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This research addresses multi criteria modeling and optimization procedure for Gas Metal Arc Welding
(GMAW) process of API-X42 alloy. Experimental data needed for modeling are gathered as per L36
Taguchi matrix. Model inputs include work piece groove angle as well as the five main GMAW process
parameters. The proposed back propagation neural network (BPNN) simultaneously predicts weld bead
geometry (WBG) and heat affected zone (HAZ). Image processing technique along with Bridge Cam
and AWS gauges are used to take accurate measurements of WBGs and HAZs. The adequacy of the
developed BPNN is established through comparisons against measured process outputs. Measurements
indicate that the BPNN model simulates GMAW process with average errors of 0.33 to 0.82%. Next, the
BPNNmodel is implanted into a particle swarm optimization (PSO) algorithm to simultaneously optimize
HAZ and WBG characteristics. The hybrid BPNN–PSO determines process parameters values and groove
angle so as a desired WBG is achieved while HAZ is minimized. Verification tests demonstrate that the
proposed BPNN–PSO is quite efficient for in multi-criteria modeling and optimization of GMAW.

� 2016 Published by Elsevier Ltd.
1. Introduction

Nowadays, Gas Metal Arc Welding (GMAW) process is widely
used in various industries including gas pipelines, petrochemical
plants, automotive and ship buildings. High productivity rate due
to the continuous feed of wire electrode, low weld discontinuity,
no slag inclusion and low thermal hazard on base metal are the
main merits of this process [1].

In welding processes the quality of the joint is usually
determined by such process quality measures as weld bead
geometry (WBG) and heat affected zone (HAZ) [2]. Weld bead
geometry is a significant factor as it strongly affects the mechanical
properties of the joint [3]. Another key quality indicator of the joint
is HAZ that determines the microstructural and metallurgical
changes of the weldment due to the heat generated during welding
process. Usually, because of large grain microstructure, ductility
and toughness of this area is poor. In addition, HAZ is prone to such
defects as hydrogen diffused crack, blue brittleness and laminar
tearing (toe crack). The proper microstructural and metallurgical
properties could be yield through controlling the heat input and
the subsequent heat affected zone [4].
Various factors influence the size of HAZ and the shape of weld
bead in GMAW process. An important group consists the process
parameters to be set on the welding machine; namely, welding
speed (S), welding voltage (V), wire feed rate (F) and nozzle-to-
plate distance (D) [5]. In addition in all diffusion welding processes,
involving thicker plates, the selection of groove angle (A) is an
important variable affecting WBG. Without suitable groove angle,
the entire internal portion of the joint would not be fused and caus-
ing aweak joint. To this end, proper selection of groove angle aswell
as the values of GMAW input parameters, plays a very significant
role in determining the quality of the final weldment. Therefore, to
achieve full penetrated weld with desired bead geometry, process
parameters selection and joint edge preparation must be carefully
considered.

The inherent nonlinearity of GMAW process and various
interactions between its input parameters, have motivated the
researchers to employ data-driven or artificial intelligence based
methods [5–8]. Artificial Neural Networks (ANNs) have
demonstrated ample potential in modeling of the input–output
relationships of complicated nonlinear systems such as welding
processes. In this regard, ANN may be used to predict the behavior
of process under different parameters settings. There are many
types of ANNs which vary in architecture, implementation of
transfer functions and strategy of learning. In view of their
universal approximation capabilities, back propagation neural
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Fig. 1. A schematic representation of GMAW process.

280 M. Azadi Moghaddam et al. /Measurement 92 (2016) 279–287
network (BPNN) has received considerable attention. The main
architectural features of BPNN include the number of hidden layers
and the number of processing elements in each hidden layer. These
factors have to be determined in advance of the process modeling.
Moreover, to gather experimental data needed for regression or
ANN modeling, design of experiments (DOE) technique has been
employed in many studies [7–9].

