence are also compared for sample sizes
n = 20, 30, 50, empirically. Finally, we apply two examples to illustrate the results.

Keywords: Generalized Farlie-Gumbel-Morgenstern (FGM) distribution, positive and negative
quadrant dependence, rank tests, tests of independence, U-statistic

1. Introduction

Farlie (1960), Gumbel (1960) and Morgenstern (1956) introduced a bivariate distribution with given
marginals. The Pearson correlation achievable cannot exceed 0.33 in the classical Farlie-Gumbel-
Morgenstern (FGM) distribution with absolutely continuous marginals. Huang and Kotz (1999) stud-
ied a new modification of the classical FGM distribution to increase the dependence between the
underlying variables by introducing an additional parameter. Bairamov and Kotz (2002) introduced
the generalized FGM family which allows us to achieve a correlation between the components greater
than 0.5. Baker (2008) proposed an extension to the FGM distribution. Dou et al. (2016) estimated
parameters of Baker’s (2008) distribution using EM algorithms. Some applications of FGM distri-
bution have been recently introduced in the literature. For example, Jung et al. (2008) presented an
application of generalized FGM copula function in exchange markets using directional dependence
concept. Hlubinka and Kotz (2010) used the generalized FGM distribution and related copulas as
bivariate models for the distribution of spheroidal characteristics. Amini et al. (2010) offered an ex-
ample of FGM distribution for modelling the dependence structure of the lifetimes of two components
of CPU (central processing unit) in desktop computer.

One of the most important concepts of dependence is quadrant dependence. This concept was
introduced by Lehmann (1966). Let (X, Y) be an absolutely continuous random vector with distribu-
tion function H(x, y) and marginal distribution functions F(x) and G(y). We say that the pair (X,Y) is
positively (negatively) quadrant dependent if, H(x, y) ≥ (≤) F(x)G(y) for all x, y ∈ R. The concepts
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of positive quadrant dependence (PQD) and negative quadrant dependence (NQD) are symmetric in
x and y.

Testing for independence between two continuous random variables X and Y is important when
examining if two random variables are independent. As an natural case, we need to discover the
dependence between two random characters to detect the interaction effects and finally controlling
one of them. In this paper, we consider the problem of testing the null hypothesis of independence
H0 : H(x, y) = F(x)G(y) for all x, y ∈ R against the alternative hypothesis of strict PQD (NQD).

Rödel and Kössler (2004) compared the adaptive tests with some usual linear rank tests of inde-
pendence such as Spearman rank correlation test, van der Waerden test, Fisher-Yates correlation test
and exponential scores test and with the t-version of Pearson test. Genest and Verret (2005) provided
a general formula for the locally most powerful rank test of independence against alternatives. Genest
et al. (2006) considered the asymptotic behavior of the Cramér-von Mises test using the empirical
copula process originally proposed by Deheuvels (1981).

Kochar and Gupta (1987, 1990) proposed a class of distribution-free tests for independence hy-
pothesis against PQD. Shetty and Pandit (2003) introduced a class of distribution-free tests for inde-
pendence. The proposed statistic by Kochar and Gupta (1990) is a member of this class. Güven and
Kotz (2008) proposed a test of independence against PQD for a pair of absolutely continuous random
variables jointly distributed according to the generalized FGM distribution. The result of Güven and
Kotz (2008) is the asymptotic normality of their test statistic. The test maximizes the minimum power
and possesses a monotone increasing power over the alternative hypothesis. Amini et al. (2010, 2011)
used a dependence measure for the generalized FGM family in view of Kochar and Gupta (1987) and
compared the power of tests proposed by them in absolutely continuous bivariate FGM distributions
with those proposed by Güven and Kotz (2008).

The above authors have proposed a test of independence individually; however, these tests have
not been compared. In this paper, we compare the tests in a generalized FGM family. For this purpose,
we consider some linear rank tests, the locally most powerful rank test, the Cramér-von Mises test, the
class of tests proposed by Kochar and Gupta (1987) and the test proposed by Güven and Kotz (2008)
to test independence against strict PQD or NQD. We then estimate the power of the tests based on the
asymptotic distribution of test statistics for each sample of size n = 20, 30, 50 via simulation study.

Let (X,Y) be a pair of absolutely continuous random variables with the marginals F(x) and G(y).
According to Bairamov and Kotz (2002), the generalized FGM distribution function of (X,Y) is

Hθ(x, y) = F(x)G(y)
{
1 + θ (1 − F p(x))q (1 −Gp(y))q} , ∀ x, y ∈ R, p ≥ 1, q > 1. (1.1)

The admissible range of θ is

−min

 1
p2

(
1 + pq

p(q − 1)

)2(q−1)

, 1

 ≤ θ ≤ 1
p

(
1 + pq

p(q − 1)

)q−1

. (1.2)

The copula function C is a bivariate distribution function with uniform marginals on [0, 1], such
that

H(x, y) = C(F(x),G(y)) ∀ x, y ∈ R.

