A novel tubular hydrogen bond pattern in the crystal structure of a new diazaphosphole oxide: $\left(\mathbf{4}-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathbf{P}(\mathbf{O})(\mathbf{1}, \mathbf{2}-\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

Fahimeh Sabbaghi ${ }^{1}$, Nazila Ghorbanian ${ }^{2}$, Mehrdad Pourayoubi ${ }^{3}$, Pavel V. Andreev ${ }^{4}$
${ }^{1}$ Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran
${ }^{2}$ Department of Chemistry, Payame Noor University, Zanjan, Iran
${ }^{3}$ Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
${ }^{4}$ Department of Physics, N. I. Lobachevsky State University of Nizhni Novgorod, 603950 pr. Gagarina, 23-3 Nizhni Novgorod, Russia

Abstract

In this work, we report on the synthesis, spectroscopic characterization and X-ray crystal structure determination of a new diazaphosphole oxide, (4-Cl-C $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(1,2-\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ namely 2-[para-chloroanilino]-1,3,2 λ^{4}-diazaphosphol-2one. This compound was synthesized in a two-step reaction, from POCl_{3} and 4 -chloroaniline for the preparation of (4-Cl$\left.C_{6} H_{4} \mathrm{NH}\right) P(O) \mathrm{Cl}_{2}$ phosphorus-chlorine reagent in the first step and then the reaction of 1,2-phenylenediamine with the phosphorus-chlorine compound. In the molecule, the P atom is bonded in a distorted tetrahedral $P(O)[N]_{3}$ environment, with one of the $O=P-N$ angle as the maximum angle at the P atom and the $N-P-N$ angle within the ring as minimum angle. In the crystal packing, each molecule is surrounded with four neighbouring molecules through $(N-H)_{2} \ldots O=P$ hydrogen bonds. These interactions form a tubular arrangement of fused hydrogen-bonded rings, of $R^{3}{ }_{3}(12)$ and $R^{3}{ }_{4}(14)$ graph-set motifs, along [001]. An N-H... π interaction exists in the tubular shape which does not change the dimension of hydrogen bond pattern.

Keywords: Diazaphosphole oxide, $(\mathbf{N}-\mathbf{H})_{2} \ldots \mathrm{O}=\mathrm{P}, \mathrm{N}-\mathrm{H} \ldots . \pi$ interaction, X-Ray crystallography.

1. INTRODUCTION

Organophosphorus compounds, especially of the pentavalent type, are extremely versatile and have prevalent environmental and industrial applications [1]. Among them, a diazaphosphole compound (including a five-membered ring with one P , two C and two N atoms in the $\mathrm{P}(\mathrm{O})(\mathrm{N})_{2} \mathrm{C}_{2}$ segment) seems to be interesting for study from the crystal engineering viewpoint, due to the existence of a rigid five membered ring with the less bulk effect at the $\mathrm{P}(\mathrm{O})$ group caused by the $\mathrm{N}_{2} \mathrm{C}_{2}$ segment. So, it is possible to design different molecules with versatile exocyclic groups with different flexibilities bonded to the rigid $\mathrm{P}(\mathrm{O})(\mathrm{N})_{2} \mathrm{C}_{2}$ system and also to change the atoms bonded to the nitrogen and carbon atoms in the $\mathrm{N}_{2} \mathrm{C}_{2}$ segment.

In a previous work, the synthesis and spectroscopic features of an $\left(R^{1} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} R^{2}$ diazaphosphole $\left(4-\mathrm{CH}_{3}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ was studied [2]. Here, we represent the synthesis of the title compound namely 2-[para-chloroanilino]-1,3,2迤-diazaphosphol-2-one, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{ClN}_{3} \mathrm{OP}$ (I). Compound (I) was studied by the NMR investigations and X-ray diffraction experiment. A survey on the Cambridge Structural Database (CSD) shows that the structure (I) is the first diffraction study of an $\left(R^{1} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} R^{2}$ diazaphosphole (R^{1} and $R^{2}=\mathrm{H}$ or a hydrocarbon segment).