Along this line, artificial neural network has been used by
Nagesh and Datta [10] to model the WBG and penetration in
GMAW. It has been reported that depth of penetration is mostly
affected by current, voltage and welding speed. Shallower penetra-
tion has been produced by longer arc-length and too small arc-
length may also result in poor penetration. It was observed that
poor fusion has been produced by high arc travel rate or low arc
power. Higher electrode feed rate produced higher bead width.
Campbell et al. [11] developed an ANN model for the prediction
of WBG in GMAW process with alternating shielding gases. The
models were used to predict the penetration, width and effective
throat thickness under a set of weld parameters and alternate
frequency of shielding gas. Ates [12] presented a technique based
on ANNs to model GMAW parameters. The proposed ANN predicts
mechanical properties of the weldment such as tensile strength,
impact strength, elongation and weld metal hardness. Results
showed that, ANN can be used as an alternative way to calculate
the gas mixture to the presented conventional method.

In recent years, various heuristic algorithms and mathematical
methods have also been applied to find the desired process param-
eters settings. Meta-heuristic algorithms such as simulated anneal-
ing (SA), particle swarm optimization (PSO), and etc., have proven
to be a powerful skill for solving large combinatorial optimization
problems such as multi objective optimization of manufacturing
processes. Kolahan and Heidari [13], modeled and optimized
GMAW process using regression modeling and SA algorithm. Vari-
ous regression functions have been fitted on the experimental data
to develop mathematical models. The developed models have been
optimized using SA algorithm. Computational results indicated
that the proposed SA method could efficiently and accurately
determine welding parameters so as a desired bead geometry
specification was obtained. Multiple linear regression technique
has been used to develop mathematical models for weld bead
shape parameters of tungsten inert gas (TIG) welding process. Also
by using the same experimental data, an attempt has been made to
model the process using BPNN. Then, genetic algorithmic (GA)
coupled with BPNN has been applied to optimize the process
parameters [14]. Dhas and Kumanan [15] simulated the input–out-
put relationships for flux cored arc welding of the mild steel plates
through regression modeling technique. They embedded the devel-
oped model into a PSO algorithm to determine optimal process
parameters for minimizing of bead width. The optimized values
obtained from this technique were compared with experimental
results which illustrated a good agreement. Katherasan et al. [16]
proposed an ANN model coupled with PSO algorithm to simulate
and optimize WBG of 316L nickel based super alloys in flux cored
arc welding process. The process modeling was established via
ANN and then the developed model embedded into a PSO algo-
rithm which optimized the process parameters. The performances
of the conventional regression analysis approach, BPNN and an
ANN model coupled with GA (ANN–GA) have been compared for
TIG welding process. It has been shown that, ANN-based
approaches could yield predictions that were more adaptive in
nature compared to those of the more conventional regression
analysis approach. It could be due to the fact that ANN-based
approaches are able to bring adaptability, which is missing in the
conventional regression analysis [17]. Chaki et al. [18] has
combined ANNs, GA, SA and Quasi Newton line search techniques
to develop three integrated soft computing based models such as
ANN–GA, ANN–SA and ANN–Quasi Newton for modeling and
optimization of welding strength for hybrid CO2 laser–MIG welded
joints of aluminum alloy. Best performance has been shown for
ANN–GA technique.

There exist an extensive body of research on modeling and
optimization of GMAW. However, to the best of our knowledge,
there is no study in which modeling and optimization of both
process parameters and groove angle are simultaneously consid-
ered. Therefore, in this article an artificial neural network has been
developed to establish the relations between multi-input,
multi-output parameters of GMAW. The proposed BPNN model
has five inputs and four outputs in which we have jointly taken
into account the WBG as well as HAZ specifications. Both of these
features are important quality measures in GMAW process. In the
proposed integrated BPNN–PSO approach, multi-objective
optimization is carried out to simultaneously determine optimal
groove angle as well as the values of process parameters
(to be set on the welding machine). These settings would results
in minimum HAZ while a desired WBG is achieved. The proposed
approach has been implemented on API-X42 steel sheets, a widely
used alloy in various industries including petrochemical and oil
pipelines.