By Sklar’s Theorem (1959), C is unique if F and G are continuous. Thus, we can construct bivariate
distributions H(x, y) = C(F(x),G(y)) with given marginals F and G by using copula C. The copula C
is given by

C(x, y) = H
(
F−1(x),G−1(y)

)
, 0 ≤ x, y ≤ 1,
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where F−1 and G−1 are quasi-inverses of F and G, respectively.
Using Sklar’s Theorem (1959), we can write the distribution function (1.1) with [0, 1] uniform

marginals as

Cθ(x, y) = xy
{
1 + θ (1 − xp)q (1 − yp)q} , 0 ≤ x, y ≤ 1, p ≥ 1, q > 1. (1.3)

For θ > 0 (θ < 0), X and Y are strictly PQD (NQD) and they are independent when θ = 0. In this
article, we test H0 : θ = 0 against H1 : θ ≥ η (or H2 : θ ≤ η′) based on some test statistics, where
η > 0 and η′ < 0 are located in interval (1.2). The independence hypothesis is considered under the
copula of generalized FGM distributions. This approach is important for two reasons. First, it would
provide a simple way to describe the family of generalized FGM distributions via the generalized FGM
copulas. Second, it would emphasize on the fact that appropriate test statistics should be marginal-
free, i.e. entirely non-parametric (typically based on the ranks of the observations). The type of
marginal distributions are involved are rarely known.

The paper is organized as follows. In Section 2, we introduce some statistics and their asymptotic
distributions. In Section 3, we compare the powers of the proposed tests graphically via simulation
study and use the tests for numerical examples.

2. The test statistics

Let (Xi,Yi), for i = 1, . . . , n, be a random sample from the generalized FGM distribution function Hθ

in (1.1) whose underlying copula function is Cθ in (1.3) and θ is dependence parameter. Rödel and
Kössler (2004) gathered some of linear rank tests along with their asymptotic distributions. We use
these four cases in this article as follows.

2.1. The Spearman rank correlation test (rs)

The Pearson sample correlation is

rp =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2
√∑n

i=1

(
Yi − Ȳ

)2
, (2.1)

where X̄ and Ȳ are the sample means.
Let (Ri, S i) be the bivariate ranks corresponding to (Xi,Yi), for i = 1, . . . , n. If we replace (Ri, S i),

for i = 1, . . . , n, in (2.1), then we get Spearman rank correlation:

rs =

∑n
i=1

(
Ri − R̄

) (
S i − S̄

)
√∑n

i=1

(
Ri − R̄

)2
√∑n

i=1

(
S i − S̄

)2
= 1 −

6
∑n

i=1 (Ri − S i)2

n3 − n
. (2.2)

Under H0, rs is AN(0, 1/(n − 1)), where AN denotes asymptotically normal (i.e.
√

n − 1rs
d−→

N(0, 1) as n → ∞) (Kendall and Gibbons, 1990). The null hypothesis H0 is rejected in favor of H1
(H2) at the asymptotic level of significance α if rs ≥ z1−α(n − 1)−1/2(rs ≤ −z1−α(n − 1)−1/2), where
z1−α is the (1 − α)-quantile of the standard normal distribution.

2.2. The van der Waerden test (rw)

Replacing the data values (Xi,Yi) by (Φ−1(Ri/(n + 1)),Φ−1(S i/(n + 1))), for i = 1, . . . , n, in (2.1), we
get the van der Waerden (VW) correlation rw, where Φ(·) is the standard normal distribution function.
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Under H0, rw is AN(0, 1/(n − 1)) (Hájek and S̆idák, 1967). As before, H0 is rejected in favor of H1
(H2) at the asymptotic level of significance α if rw ≥ z1−α(n − 1)−1/2(rw ≤ −z1−α(n − 1)−1/2).

2.3. The Fisher-Yates correlation test (rFY)

Substituting the data values (Xi,Yi) by (V (n)
Ri
,V (n)

S i
), for i = 1, . . . , n, in (2.1), we obtain the Fisher-

Yates correlation test rFY , where V (n)
i is the expectation of the ith order statistic of a standard normal

sample of size n. Under H0, rFY is AN(0, 1/(n − 1)) (Hájek and S̆idák, 1967). As before, H0 is
rejected in favor of H1 (H2) at the asymptotic level of significance α if rFY ≥ z1−α(n − 1)−1/2(rFY ≤
−z1−α(n − 1)−1/2).

2.4. The exponential scores test (rex)

Replacing the data values (Xi,Yi) by (E(n)
Ri
, E(n)

S i
), for i = 1, . . . , n, in (2.1), we get the exponential scores

correlation test rex, where E(n)
i is the expectation of the ith order statistic of a standard exponential

sample of size n. Under H0, rex is AN(0, 1/(n − 1)) (Hájek and S̆idák, 1967). H0 is rejected in favour
of H1 (H2) if rex ≥ z1−α(n − 1)−1/2(rex ≤ −z1−α(n − 1)−1/2).