2. EXPERIMENTAL

2.1. Synthesis

The starting phosphorus-chlorine compound $\left(4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$ was synthesized by a reaction of $4-\mathrm{Cl}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2}$ $(20 \mathrm{mmol})$ dissolved in dry acetonitrile $(10 \mathrm{ml})$ with a solution of $\mathrm{P}(\mathrm{O}) \mathrm{Cl}_{3}(10 \mathrm{mmol})$ in the same solvent $(20 \mathrm{ml})$ at 273 K .

After stirring for 4 h , the solid which formed, i.e. $4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}_{2} . \mathrm{HCl}$, was filtered off and the $\left(4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}$ reagent was obtained as solid from the filtrate after removing of the solvent in vacuo.

2.1.1. Synthesis of $\left(4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(1,2-\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

For the synthesis of (I), a solution of 1,2-phenylenediamine (2 mmol) and triethylamine (4 mmol) in dry $\mathrm{CHCl}_{3}(10$ $\mathrm{ml})$ was added to a solution of $\left(4-\mathrm{Cl}^{-} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O}) \mathrm{Cl}_{2}(2 \mathrm{mmol})$ in the same solvent $(20 \mathrm{ml})$ at 273 K . After stirring for 4 h , the product as precipitate was filtered and washed with chloroform. Single crystals of (I) suitable for X-ray crystallography were obtained from $\mathrm{CH}_{3} \mathrm{OH}$ by slow evaporation at room temperature. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (DMSO- $\mathrm{d}_{6}, 121.49 \mathrm{MHz}, 300 \mathrm{~K}$): $11.74(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.\mathrm{d}_{6}, 300.13 \mathrm{MHz}, 300 \mathrm{~K}\right): 6.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.71(\mathrm{~s}, 4 \mathrm{H}), 7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}(\mathrm{H}, \mathrm{H})=8.6\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 8.15\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{P})=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.53\left(\mathrm{~d},{ }^{2} \mathrm{~J}(\mathrm{H}, \mathrm{P})=17.2 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}$ NMR (DMSO- $\left.\mathrm{d}_{6}, 75.47,300 \mathrm{~K}\right): 109.67(\mathrm{~d}$, $\mathrm{J}(\mathrm{C}, \mathrm{P})=12.6 \mathrm{~Hz}), 118.47(\mathrm{~d}, \mathrm{~J}(\mathrm{C}, \mathrm{P})=7.8 \mathrm{~Hz}), 119.14(\mathrm{~s}), 123.95(\mathrm{~s}), 128.59(\mathrm{~s}), 131.78(\mathrm{~d}, \mathrm{~J}(\mathrm{C}, \mathrm{P})=13.6 \mathrm{~Hz}), 141.27(\mathrm{~s})$. Selected crystal data: Trigonal, $P 3 c 1, a=15.8635(2) \AA, b=15.8635(2) \AA, c=8.97540(10) \AA, \gamma=120^{\circ}, Z=6, V=$ 1956.06(5) \AA^{3}, Mo $K \alpha$ Radiation, $\mu=0.406 \mathrm{~mm}^{-1}, T=293(2) \mathrm{K}, 0.3553 \times 0.2183 \times 0.1454 \mathrm{~mm}, R_{\text {int }}=0.048, R\left[F^{2}>\right.$ $\left.2 \sigma\left(F^{2}\right)\right]=0.0407, w R\left(F^{2}\right)=0.1072$.

Scheme 1. Chemical structure of $\left(4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) P(\mathrm{O})(1,2-\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$