Generally, to construct an ANN model several sets of experi-
mental data (inputs–outputs) are needed. In this paper, the 36 data
sets needed for the BPNN training and testing, are gathered as per
L36 Taguchi design matrix. Taguchi scheme has been selected since
it could provide much useful information about the system under
study with minimal number of trials. Then, a BPNNmodel has been
developed and tested to simulate actual GMAW process. The BPNN
could closely simulate the real GMAW process. Hence, no addi-
tional experiments are required if the process responses are to be
estimated under various parameters settings. Finally, the BPNN
model was embedded (as the objective function) into a
multi-criteria PSO optimization algorithm to specify the optimized
process parameters and groove angle. In this way after a certain
number of iterations, the proposed optimization procedure would
determine the best set of process parameters setting that result in
a desired WBG with minimum HAZ.

2. Experimental procedure and results

2.1. Material and equipment

In this study, A GAAM-PARS MIG-SP 501W (GAAM-Co, Iran)
semi-automaticweldingmachinewitha2000ampere capacity, con-
stant voltage and rectifier type power source has been employed to
carryout the experiments. Theelectrodewas in the formof a copper-
coated coilwith 1 mmdiameter (ER70S-6G4Si1).Welding shield gas
consisted of a mixture of 75% Ar and 25% CO2, with the flow rate of
12 l/min. Fig. 1 shows a schematic illustration of GMAW process.



Fig. 2. Joint edge specifications for GMAW of plates with more than 6 mm
thickness.

Table 2
GMAW process input variables and their levels.

Level Welding
speed (S)
(cm/min)

Wire feed
rate (F)
(m/min)

Voltage (V)
(V)

Groove
angle (A)
(degree)

Nozzle-work
distance (D)
(mm)

Level 1 15 5 30 50 6
Level 2 20 7 35 70 12
Level 3 25 9 40 90 –

As shown, welding speed (S), wire feed rate (F), voltage (V) and groove angle (A)
would be evaluated at three levels each; while nozzle-work distance (D) is
considered at two levels.
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Experiments were carried out on API-X42 steel plates with
dimension of 120 mm � 50 mm � 10 mm. The chemical composi-
tion and mechanical properties of this alloy are reported in Table 1.

This steel is widely used in such industries as oil pipelines and
petrochemical plants. In many of these applications the welded
parts are subjected to high stresses or corrosive environments that
demand high quality weldments. In all welding processes, the
quality of welded joints are greatly affected by the values of pro-
cess parameters. Moreover, joint edge preparation is often neces-
sary when plates with more than 6 mm thickness are to be
welded. This edge modification concentrates heat in the area to
be melted and allows for the reduction in the arc power necessary
for penetration. This results is lower heat input rate and hence
reduces the risk of unforeseen distortions or metallurgical struc-
ture alterations. The joint edge geometry is usually specified by
groove angle, root face and root opening, as shown in Fig. 2.

For the specimens in this study, joint edge geometries have
been prepared by milling process in the form of V-beveled based
on ANSI/AWS D 1.1 standard [19].

2.2. Process input variables and their levels

The most prominent parameters in GMAW process include
nozzle-to-plate distance (D), welding voltage (V), wire feed rate
(F) and welding speed (S) [1,3,5]. Likewise, process quality mea-
sures include bead penetration (BP), bead width (BW), bead height
(BH) and heat affected zone (HAZ). To determine the feasible work-
ing ranges of each input variable, several preliminary tests were
conducted. The variable limits were then evaluated by inspecting
the weldment for a smooth appearance and good penetration with-
out any visible defects such as surface porosities and undercut.
According to the preliminary test results, the input variables and
their corresponding levels are listed in Table 2.