2.5. The locally most powerful rank test (LMPR)

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from the distribution function Hθ whose underlying
copula function is Cθ in (1.3). The copula density function of Cθ(x, y) is

cθ(x, y) = 1 + θw(x, y), 0 ≤ x, y ≤ 1, p ≥ 1, q > 1, (2.3)

where w(x, y) = r(x, p, q)r(y, p, q) and r(x, p, q) = (1 − xp)q−1 (1 − (1 + pq)xp).
Genest and Verret (2005) provided a statistic for the locally most powerful rank test of indepen-

dence against alternatives expressed by copula models. They mentioned four conditions to obtain the
locally most powerful rank test. At first, we check these conditions in generalized FGM family as:

1. The parameter space of θ in (1.2) is a closed interval and θ = 0 leads to the copula corresponding
to independence.

2. If θ < θ′, then Cθ(x, y) ≤ Cθ′ (x, y) for all x, y ∈ (0, 1).

3. For every θ in (1.2), Cθ is absolutely continuous and its copula density function cθ is absolutely
continuous as a function of θ for every x, y ∈ (0, 1).

4. ċθ(x, y) = ∂cθ(x, y)/∂θ = w(x, y) is continuous in θ in a neighborhood of zero and

lim
θ→0

∫
(0,1)2
|ċθ(x, y)| dxdy =

∫
(0,1)2
|ċ0(x, y)| dxdy

=

∫
(0,1)2
|w(x, y)| dxdy ≤

(
1 +

1 + pq
p + 1

)2

< ∞.

Since
∫ 1

0 ċ0(x, y)dx =
∫ 1

0 ċ0(x, y)dy = 0 and
∫ s

0

∫ t
0 ċ0(x, y)dydx =

∫ s
0

∫ t
0 w(x, y)dydx ≥ 0 for all

s, t ∈ (0, 1), according to Genest and Verret (2005, Proposition 1), if T (r, s) = E{ċ0(Br, B∗s)}, where
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Br and B∗s are two independence random variables respectively distributed as Beta(r, n − r + 1) and
Beta(s, n − s + 1) and

T ∗n =
1
n

n∑
i=1

T (Ri, S i),

where (R1, S 1), . . . , (Rn, S n) denote the ranks associated with the random sample (X1,Y1), . . . , (Xn,Yn)
from the distribution function Hθ in (1.1) whose underlying copula function is Cθ in (1.3), then under
the null hypothesis,

√
nT ∗n is AN(0, σ2), where

σ2 =

∫
(0,1)2
{ċ0(x, y)}2 dxdy.

In the following proposition, we obtain T ∗n and σ2 for generalized FGM distribution.

Proposition 1. Let (R1, S 1), . . . , (Rn, S n) denote the ranks associated with a random sample (X1,Y1),
. . . , (Xn, Yn) from the distribution function Hθ in (1.1) whose underlying copula function is Cθ in (1.3)
satisfying Conditions 1–4. Then

T ∗n =
1
n

n∑
i=1

T (Ri, S i) =
1
n

n∑
i=1

A(Ri)A(S i),

where

A(a) =
q−1∑
k=0

(
q − 1

k

)
(−1)k Γ(n + 1)

Γ(a)

[
Γ(pk + a)
Γ(pk + n + 1)

− (1 + pq)
Γ(p(k + 1) + a)
Γ(p(k + 1) + n + 1)

]
and

σ2 =

∫
(0,1)2
{ċ0(x, y)}2 dxdy =

[
Beta

(
1
p
, 2q − 1

)
pq2(1 + p)

(1 + 2pq)(1 + 2pq − p)

]2

,

where Beta(a, b) = Γ(a)Γ(b)/Γ(a + b).

Proof: Since ċθ(x, y) = w(x, y) and Br ∼ Beta(r, n− r+1) and B∗s ∼ Beta(s, n− s+1) are independent,
we have

T (r, s) = E{ċ0(Br, B∗s)} = E{w(Br, B∗s)}
= E

{
r(Br, p, q)r

(
B∗s, p, q

)}
= E{r(Br, p, q)}E {

r
(
B∗s, p, q

)}
.

Now,

E{r(Br, p, q)} = E
{(

1 − Bp
r

)q−1 (
1 − (1 + pq)Bp

r

)}
= E

{(
1 − Bp

r

)q−1
}
− (1 + pq)E

{(
1 − Bp

r

)q−1
Bp

r

}
.

Using the binomial expansion (1−a)n =
∑n

k=0

(
n
k

)
(−1)kak, we can compute E{r(Br, p, q)}, E{r(B∗s, p, q)}

and T (r, s). So, we can obtain T ∗n .
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For computing σ2, we have

σ2 =

∫
(0,1)2
{ċ0(x, y)}2 dxdy =

∫
(0,1)2

w2(x, y)dxdy

=

∫
(0,1)2

r2(x, p, q)r2(y, p, q)dxdy =
[∫ 1

0
(1 − xp)2(q−1) (1 − (1 + pq)xp)2 dx

]2

.

We can obtainσ2 by a straightforward computation if we make the substitution u = xp. This completes
the proof. �

According to Genest and Verret (2005), H0 is rejected against H1 (H2) for large (small) enough
values of T ∗n . The rejection region of H0 in favor of H1 (H2) is T ∗n ≥ z1−α(σ/

√
n)(Tn ≤ −z1−α(σ/

√
n)),

where z1−α is the (1 − α)-quantile of the standard normal distribution.