3. DISCUSSION

The ($\left.R^{1} R^{2} \mathrm{~N}\right) \mathrm{P}(\mathrm{O})$ segment ($R^{1} \& R^{2}=\mathrm{H}$ or a hydrocarbon group) is called the phosphoramide group [3] due to its similarity to the $\left(R^{1} R^{2} \mathrm{~N}\right) \mathrm{C}(\mathrm{O})$ segment [4] in organic amides, and also due to the fact that the $\left(R^{1} R^{2} \mathrm{~N}\right)^{-}$anion obtained from the $\mathrm{NH} R^{1} R^{2}$ amine in the $\left(R^{1} R^{2} \mathrm{~N}\right) \mathrm{P}(\mathrm{O})$ segment can be considered as an amide group. So, compounds with the general formula $\left(R^{1} R^{2} \mathrm{~N}\right)\left(R^{3} R^{4} \mathrm{~N}\right)\left(R^{5} R^{6} \mathrm{~N}\right) \mathrm{P}(\mathrm{O})$, where R^{1-6} is either an H atom or a hydrocarbon group, are called phosphoric triamides. If the $R^{1} R^{2} \mathrm{~N}$ and $R^{3} R^{4} \mathrm{~N}$ groups belong to an initial $R^{1} R^{2} \mathrm{NH} X \mathrm{NH} R^{3} R^{4}$ diamine (X may be any linker, such as a hydrocarbon segment), the linking of two N atoms to one P atom (and the loss of two NH protons) forms a ring. In this case, the compound, although formally considered a phosphoramide, is usually named according to different nomenclature. An example of such nomenclature is the structure with CSD refcode SAYJIM namely 2-(N-p-fluorobenzoyl)-2-oxo-1,3,2benzodiazaphosphole, with a ring containing one P , two N and two C atoms [2].

In this work, we synthesized the title compound (Scheme 1) and examined its crystal structure (Fig. 1). Selected bond lengths and angles are given in Table 1. The $\mathrm{P}=\mathrm{O}$ bond length of 1.484 (2) \AA is within the expected range for compounds with a $\mathrm{P}(\mathrm{O})[\mathrm{N}]_{3}$ skeleton. The P atom is bonded in a distorted tetrahedral $\mathrm{P}(\mathrm{O})[\mathrm{N}]_{3}$ environment, with the bond angles at the P atom within $92.49(12)^{\circ}$ to $116.94(12)^{\circ}$. The minimum angle is related to the $\mathrm{N} 1-\mathrm{P} 1-\mathrm{N} 3$ within the five member ring. Moreover, all of the angles within the five member ring are contracted with respect to the same angles in acyclic structures. For example, the P1-N1-C1 angle, being $112.45(18)^{\circ}$ shows a deviation from $s p^{2}$ angle observed in acyclic analogous structures [5]. The N1 and N3 atoms are placed in the plane constructed from C1/C2/C3/C4/C5/C6 atoms of phenylene segment, while the P1 atom shows a few distance from this plane. The P-N bonds within the rings are longer than the exocyclic P-N bond.

In the crystal, each molecule is surrounded with four neighbouring molecules through $(\mathrm{N}-\mathrm{H})_{2} \ldots \mathrm{O}$ hydrogen bonds. These interactions form a tubular arrangement of fused hydrogen-bonded rings along [001] (Fig. 2). The entrance of this pattern is an $R^{3}{ }_{3}(12)$ ring [6] formed through the NH units of three $4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}$ segments ($\mathrm{N} 2-\mathrm{H} 5 \mathrm{~A}$), belonging to three adjacent molecules, hydrogen bonded to the oxygen atoms of phosphoryl groups. The other hydrogen-bonded ring motif in

Page 2

this pattern, $R^{3}{ }_{4}(14)$, is formed through two N1-H4A and two N2-H5A units hydrogen-bonded to the three oxygen atoms of phosphoryl groups. The tubular shape is completed with extending the noted motifs. One of the NH units of diazaphosphole ring (N3-H3A) does not take part in the N—H...O hydrogen bond. Surprisingly this N—H unit takes part in an N—H... π interaction which is another novel feature of the crystal structure $(\mathrm{N} 3 \ldots \mathrm{Cg}$ iii $=3.303(3) \AA, \mathrm{Cg}$ is the centroid of $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{C} 12$ ring, symmetry code (iii) $x, x-y, z-1 / 2$). The $\mathrm{N}-\mathrm{H} \ldots \pi$ interactions are within the tubular pattern discussed and do not extend the dimensionality of hydrogen bond pattern.

In the NMR experiment, the nitrogen-bound proton of the diazaphosphole ring manifests a high value ${ }^{2} J(\mathrm{H}, \mathrm{P})=17.2$ Hz coupling constant.

Fig. 1. Displacement ellipsoid plots (50% probability) of the title structure showing the atom-numbering scheme. H atoms are drawn as spheres of arbitrary radii.