2.3. Design of experiments and the results

Once the process variables and their ranges are selected, the
next step is to select an appropriate design matrix for carrying
out the experiments. Design of experiments (DOE) approach facil-
itates the identification of the influence of individual parameters,
establishing the relationships between process parameters and
output responses, and finally determining the optimum levels.
Taguchi is one of the effective techniques that can dramatically
reduce the number of experiments required to gather necessary
data [20]. Given the number of input variables and their levels,
in this study Taguchi’s L36 has been selected to provide a well-
balance design for test runs. It consists of 36 sets of process param-
eters, based of which the experiments have been performed. To
increase accuracy, tests were carried out in random orders.

After welding, four types of measurements have been taken
from each sample. For measuring BHs and BWs, two types of
special gauges; namely Bridge Cam (TWI model) and AWS
(G.A.L model), were employed (Fig. 3). Measurements were taken
in three places along the weld lines and then averaged out.
Table 1
Chemical composition and mechanical properties of API-X42 steel alloy.

Chemical composition Mechanical properties

Fe 97.25% Yield Stress (YS) 486 MPa
C 0.6% Ultimate Tensile

Strength (UTS)
513 MPa

Mn 1.2% YS/UTS 0.95
Si 0.45% Fracture energy

in 30 �C
117 J

Other elements: Si + Mg + Cr + Ti 0.5% Total elongation 21%
For measuring HAZs and BPs, two transverse cross sections
were made on each samples. Next, the cut faces were smoothly
polished and etched using 10% Nital solution to clearly show bead
geometry specifications and heat affected zones.

Then, images were taken using an optical microscope with �10
magnification (OLYMPUS-530 (Fig. 4)). These images were subse-
quently processed by Microstructural Image Processing (MIP) soft-
ware, developed at Metallurgy Lab of Ferdowsi University of
Mashhad, to determine samples HAZs and BPs. For each sample
the average of two measurements are reported. It is noted MIP
software was also used to verify the BHs and BWs dimensions
already measured.

Fig. 5 illustrates a sample of transverse cross-section weldment
processed by MIP software in which bead geometry specifications
and HAZ are clearly shown.

The GMAW parameters settings along with their corresponding
outputs are reported in Table 3. In this table, besides the test num-
bers, the first five columns represent parameters settings used to
perform experiments and the last four columns are the measured
process outputs.

In the following sections, these measured process outputs are
used to model the GMAW using BPNN.
3. BPNN model of GMAW process

Traditional modeling methods are mostly relied on assumptions
for model simplifications, and consequently may lead to imprecise
results. Recently, ANN has become a powerful and useful method to
model complex non-linear systems. The basis of ANNmodeling is to
capture the underlying trend of the data set presented to it, in the
form of a complex nonlinear relationship between the input param-
eters and the process quality measures. Learning, generalization,
and parallel processing are important advantages of ANN that make
them suitable for GMAW process modeling [21].



Fig. 3. Bridge Cam and AWS gauges used to measure BHs and BWs of the welded specimens.

Fig. 4. GMAW machine and optical microscope used.

Fig. 5. Quantitative evaluation of WBG and HAZ using microstructural image processing software.
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ANNs are built by connecting processing units, called nodes or
neurons. Each of the input (Xi) is associated with some weight
(Wi) which takes a portion of the input to the node for processing.
The node combines the inputs (XiWi) and produces net input
which in turn is transformed into output with the help of transfer/
activation function [21,22].
Many researchers have reported multilayered networks are
capable of computing a wider ranges of nonlinear functions than
the networks with a single layer [16,21,22]. However, the compu-
tational effort needed for modeling a system increases substan-
tially when more complicated architectures are considered. The
BPNNs are found most appropriate for handling such large learning



Table 3
L36 orthogonal array of GMAW experimental conditions.