2.6. The Cramér-von Mises test (CvM)

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from the distribution function Hθ in (1.1) whose under-
lying copula function is Cθ in (1.3) and (R1, S 1), . . . , (Rn, S n) denote the ranks associated with this
random sample. Genest et al. (2006) represented a powerful nonparametric test of independence
based on the Cramér-von Mises statistic

Bn =
1
n

n∑
i=1

n∑
j=1

Dn(Ri,R j)Dn(S i, S j), (2.4)

where

Dn(s, t) =
2n + 1

6n
+

s(s − 1)
2n(n + 1)

+
t(t − 1)

2n(n + 1)
− max(s, t)

n + 1
.

The null hypothesis H0 is rejected in favor of H1 for large enough values of Bn. So, the critical values
of the test at level α is obtained using Pθ=0(Bn > c) = α. According to Genest and Rémillard (2004),
for finite n, we compute the empirical critical values c using 20000 independent replications under
the null hypothesis of independence or randomness. The empirical critical values c at level α = 0.05
based on a random sample of sizes n = 20, 30, 50 are 0.0527, 0.0545, 0.0559, respectively.

Now, if we assume (X,Y) is NQD, then (X,−Y) is PQD (Nelsen, 2006). Thus, for testing inde-
pendence hypothesis H0 : θ = 0 against NQD(H2 : θ ≤ η′), it suffices to test H0 : θ = 0 against
H1 : θ ≥ −η′ using Bn in (2.4) for observations (Xi,−Yi), i = 1, 2, . . . , n.

2.7. The Kochar and Gupta class of distribution-free tests

For testing independence against PQD (NQD), Kochar and Gupta (1987) introduced δk(x, y) = Hk(x, y)−
Fk(x)Gk(y) for all x, y ∈ R, where k is a fixed integer. Under H0, δk(x, y) = 0 and under H1 (H2),
δk(x, y) ≥ 0 (δk(x, y) ≤ 0) for all x, y ∈ R and with a strict inequality over a set of nonzero probability.
The measure of deviation between H0 and H1 (H2) is then

Dk =

∫
R2
δk(x, y)dH(x, y) = D1k − D2k,

where D1k =
∫

R2 Hk(x, y)dH(x, y) = P (max(X1, . . . , Xk) ≤ Xk+1,max(Y1, . . . , Yk) ≤ Yk+1), D2k =
∫

R2

Fk(x)Gk(y)dH(x, y) =
∫

R2 H̄(x, y)dFk(x)dGk(y) and H̄(x, y) = P(X > x,Y > y).
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Amini et al. (2011) showed that D1k and D2k are

D1k =

k∑
j=0

(
k
j

)
θ j

p2 Beta2
(

k + 1
p

, jq + 1
)

+

k∑
j=0

(
k
j

)
θ j+1

p2

[
Beta

(
k + 1

p
, ( j + 1)q

)
− (1 + pq)Beta

(
k + 1

p
+ 1, ( j + 1)q

)]2

(2.5)

and

D2k =
1

(k + 1)2 +
θ

p2

[
Beta

(
k + 1

p
, q

)
− (1 + pq)Beta

(
k + 1

p
+ 1, q

)]2

(2.6)

in generalized FGM family where, Beta(a, b) = Γ(a)Γ(b)/Γ(a + b).
Under H0, D1k = D2k = (k+1)−2 but, under H1 (H2), D1k > D2k > (k+1)−2 (D1k < D2k < (k+1)−2).

Let (Xi,Yi), for i = 1, . . . , n, be a random sample of generalized FGM distribution and suppose that

φk+1 {(X1,Y1), . . . , (Xk+1,Yk+1)} =


1, {max(X1, . . . , Xk+1),max(Y1, . . . , Yk+1)}

belongs to the same pair of (X,Y),
0, otherwise.

(2.7)

For testing H0 against H1 (H2), we use U-statistic estimator of D1k, that is

Un(k + 1) =
1(
n

k+1

) ∑
φk+1

{
(Xi1 ,Yi1 ), . . . , (Xik+1 ,Yik+1 )

}
,

where the sum is over all combinations of (k + 1) integers (i1, . . . , ik+1) chosen out of (1, . . . , n).
Notice that the large (small) values of Un(k+ 1) are significant for testing H0 against H1 (H2). For

k = 1, we also have Un(2) = (τn + 1)/2, where τn is Kendall’s statistic. So, the independence test
based on Un(2) is equivalent to the classical test based on τn.

The asymptotic distribution of
√

n {Un(k + 1) − E(Un(k + 1))} is normal with expectation zero and
variance σ2

k+1 = (k + 1)2γ1, where

γ1 = E
{
ψ2

1(X1,Y1)
}
− E2{Un(k + 1)}, ψ1(x1, y1) = E

[
φk+1 {(x1, y1), . . . , (Xk+1,Yk+1)}] ,

see Serfling (1980).
Under H0, E(Un(k + 1)) = (k + 1)−1, γ1 = k2/{(2k + 1)2(k + 1)2} and σ2

k+1 = k2(2k + 1)−2. H0 is
rejected in favor of H1 if Un(k + 1) > z1−α[

√
n(2k + 1)]−1k + (k + 1)−1.