Fig. 2. A partial view of the crystal packing of the title structure, showing a tubular arrangement of fused hydrogen-bonded rings along [001].

Table 1. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for the title compound.

P1-O1	$1.484(2)$	C1-N1	$1.404(3)$
P1-N1	$1.653(2)$	C6-N3	$1.403(3)$
P1-N2	$1.633(2)$	C7-N2	$1.413(3)$
P1-N3	$1.657(2)$		
O1-P1-N3	$116.94(12)$	N1-P1-N3	$92.49(12)$
O1-P1-N1	$116.40(13)$	C6-N3-P1	$112.48(18)$
O1-P1-N2	$107.08(12)$	N2-P1-N1	$112.70(13)$
C1-N1-P1	$112.45(18)$	$\mathrm{N} 2-\mathrm{P} 1-\mathrm{N} 3$	$110.87(13)$
C7-N2-P1	$128.32(18)$		

4. CONCLUSION

The synthesis, spectroscopic characterization and crystal structure determination of $\left(4-\mathrm{Cl}^{-}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(1,2-$ $\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$ was investigated. A survey on the Cambridge Structural Database (CSD) shows that this structure is the first diffraction study of an $\left(R^{1} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} R^{2}$ diazaphosphole (R^{1} and $R^{2}=\mathrm{H}$ or a hydrocarbon segment) and there is no report of $\left(R^{1} \mathrm{NH}\right) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} R^{2}$ diazaphosphole in the CSD. There are three hydrogen bond donor sites in the molecules and the $\mathrm{P}=\mathrm{O}$ group takes part in the $(\mathrm{N}-\mathrm{H} \ldots)_{2} \mathrm{O}=\mathrm{P}$ hydrogen bonds forming a novel tubular hydrogen bond pattern. The remaining $\mathrm{N}-\mathrm{H}$ group takes part in the $\mathrm{N}-\mathrm{H} \ldots \pi$ interaction.

5. ACKNOWLEDGMENTS

Support of this investigation by the Zanjan Branch, Islamic Azad University, is gratefully acknowledged.

6. REFERENCES

[1] Balali-Mood, M., Abdollahi, M. (2014). Basic and Clinical Toxicology of Organophosphorus Compounds. SpringerVerlag, London.
[2] Gholivand, K., Shariatinia, Z., Pourayoubi, M., Farshadian, S. (2005). Syntheses and Spectroscopic Studies of Some New Diazaphospholes and Diazaphosphorinanes. Crystal Structure of 4-F-C $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}(\mathrm{O}) \mathrm{N}(\mathrm{H}) \mathrm{P}(\mathrm{O})(\mathrm{NH})_{2} \mathrm{C}_{6} \mathrm{H}_{4}$. Z. Naturforsch. B, vol. 60, p. 1021-1026.
[3] Pourayoubi, M., Jasinski, J. P., Shoghpour Bayraq, S., Eshghi, H., Keeley, A. C., Bruno, G., Amiri Rudbari, H. (2012). Three new $[\mathrm{XC}(\mathrm{O}) \mathrm{NH}] P(\mathrm{O})\left[\mathrm{N}\left(\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\right]_{2}$ phosphoric triamides $\left(\mathrm{X}=\mathrm{CClF}_{2}, 3-F-\mathrm{C}_{6} H_{4}\right.$ and 3,5-F$\left.-\mathrm{C}_{6} H_{3}\right):$ a database analysis of tertiary N-atom geometry in compounds with a $C(O) N H P(O)[N]_{2}$ core. Acta Cryst. C, vol. 68, p. o399-o404.
[4] Döring, C., Taouss, C., Jones, P. G. (2012). Trimethylurea. Acta Cryst. C, vol. 68, p. o108-o110.
[5] Keikha, M., Pourayoubi, M., Tarahhomi, A., van der Lee, A. (2016). Syntheses and structures of four new mixedamide phosphoric triamides. Acta Cryst. C, vol. 72, p. 251-259.
[6] Bernstein, J., Davis, R. E., Shimoni, L., Chang, N.-L. (1995). Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. Angew. Chem. Int. Ed. Engl., vol. 34, p. 1555-1573.

Page 4