No. D (mm) A (Degree) V (V) F (m/min) S (cm/min) BW (mm) BP (mm) BH (mm) HAZ (mm)

1 6 50 30 5 15 8.99 5.55 2.43 3.51
2 6 70 35 7 20 8.61 5.28 2.64 3.99
3 6 90 40 9 25 10.33 5.14 2.85 4.25
4 6 50 30 5 15 8.99 5.55 2.43 3.93
5 6 70 35 7 20 9.69 5.28 2.64 3.99
6 6 90 40 9 25 10.03 5.14 2.85 4.33
7 6 50 30 7 25 7.26 4.48 2.30 3.02
8 6 70 35 9 15 11.44 6.13 4.01 4.92
9 6 90 40 5 20 10.80 4.71 2.21 4.17

10 6 50 30 9 20 8.33 5.79 3.04 3.63
11 6 70 35 5 25 8.37 3.94 2.26 3.25
12 6 90 40 7 15 11.03 6.6 3.10 5.26
13 6 50 35 9 15 10.25 6.76 4.06 4.73
14 6 70 40 5 20 10.22 5.24 2.45 4.05
15 6 90 30 7 25 8.26 3.50 1.84 3.25
16 6 50 35 9 20 9.25 5.74 3.54 4.09
17 6 70 40 5 25 9.16 4.49 2.21 3.62
18 6 90 30 7 15 10.62 4.98 2.33 4.22
19 12 50 35 5 25 8.50 4.81 2.54 2.98
20 12 70 40 7 15 13.37 6.70 3.77 4.88
21 12 90 30 9 20 10.37 4.14 2.60 3.72
22 12 50 35 7 25 8.83 4.76 3.00 3.26
23 12 70 40 9 15 13.74 6.43 4.40 5.21
24 12 90 30 5 20 9.72 3.25 1.82 3.63
25 12 50 40 7 15 12.41 6.82 5.35 5.49
26 12 70 30 9 20 9.81 4.60 2.89 2.59
27 12 90 35 5 25 9.68 3.24 1.91 3.20
28 12 50 40 7 20 10.78 6.33 3.80 4.06
29 12 70 30 9 25 8.80 3.94 2.51 3.22
30 12 90 35 5 15 12.43 4.61 1.93 4.16
31 12 50 40 9 25 9.94 6.02 3.99 3.87
32 12 70 30 5 15 9.72 4.4 2.31 3.57
33 12 90 35 7 20 11.20 4.34 2.60 3.93
34 12 50 40 5 20 10.39 5.51 3.09 3.71
35 12 70 30 7 25 8.56 3.55 2.23 3.00
36 12 90 35 9 15 11.29 6.07 3.47 5.73
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problems. This type of neural network is known as a supervised
network because it requires a desired process quality measures
in order to learn. A BPNN consists of multiple layers of nodes in
a directed scheme, with each layer fully connected to the next
one. Except for the input nodes, each node is a neuron
(or processing element) with a nonlinear activation function
defined by [22]:

Fi;j ¼ 1

1þ exp�P Wi;j�1 ;Oi;j�1ð Þ ð1Þ

where for ith neuron in the jth layer, P (Wi,j�1, Oi,j�1) is given by:

P Wi;j�1;Oi;j�1
� � ¼ Xm

j¼1

Xn

i¼1

Wi;j�1 � Oi;j�1 ð2Þ

where n and m are number of hidden layers and neurons in each
layer respectively. Wi,j�1 is the weight of the ith neuron in (j � 1)
th. In this study for modeling of the GMAW process the total num-
ber of input nodes is five (nozzle-to-plate distance, groove angle,
welding voltage, wire feed rate and welding speed). The best archi-
tecture of model the (number of hidden layers and number of nodes
in each hidden layer) have been chose by trial and error method.
Furthermore, the transfer function of each processing element is
identified and next network is trained to interrelate the process
parameters to output responses. The outputs of trained model are
BW, BP, BH and HAZ.

Network training involves two phases through different layers
of the network; a forward and a backward phase. In the forward
phase, input vectors are presented and propagated forward to
compute the outputs and the mean square error (MSE) via the
following relation.