Now, if we assume (X,Y) is NQD, then (X,−Y) is PQD (Nelsen, 2006). Thus, for testing inde-
pendence hypothesis H0 : θ = 0 against strict NQD(H2 : θ ≤ η′), it suffices to test the hypothesis
H0 : θ = 0 against H1 : θ ≥ −η′ using φk+1 in (2.7) for observations (Xi,−Yi), i = 1, 2, . . . , n. To
obtain the exact distribution of Un(k + 1), see Kochar and Gupta (1987).

2.8. The Güven and Kotz test

Let (X1,Y1), . . . , (Xn,Yn) be a random sample from the distribution function Hθ whose underlying
copula function is Cθ in (1.3) and the copula density function cθ in (2.3). Güven and Kotz (2008)
proposed the following statistic for testing independence (H0 : θ = 0) against PQD(H1 : θ ≥ η) as

ϕ(x, y) =
{

1, T ≥ c,
0, T < c, (2.8)
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where η ∈ (0, (1/p){(1 + pq)/p(q − 1)}q−1], T =
∏n

i=1(1 + ηw(Xi,Yi)).
The asymptotic distribution of T is

√
n
(
T

1
n − µ(θ)

) d−→ N
(
0, σ2(θ)

)
as n→ ∞,

where µ(θ) = exp[E(ln(1 + ηw(X,Y)))] and σ2(θ) = µ2(θ)Var[ln(1 + ηw(X,Y))].
The rejection region of H0 in favor of H1 is T ≥ cα, where c1/n

α = z1−ασ(0)/
√

n + µ(0). An
approximation to the power of the test for finite sample size is given by

βn(θ) ≃ 1 − Φ
( √

n
σ(θ)

[
c

1
n
α − µ(θ)

])
,

where θ ∈ [η, (1/p){(1 + pq)/p(q − 1)}q−1] and Φ(·) is the standard normal distribution function.
Now, if we assume (X,Y) is NQD, then (X,−Y) is PQD (Nelsen, 2006). Thus, for testing inde-

pendence (H0 : θ = 0) against NQD(H2 : θ ≤ η′) where η′ ∈ [−min{(1/p2)((1 + pq)/p(q − 1))2(q−1),
1}, 0), it suffices to test the hypothesis H0 : θ = 0 against H1 : θ ≥ −η′ using ϕ(x, y) in (2.8) for
observations (Xi,−Yi), i = 1, 2, . . . , n.

3. Simulation results and applied examples

In this section, we compare the power of tests introduced in Section 2 to test the independence hy-
pothesis against PQD (NQD). There is a wide applications of generalized FGM distribution for values
of p = 2 and q = 2; consequently, some of authors such as Jung et al. (2008) and Güven and Kotz
(2008) consider this case of the generalized FGM family. In addition, we have calculated the power
of test statistics for other values of p and q such as “p = 2 and q = 3” and “p = 3 and q = 2”. The
results for these values of p and q have a similar process. So for the sake of simplicity, we consider
the information related to p = q = 2 case. We evaluate the empirical powers of test statistics rs, rw,
rFY , rex, T ∗n (LMPR), Bn(CvM), Un(k + 1) for k = 1, 2, 3, 4 and T based on the simulation results for
5000 replications using R software version 3.0.1 at 5% level of significance. Notice that, for n = 20,
the critical points are calculated based on exact distribution of Un(k+1) (Kochar and Gupta’s statistic)
and for n = 30, 50, the critical points are calculated based on approximate distribution of Un(k + 1).
Also, the critical points of T (Güven and Kotz’s statistic) based on asymptotic distribution with vari-
ous values of η ∈ (0, 1.25], θ ∈ [η, 1.25] for PQD case and η′ ∈ [−1, 0), θ ∈ [−1, η′] for NQD case is
obtained (notice that according to (1.2) for p = q = 2, the range of θ is [−1, 1.25]). Table 1 shows the
empirical powers for p = q = 2, η = 0.2 and η′ = −0.2. Notice that the empirical sizes are closed to
0.05 for all test statistics. This point is important for choosing the best test statistic.

3.1. Results in PQD case

A) Comparing Kochar and Gupta’s statistics:

When n ≥ 20, Un(2) is the best test statistic, except for n = 30 and θ = 0.2, for which Un(3)
is the best test statistic but its power is very close to Un(2). Also, we have the following order
Un(5) < Un(4) < Un(3) < Un(2) based on the powers of these test statistics (Table 1).

B) Comparing the rank tests (Table 1):

• When n = 20 for all θ, rs is better than all of rank tests, except for θ = 1.2, for which LMPR
test is the best one.
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Table 1: Empirical powers for marginals U(0, 1) in the generalized FGM family for NQD and PQD cases
(p = q = 2, η = 0.2 and η′ = −0.2)

n Statistics θ
−1 −0.7 −0.5 −0.2 0 0.2 0.5 0.7 1 1.2

20

rs 0.402 0.255 0.165 0.081 0.051 0.096 0.167 0.258 0.415 0.538
rw 0.351 0.231 0.144 0.078 0.049 0.090 0.161 0.236 0.374 0.485
rFY 0.338 0.223 0.141 0.075 0.050 0.089 0.157 0.231 0.363 0.467
rex 0.197 0.132 0.084 0.043 0.070 0.090 0.115 0.156 0.197 0.237

LMPR 0.402 0.227 0.140 0.057 0.026 0.063 0.136 0.213 0.401 0.560
CvM 0.316 0.177 0.110 0.056 0.052 0.056 0.110 0.167 0.328 0.455

T 0.585 0.353 0.226 0.100 0.045 0.118 0.236 0.363 0.589 0.728
Un(2) 0.381 0.245 0.155 0.080 0.050 0.091 0.167 0.250 0.397 0.513
Un(3) 0.276 0.188 0.125 0.072 0.050 0.082 0.138 0.197 0.297 0.371
Un(4) 0.224 0.158 0.111 0.067 0.048 0.075 0.110 0.147 0.202 0.241
Un(5) 0.192 0.141 0.098 0.063 0.046 0.068 0.089 0.115 0.147 0.164

30

rs 0.554 0.331 0.216 0.097 0.047 0.094 0.228 0.332 0.550 0.712
rw 0.482 0.289 0.183 0.090 0.047 0.090 0.205 0.294 0.487 0.637
rFY 0.469 0.284 0.178 0.088 0.065 0.090 0.200 0.287 0.473 0.620
rex 0.248 0.159 0.103 0.053 0.047 0.087 0.127 0.153 0.235 0.288

LMPR 0.630 0.366 0.213 0.077 0.034 0.081 0.216 0.361 0.622 0.792
CvM 0.482 0.260 0.148 0.062 0.049 0.075 0.166 0.267 0.504 0.679

T 0.751 0.466 0.291 0.109 0.049 0.106 0.295 0.473 0.736 0.887
Un(2) 0.527 0.307 0.202 0.088 0.046 0.093 0.224 0.330 0.543 0.697
Un(3) 0.392 0.249 0.169 0.091 0.065 0.105 0.207 0.285 0.451 0.567
Un(4) 0.273 0.182 0.125 0.070 0.073 0.090 0.166 0.218 0.334 0.410
Un(5) 0.193 0.136 0.095 0.056 0.082 0.086 0.148 0.178 0.254 0.307

50

rs 0.767 0.501 0.310 0.115 0.050 0.103 0.307 0.492 0.758 0.892
rw 0.675 0.426 0.267 0.100 0.051 0.096 0.266 0.427 0.673 0.818
rFY 0.660 0.414 0.260 0.097 0.053 0.097 0.256 0.417 0.655 0.806
rex 0.333 0.216 0.138 0.060 0.060 0.079 0.143 0.199 0.298 0.377

LMPR 0.877 0.580 0.346 0.115 0.044 0.116 0.361 0.587 0.863 0.962
CvM 0.730 0.421 0.229 0.079 0.053 0.073 0.235 0.413 0.730 0.887

T 0.923 0.662 0.424 0.152 0.054 0.140 0.420 0.658 0.915 0.980
Un(2) 0.756 0.494 0.307 0.115 0.055 0.109 0.318 0.509 0.764 0.895
Un(3) 0.553 0.359 0.239 0.096 0.065 0.105 0.255 0.392 0.605 0.735
Un(4) 0.366 0.245 0.165 0.077 0.072 0.094 0.200 0.288 0.434 0.550
Un(5) 0.250 0.178 0.127 0.020 0.074 0.088 0.162 0.222 0.319 0.394

FGM = Farlie-Gumbel-Morgenstern, NQD = negative quadrant dependence, PQD = positive quadrant dependence,
LMPR = locally most powerful rank test, CvM = Cramér-von Mises test.

• When n = 30 for θ = 0.2, 0.5, rs is the best competitor and for θ = 0.7, 1, 1.2, LMPR test is the
best one.

• When n = 50 (large samples) for all θ, LMPR test is better than other rank tests.

• For all θ and n, LMPR test is better than the CvM test.

• For all n and θ, rw and rFY are better than rex.

C) Comparison of all statistics:

Figures 1–3 show the power of all statistics (rank tests, T and Un(k+1) for k = 1, 2, 3, 4) for some
values of η with respect to θ when n = 20, 30, 50 (notice that we don’t show powers of Un(3),
Un(4) and Un(5) in figures because their powers are less than Un(2)). The results are

• θ and η, T is the best test statistic for all n.
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0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

0.8 0.9 1.0 1.1 1.2

0.
2

0.
4

0.
6

0.
8

θ
po

w
er

rs

rw

rFY

rex

LMPR
CvM
T
U(2)

(b) n = 20 and η = 0.8

Figure 1: The empirical power of all tests with respect to θ for n = 20 and η = 0.2, 0.8.
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(b) n = 30 and η = 0.8

Figure 2: The empirical power of all tests with respect to θ for n = 30 and η = 0.2, 0.8.