MSE ¼ 1
n

Xn
k¼1

Yk � ykð Þ2 ð3Þ

The backward phase is an iterative error reduction performed
in the backward direction from the output layer to the input
layer. The Levenberg–Marquardt algorithm is used to minimize
the MSE [21,22]. Several tests are carried out to find the best
neural network architecture, training parameters and learning
algorithm coefficients. Appropriate BPNN architecture with three
hidden layers is selected. A 5–5–3–6–4 architecture results in
the best interpolation performance and less MSE value. Configu-
ration of the developed BPNN is schematically illustrated in
Fig. 6.

Fig. 7 depicts the comparison between the capability of
responses prediction by developed model and experiments. The
good agreement with the small negligible error exists; so the
developed BPNN predicts the process in the favorable level.

As clearly demonstrated in Fig. 7, the predicted outputs given
by BPNN closely follow the experimentally measured data. The rel-
ative errors between predicted and measured BW, BP, BH and HAZ
are 0.52%, 0.33%, 0.43%, 0.82% respectively. The maximum error is
less than 6% for all 36 data sets. Consequently, the developed BPNN
model may appropriately substitute the actual GMAW process. In
the following, this model has been used as the process estimator
in the proposed BPNN–PSO optimization process to find the
optimal parameters settings.



Fig. 6. Architecture of proposed BPNN model.

Fig. 7. Comparison between experimental and predicted BW, BP, BH and HAZ by the BPNN models.

Fig. 8. Desirable V-beveled butt joint for gas pipeline and related facilities [19].
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4. GMAW process optimization

4.1. Problem definition

The goal of process optimization is to seek the best design by
changing variables that satisfies the best process performance
while don’t disturb the design constraints. A suitable weld shall
be such that the completed weld has a substantially uniform cross
section. At no point shall the crown surface of bead be below the
outside surface the parent plate, nor should it be raised above
the parent by more than an upper limit value. Also the width of
bead should be a few bigger than the original groove (crown
width). On the other hand the optimum value of bead penetration
is equal to thickness of sample plates while greater penetration
require to larger heat input; so the risk of undercut and high over-
lap and heat caused defects in parent material increase.

A standard weld pool is defined in American petroleum insti-
tute (user’s manual No 1104 released by the API) by its appearance
(Fig. 8) [19].
Thus, based on API standard [19], the following rules may be
used to achieve a high quality WBG.
OGW < BW < OGWþ 1:6 mm; BP P 6 mm; 0:8 mm

< BH < 1:6 mm ð4Þ
The WBG specifications are directly influenced by the settings

of GMAW parameters. Moreover, the parameter Original Groove
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Width (OGW) is directly associated with the groove angle (A), root
opening (RO), root length (RL) and work piece thickness (T). It is
given by:

OGW ¼ 2� T � RLð Þ � tg
A
2

� �
þ Ro ð5Þ

The need for the best compromise within various (sometimes
conflicting) objectives, calls for an effective multi objective opti-
mization approach. The best level of each process parameter may
be specified through Taguchi Signal to Noise (S/N) analysis.
However, this method is limited by the fact that S/N could only
specify the best level of each parameter out of those originally
included in the Taguchi design matrix. In other words, if the true
optimal value of a given parameter fall within any two levels,
S/N analysis could not identify it. To overcome this shortcoming,
an integrated ANN–PSO algorithm has been proposed to make it
possible for interpolation of entire permissible ranges of process
parameters.
4.2. Solution method: particle swarm optimization