• For all n, the powers of rs and Un(2) are close to T when θ is small (weak dependence).

• For all n, T is a appropriate test statistic when θ is large (strong dependence).

• The powers of T statistic and LMPR test are greater than other tests when n = 50 (large sam-
ples); in addition, the power of LMPR is close to T if θ is small or large.

• The power of Un(2) is very close to the power of rs when n = 50.

3.2. Results in NQD case

A) Comparing Kochar and Gupta’s statistics:
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(b) n = 50 and η = 0.8

Figure 3: The empirical power of all tests with respect to θ for n = 50 and η = 0.2, 0.8.

When n ≥ 20, Un(2) is the best test statistic, except for n = 30 and θ = −0.2, for which Un(3) is
the best test statistic but its power is very close to Un(2). Also, for all n, we have the following
order Un(5) < Un(4) < Un(3) < Un(2) based on the powers of these test statistics (see Table 1).

B) Comparing the rank tests (Table 1):

• rs is better than all of rank tests when n = 20 for all θ.

• rs is the best competitor and for θ = −0.7,−1, LMPR test is the best one when n = 30 for
θ = −0.2,−0.5.

• LMPR test is better than other rank tests when n = 50 (large samples) for all θ.

• LMPR test is better than CvM test for all θ and n.

• rw and rFY are better than rex for all n and θ.

C) Comparison of all statistics:

Figures 4–6 show the power of all statistics (rank tests, T and Un(k+1) for k = 1, 2, 3, 4) for some
values of η′ with respect to θ when n = 20, 30, 50 (notice that we do not show the power of Un(3),
Un(4) and Un(5) in figures because their powers are less than Un(2)). The results are

• θ and η′, T is the best test statistic for all n.

• The powers of rs and Un(2) are close to T for all n, when |θ| is small (weak dependence).

• T is an appropriate test statistic for all n when |θ| is large (strong dependence).

• The powers of T statistic and LMPR test are greater than other tests when n = 50 (large sam-
ples); in addition, the power of LMPR is close to T if θ is small or large.

• The power of Un(2) is very close to the power of rs when n = 50.
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(b) n = 20 and η′ = −0.8

Figure 4: The empirical power of all tests with respect to θ for n = 20 and η′ = −0.2,−0.8.
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(a) n = 30 and η′ = −0.2
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Figure 5: The empirical power of all tests with respect to θ for n = 30 and η′ = −0.2,−0.8.

3.3. Examples

Cook and Johnson (1986) considered the analysis of the uranium exploration data set. These data
consist of 655 chemical analyses from water samples collected from the Montrose quadrangle of
western Colorado. Concentrations were measured for the following elements: uranium (U), lithium
(Li), cobalt (Co), potassium (K), cesium (Cs), scandium (Sc) and titanium (Ti).

Peacock (1983) and Fasano and Franceschini (1987) proposed a generalization of the classical
Kolmogorov-Smirnov test which is suitable to analyze random samples defined in two dimensions. In
their method for any data point of (Xi,Yi), we consider the four quadrants of the plane defined by

(x < Xi, y < Yi), (x < Xi, y > Yi), (x > Xi, y < Yi), (x > Xi, y > Yi) i = 1, . . . , n.
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Figure 6: The empirical power of all tests with respect to θ for n = 50 and η′ = −0.2,−0.8.

Table 2: Goodness-of-fit test for two selected pairs of variables in uranium exploration data

Pair p q MLE(θ) −ℓ Dks p-value
(U,Cs) 2 2 0.464 −0.9962 0.8203 0.827
(U, Li) 2 2 −0.430 −0.7495 1.0496 0.481

MLE = maximum likelihood estimator.

Table 3: Values of test statistics, their critical values and associated p-values for selected pair (U,Cs) in PQD
case

rs rw rFy rex LMPR CvM T Un(2) Un(3) Un(4) Un(5)
Test statistic 0.317 0.338 0.337 0.320 0.085 0.055 2.690 0.608 0.469 0.401 0.360
Critical point 0.234 0.234 0.234 0.234 0.094 0.056 3.713 0.577 0.426 0.349 0.303

p-value 0.013 0.008 0.009 0.012 0.068 0.052 0.078 0.010 0.008 0.006 0.005

PQD = positive quadrant dependence, LMPR = locally most powerful rank test, CvM = Cramér-von Mises test.

Then, we calculate the maximum absolute difference between the observed and predicted cumulative
distributions (both normalized to 1) within all four quadrants. The Kolmogorov-Smirnov test statistic
Dks is the maximum of these differences when all data points are considered.

We use the first 50 cases from two selected pairs (U,Cs) and (U, Li) in the uranium exploration
data. First, we test whether one can fit generalized FGM distribution to (U,Cs) and (U, Li). For
generalized FGM with p = q = 2, Table 2 includes the maximum likelihood estimator (MLE) of θ,
negative log-likelihood (−ℓ) of MLE (θ), Dks and associated p-value for PQD case. At 0.05 level,
Table 2 shows that the generalized FGM model with p = q = 2 and MLE(θ) = 0.464 is acceptable for
the pair (U,Cs) and with p = q = 2 and MLE(θ) = −0.430 is acceptable for the pair (U, Li). Now, we
test the independence hypothesis against the alternative hypothesis of strict PQD (NQD).