Particle swarm optimization (PSO) algorithm, a population
based stochastic optimization proposed by Eberhart and Kennedy
in 1995, has been inspired by social behavior of birds flocking
[23]. The intelligence of swarm is based on the principle of social
and psychological behavior of the swarm. The optimization proce-
dure is initialized with a population of random solutions and
searches for optima by updating generations. The potential solu-
tions called particles fly through the problem space by following
the current optimum particles. PSO is very easy to implement
and there are few parameters to adjust. The algorithm can be
explained based on the following scenario: a group of birds are
randomly searching food in an area. There is only one piece of food
in the area being searched. All the birds do not know where the
food is. But they know how far the food is in their search [24].
The best strategy to attain the food is to simply follow the bird,
which is nearest to the food. In optimization problems, each bird
in the search space is referred to as ‘particle’. All the particles are
evaluated by the fitness function to be optimized and have
velocities for the particles. The particles fly through the problem
space by following the current optimum particles. The problem is
initialized with a group of random particles and then searches
for optima by updating generations [25]. Although conventional
PSO can rapidly find out good solutions, it may be trapped in local
minimum and fails to converge to the best position [13]. To obviate
this problem and improve resolving capacity, an improved PSO
algorithm with mutation is used. Using both the best and worst
particle positions in the improved PSO algorithm accelerate the
finding of the optimal solution. The particle positioning is
accomplished by modifying the particle parameters including the
speed and position (Vi and Xi), defined by the following expressions
[26,27].

Xiðkþ 1Þ ¼ XiðkÞ þ Viðkþ 1Þ
Viðkþ 1Þ ¼ c � ViðkÞ þ c1r1 pi � xiðkÞð Þ þ c2r2 pg � xiðkÞ

� � ð6Þ

where c1, c2 and c3 are acceleration parameters, r1 and r2 are
random numbers ranged between 0 and 1, and c represents the
inertia weight which decreases linearly from 1 to near 0 as the
search progresses. In addition, pi and pg denote the best position
of the ith bird and the best position of the entire colony,
respectively. Each heuristic algorithm has its own parameters that
affect its performance in terms of solution quality and
computational speed. It is noted that, the parameters of PSO also
have to be tuned to achieve the best performance.
4.3. Optimization results and confirmation tests

The proposed multi objective BPNN–PSO procedure has been
employed in order to obtain a weldment with desired WBG
specifications and minimum HAZ on API-X42 steel plates. Here,
Eq. (4) is used to define the ideal dimensions of WBG based on
API standard [19]. The feasible ranges of GMAW parameters have
been displayed in Table 2. According to Table 4, plates groove angle
can vary between 50 and 90 degrees (50� < Ai < 90�), welding
voltage may take any values in the range of 30–40 V
(30 < Vi < 40) etc. In each iteration, the BPNN model, incorporated
into PSO algorithm, acts as the objective function to calculate the
GMAW outputs values. The algorithm would search through
feasible solution space for the best set of parameters values so as
HAZ is minimized and pre-defined dimensions of WBG are
obtained.

As mentioned, to enhance the performance of the optimization
algorithm, its parameters values must properly be determined.
Based on the results of several test runs, inertia weight was set
at 0.5 and the best population size found to be 20 for all
generations. To avoid local optima, the computer code of
BPNN–PSO algorithm was run several times using various set of
initial populations. The algorithm was terminated after a pre-
determined number of non-improving generations was observed.
Fig. 9 demonstrates the convergence curve of a sample run in
which the code was terminated after 35 generations, including five
consecutive generations with no improvement in the objective
function.

Table 4 lists two sets of the best GMAW parameters settings for
which the value of the multi-criteria objective function is mini-
mized. It should be mentioned that both sets result in the same
values for the objective function. In Table 4, the first five column
show optimal process parameters given by PSO algorithm. To
assess the performance of the proposed BPNN–PSO method,
experiments were carried out based on the optimized settings
whose measured outputs are reported in the last four column of
the table. By comparing GMAW test results it becomes evident that
optimized HAZs are at least 75% smaller than all those reported in
Table 3 (1.64 and 1.69 mm vs. 3.00 mm of test No. 35). Further-
more, the measured weld beads are well within the proper ranges
delineated by API standard (Eq. (4)). By the same token, the WBGs
resulted from optimized parameters settings are much better than
all those of the 36 tests performed based on Taguchi scheme. These
findings confirm that the proposed approach is quite efficient in
finding the best set of parameters settings for multi objective
optimization of GMAW.