A) For pair of (U,Cs), according to the considered data, we test H0 : θ = 0 vs H1 : θ ≥ 0.5 (η = 0.5) at
level α = 0.05. First, we estimate the distribution functions F and G by their empirical distribution
functions and then compute the test statistics mentioned in Section 2. Table 3 includes the values
of test statistics, their critical values and associated p-values. Table 3 shows that
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Table 4: Values of test statistics, their critical values and associated p-values for selected pair (U, Li) in NQD
case

rs rw rFy rex LMPR CvM T Un(2) Un(3) Un(4) Un(5)
Test statistic −0.339 −0.266 −0.250 −0.313 −0.093 0.079 0.066 0.374 0.171 0.092 0.055
Critical point −0.234 −0.234 −0.234 −0.234 −0.094 0.056 0.028 0.419 0.240 0.150 0.096

p-value 0.008 0.031 0.039 0.014 0.052 0.013 0.138 0.003 0.002 0.004 0.010

NQD = negative quadrant dependence, LMPR = locally most powerful rank test, CvM = Cramér-von Mises test.

• based on LMPR test, the CvM test, and Güven and Kotz test (T ), we cannot reject H0 in favor
of H1.

• the maximum p-value is achieved for T .

• according to Table 2, the results of Table 3 based on T is coincident with the truth since the data
follows generalized FGM with p = q = 2 and θ = 0.464.

Notice that according to Table 1, T is the best test statistic for n = 50 in PQD case.

B) For pair of (U, Li), according to the considered data, we test H0 : θ = 0 vs H2 : θ ≤ −0.5
(η = −0.5) at level α = 0.05. Table 4 includes the values of test statistics, their critical values and
associated p-values. Table 4 shows that

• LMPR test and Güven and Kotz test (T ) do not reject H0 in favor of H1.

• the maximum p-value is achieved for T .

• according to Table 2, the results of Table 4 based on T is true since the data follows generalized
FGM with p = q = 2 and θ = −0.430.

Notice that according to Table 1, T is the best test statistic for n = 50 in NQD case.

4. Concluding remarks

Amini et al. (2010, 2011) compared the power of tests proposed by Kochar and Gupta (1987) in FGM
distribution with those proposed by Güven and Kotz (2008) for testing independence against strict
PQD or NQD. Some authors introduced a test statistic for testing independence against strict PQD
or NQD; however, these tests have not been compared. So selecting the best test and improving the
results obtained by Amini et al. (2010, 2011), we consider some rank tests and compare them with
the class of tests proposed by Kochar and Gupta (1987) and the test statistic proposed by Güven and
Kotz (2008) for testing independence against strict PQD or NQD in generalized FGM family.

In Table 1 and Figures 1–6, we can see that for all n and θ, the test statistic proposed by Güven
and Kotz (2008) is the best competitor. These results confirm the results of Amini et al. (2010,
2011). Finally, we explore the results using two actual example for PQD and NQD cases for more
justifications.

It is noted that the present results are valid for FGM distribution family and its generalized version
introduced by Bairamov and Kotz (2002); therefore, the extension of the current work to other kinds
of copulas remains an open problem for new researches.
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Hájek J and Šidák Ž (1967). Theory of Rank Tests, Academic Press, San Diego, CA.
Hlubinka D and Kotz S (2010). The generalized FGM distribution and its application to stereology of

extremes, Applications of Mathematics, 55, 495–512.
Huang JS and Kotz S (1999). Modifications the Farlie-Gumbel-Morgenstern distributions: a tough

hill to climb, Metrika, 49, 135–145.
Jung YS, Kim JM, and Kim J (2008). New approach of directional dependence in exchange markets

using generalized FGM copula function, Communications in Statistics - Simulation and Compu-
tation, 37, 772–788.

Kendall MG and Gibbons JD (1990). Rank Correlation Methods (5th ed), Oxford University Press,
New York.

Kochar SC and Gupta RP (1987). Competitors of Kendall-tau test for testing independence against
positive quadrant dependence, Biometrika, 74, 664–666.

Kochar SC and Gupta RP (1990). Distribution-free tests based on sub-sample extrema for testing
against positive dependence, Australian Journal of Statistics, 32, 45–51.



230 M. Zargar, H. Jabbari, M. Amini

Lehmann EL (1966). Some concepts of dependence, Annals of Mathematics and Statistics, 37, 1137–
1153.

Morgenstern D (1956). Einfache beispiele zweidimensionaler verteilungen, Mitteilungsblatt für Math-
ematische Statistik, 8, 234–235.

Nelsen RB (2006). An Introduction to Copulas (2nd ed), Springer, New York.
Peacock JA (1983). Two-dimensional goodness-of-fit testing in astronomy, Monthly Notices of the

Royal Astronomical Society, 202, 615–627.
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