In GMAW, large heat affected zones may cause fracture and cor-
rosion due to pronounced metallurgical changes in this region [28].
On the other hand, bigger weld beads (especially larger BW and BP)
are more favorable because of their higher strength. A favorable
WBG is often defined by the specific applications and industries
for which the welded parts are intended. In most cases WBG and
HAZ are conflicting performance measures in which pre-defined
WBGs and small HAZs are to be obtained. Achieving such conflict-
ing objectives requires careful selection of parameters settings.
Given the vast number of possible combinations for parameters
settings, trial and error is quite inefficient. In contrast,
multi-objective modeling and optimization proved to be more
both efficient and effective in finding the best set of GMAW
parameters.

With respect to the two performance measures used in this
research, optimal parameters settings should produce a weldment
with a small HAZ and WBG characteristics close to those given by
Eq. (4). The optimized parameters values listed in Table 4 indicate
that both nozzle to plate distance (D) and welding voltage (V)
should be at their lower permissible ranges, resulting in minimum



Table 4
Optimal parameters and their measured responses.

Optimal process setup Process parameters Experimental responses

D (mm) A (Degree) V (V) F (m/min) S (cm/min) BW BP BH HAZ

Setting 1 6 70 33 6 21 6.91 6.10 1.23 1.64
Setting 2 7 75 34 6.2 20 6.96 6.12 1.49 1.69

Fig. 9. Convergence curve for the proposed PSO algorithm.
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possible HAZ. These, together with the values of other optimized
process parameters, ensure that the pre-defined WBG is obtained.
Therefore, the proposed BPNN–PSO approach a well-balanced
welded joint may be achieved; satisfying both distinct objectives.
5. Conclusion

The quality of final product in GMAW process is significantly
affected by the selection of process parameters levels. On the other
hand, the interactions of these parameters and the conflicting nat-
ure of various quality measures, call for simultaneous selection of
their optimal values. In this research the problem of multi-criteria
modeling and optimization of GMAW process for API X42 steel
sheets has been addressed. First, GMAWmodeling has been carried
out using experimental data gathered as per L36 Taguchi design
matrix. Bead height and bead width has been measured using
Bridge Cam and AWS gauges. Moreover, the MIP software has been
used for measurement of bead penetration, width of heat affected
zone and verification of measured bead height and bead width. The
proposed BPNN model simultaneously takes into account five pro-
cess input variables to predict four outputs responses. The BPNN
predicted results were in a good agreement with the experimental
data which illustrate the proposed model can accurately simulate
the actual GMAW process. Next, the BPNNmodel has been coupled
with a PSO procedure to determine the optimal set of process set-
tings. The multi-objective optimization procedure involves finding
a certain combination of welding parameters so as HAZ is mini-
mized and a WBG with specific dimensions is obtained. The most
important factors affecting HAZ is heat input rate. Usually high
welding voltage (V) and nozzle to plate distance (D) would produce
larger heat input rates which in turn increases the size of HAZ. The
optimized parameters values, given by BPNN–PSO, indicate that
both nozzle to plate distance and welding voltage should be set
at their lower ends (6 m/min and 33 V respectively). Such settings,
along with the values for other three parameters, would also pro-
duce a WBG with desired specifications while keeping HAZ to its
minimal. The results depict that WBGs are well within the desired
ranges whilst HAZs have been decreased considerably creating a
near perfect balance among the conflicting objectives. These fur-
ther illustrate that optimization results are consistent with the
inherent characteristics of GMAW process. It is noted that in this
research both performance measures were given equal weights
of 50%. Based on the relative importance of the HAZ and WBG
and with minor modifications in the objective function, any other
combinations of these two objectives may also be achieved.
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